[Journal logo]

Volume 69 
Part 5 
Page o742  
May 2013  

Received 15 March 2013
Accepted 8 April 2013
Online 17 April 2013

Key indicators
Single-crystal X-ray study
T = 90 K
Mean [sigma](C-C) = 0.003 Å
Disorder in main residue
R = 0.043
wR = 0.115
Data-to-parameter ratio = 15.5
Details
Open access

Metacridamide B methanol-d4 monosolvate

aDepartment of Chemistry, Syracuse University, 1-014 Center for Science & Technology, Syracuse, NY 13244-4100, USA, and bUSDA-ARS, Biological IPM Research Unit, Robt. W. Holley Ctr. for Ag. and Health, Tower Rd, Ithaca, NY 14853, USA
Correspondence e-mail: uenglich@syr.edu

The title compound, C35H53NO5·CH3OH {systematic name: (3S,6E,8S,9R,10E,12S,13S,14E,16S,17R)-3-benzyl-9,13-dihydroxy-6,8,10,12,14,16-hexamethyl-17-[(2S,4S)-4-methylhexan-2-yl]-1-oxa-4-azacycloheptadeca-6,10,14-triene-2,5-dione methanol-d4 monosolvate}, was extracted from conidia of the fungus Metarhizium acridum. Crystals were obtained as a methanol-d4 solvate. The tail part of the 4-methylhexan-2-yl group exhibits disorder over two positions, with an occupancy ratio of 0.682 (9):0.318 (9). The crystal structure confirms the absolute configuration of nine stereocenters determined previously for the acetylated compound metacridamide A. In the crystal, the methanol-d4 molecule is positioned close to the O atom in the carbonyl group of the peptide bond, forming an O-H...O hydrogen bond. It also forms an O-H...O hydrogen bond with an adjacent molecule. N-H...O and O-H...O hydrogen bonds are observed between neighboring molecules.

Related literature

For details of the isolation and purification of the title compound, see: Krasnoff et al. (2012[Krasnoff, S. B., Englich, U., Miller, P. G., Shuler, M. L., Glahn, R. P., Donzelli, B. G. G. & Gibson, D. M. (2012). J. Nat. Prod. 75(2), 175-180.]).

[Scheme 1]

Experimental

Crystal data
  • C35H53NO5·CH4O

  • Mr = 599.83

  • Orthorhombic, P 21 21 21

  • a = 8.5444 (3) Å

  • b = 10.9406 (4) Å

  • c = 37.8017 (15) Å

  • V = 3533.7 (2) Å3

  • Z = 4

  • Cu K[alpha] radiation

  • [mu] = 0.60 mm-1

  • T = 90 K

  • 0.30 × 0.30 × 0.10 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.841, Tmax = 0.943

  • 15638 measured reflections

  • 6147 independent reflections

  • 6037 reflections with I > 2[sigma](I)

  • Rint = 0.021

Refinement
  • R[F2 > 2[sigma](F2)] = 0.043

  • wR(F2) = 0.115

  • S = 1.11

  • 6147 reflections

  • 397 parameters

  • H-atom parameters constrained

  • [Delta][rho]max = 0.28 e Å-3

  • [Delta][rho]min = -0.33 e Å-3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2547 Friedel pairs

  • Flack parameter: 0.12 (18)

Table 1
Hydrogen-bond geometry (Å, °)

D-H...A D-H H...A D...A D-H...A
N4-H4A...O5i 0.88 2.16 2.915 (2) 144
O4-H4B...O1Sii 0.84 2.00 2.795 (2) 157
O5-H5A...O2iii 0.84 2.06 2.839 (2) 154
O1S-H1S...O3 0.84 1.93 2.754 (2) 168
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z; (iii) x-1, y, z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2623 ).


Acknowledgements

We gratefully acknowledge J. Zuk (Cornell) and R. Garcia (Cornell University) for technical assistance. The authors gratefully acknowledge support from the National Science Foundation (grant CHE 1048703) and Syracuse University for the purchase of the X-ray instrument.

References

Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.  [CrossRef] [details]
Krasnoff, S. B., Englich, U., Miller, P. G., Shuler, M. L., Glahn, R. P., Donzelli, B. G. G. & Gibson, D. M. (2012). J. Nat. Prod. 75(2), 175-180.  [ISI] [CSD] [CrossRef]
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.  [ISI] [CrossRef] [ChemPort] [details]
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [ChemPort] [details]


Acta Cryst (2013). E69, o742  [ doi:10.1107/S1600536813009641 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.