supplementary materials


fj2624 scheme

Acta Cryst. (2013). E69, o752-o753    [ doi:10.1107/S1600536813009811 ]

2-Methyl-4-(4-methylpiperazin-1-yl)-10H-thieno[2,3-b][1,5]benzodiazepine (olanzapine) propan-2-ol disolvate

R. M. Bhardwaj and A. J. Florence

Abstract top

In the title solvate, C17H20N4S·2C3H8O, pairs of olanzapine molecules related by a centre of inversion stack along the a axis, forming columns, which are packed parallel to each other along the b axis, forming a sheet arrangement. The columns within these sheets are hydrogen bonded to each other through the propan-2-ol solvent molecules. The diazepine ring of the olanzapine exists in a puckered conformation with the thiophene and phenyl rings making a dihedral angle of 57.66 (7)° and the piperazine ring adopts a chair conformation with the methyl group in an equatorial position.

Comment top

2-methyl-4-(4-methylpiperazin-1-yl)-10H-thieno[2,3-b][1,5]benzodiazepine (Olanzapine, OZPN) is used in the treatment of schizophrenia and related psychoses (Fulton et al., 1997; Tollefson et al., 1997; Sanger et al., 2001). The compound is known to exist in three anhydrous polymorphic forms and 56 solvates including four hydrates have been reported. The crystal structures of two polymorphs and 33 solvates have been reported and all are based on a centrosymmetric dimer motif, which is considered to be the structural building block (Reutzel-Edens et al., 2003; Bhardwaj et al., 2013). The sample of OZPN propan-2-ol solvate was isolated during an experimental physical form screen. The sample was identified as a novel form using multi-sample foil transmission X-ray powder diffraction analysis (Florence et al., 2003).

A suitable sample for single-crystal X-ray diffraction analysis was obtained from slow evaporation of saturated propan-2-ol solution at room temperature. The title compound crystallizes in space group P-1 with one molecule of OZPN and two molecules of propan-2-ol in the asymmetric unit (Fig. 1). OZPN molecules form centrosymmetric dimers, which stack along the a-direction to form columns. These columns further stack along the b-direction to form sheets and are H-bonded to each other through propan-2-ol molecules, which are present between the sheets. The solvent separated sheets stack along the c-direction to form three-dimensional structure (Fig. 2). XPac (Gelbrich et al., 2005) analysis revealed that this solvate shares 2-D similarity with form I (CSD refcode: UNOGIN01) and dihydrate D (CSD refcode: AQOMAU). The major difference between the structures arises from the relative orientation of the sheets due to incorporation of solvent molecules between them.

Related literature top

For literature on olanzapine and related structural studies, see: Fulton & Goa (1997); Sanger et al. (2001); Tollefson et al. (1997); Reutzel-Edens et al. (2003); Bhardwaj et al. (2013). For details of experimental methods used, see: Florence et al. (2003). For details of XPac, see: Gelbrich & Hursthouse (2005).

Experimental top

A single plate shaped crystal was grown from the saturated solution of OZPN in propan-2-ol by isothermal solvent evaporation at 298 K.

Refinement top

The positions of the nitrogen and oxygen-bound H atoms were refined freely. All other H atoms were placed in calculated positions and refined in riding modes with C—H = 0.95, 0.98 and 0.99 Å for the aromatic CH, CH3 and CH2 groups respectively. The Uiso(H) values were set to 1.2 and 1.5 times Ueq of their parent C atoms for the aromatic CH, CH2 and CH3 groups respectively.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) and WinGX (Farrugia, 2012); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and WinGX (Farrugia, 2012); molecular graphics: Mercury (Macrae et al., 2008) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: enCIFer (Allen et al., 2004) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of olanzapine propan-2-ol solvate. Displacement ellipsoids are drawn at 50% probability level.
[Figure 2] Fig. 2. The crystal packing in olanzapine propan-2-ol solvate, viewed down the a-axis. H-bonds are shown by black dotted line. Carbon, nitrogen, oxygen, sulfur and hydrogen atoms are shown in blue, violet, red, yellow and green colour respectively. Other hydrogen atoms are omitted for clarity.
2-Methyl-4-(4-methylpiperazin-1-yl)-10H-thieno[2,3-b][1,5]benzodiazepine propan-2-ol disolvate top
Crystal data top
C17H20N4S·2C3H8OZ = 2
Mr = 432.62F(000) = 468
Triclinic, P1Dx = 1.207 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.9621 (5) ÅCell parameters from 8504 reflections
b = 10.8702 (6) Åθ = 2.3–26.5°
c = 12.2298 (7) ŵ = 0.16 mm1
α = 70.421 (2)°T = 123 K
β = 74.560 (2)°Plate, yellow
γ = 77.296 (2)°0.41 × 0.34 × 0.11 mm
V = 1190.24 (11) Å3
Data collection top
Bruker APEXII CCD
diffractometer
4880 independent reflections
Radiation source: fine-focus sealed tube4073 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
φ and ω scansθmax = 26.6°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1210
Tmin = 0.581, Tmax = 0.745k = 1113
16365 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.055P)2 + 0.4568P]
where P = (Fo2 + 2Fc2)/3
4880 reflections(Δ/σ)max < 0.001
289 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C17H20N4S·2C3H8Oγ = 77.296 (2)°
Mr = 432.62V = 1190.24 (11) Å3
Triclinic, P1Z = 2
a = 9.9621 (5) ÅMo Kα radiation
b = 10.8702 (6) ŵ = 0.16 mm1
c = 12.2298 (7) ÅT = 123 K
α = 70.421 (2)°0.41 × 0.34 × 0.11 mm
β = 74.560 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
4880 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
4073 reflections with I > 2σ(I)
Tmin = 0.581, Tmax = 0.745Rint = 0.025
16365 measured reflectionsθmax = 26.6°
Refinement top
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.106Δρmax = 0.33 e Å3
S = 1.04Δρmin = 0.29 e Å3
4880 reflectionsAbsolute structure: ?
289 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
H1N0.1193 (19)0.9466 (19)0.1993 (16)0.032 (5)*
H3S0.514 (2)0.758 (2)0.825 (2)0.050 (6)*
H1S0.260 (3)0.830 (2)0.854 (2)0.058 (7)*
S10.04115 (4)0.91878 (4)0.36298 (3)0.02407 (11)
N10.09642 (13)0.85854 (13)0.22328 (11)0.0230 (3)
N40.36303 (13)0.26018 (12)0.32261 (11)0.0219 (3)
N30.14149 (12)0.47811 (12)0.30511 (11)0.0217 (3)
N20.08278 (13)0.56928 (12)0.28169 (11)0.0219 (3)
C140.21368 (16)0.24248 (14)0.35573 (14)0.0244 (3)
H14A0.17870.23250.44150.029*
H14B0.20460.16060.34140.029*
C160.28887 (15)0.49962 (14)0.26562 (14)0.0223 (3)
H16A0.29850.58310.27690.027*
H16B0.32100.50680.18010.027*
C50.03110 (15)0.57973 (14)0.30703 (12)0.0200 (3)
C60.13109 (15)0.67258 (14)0.43396 (13)0.0213 (3)
H60.17550.58980.47560.026*
C70.13712 (15)0.78773 (15)0.45145 (13)0.0228 (3)
C130.12395 (16)0.35797 (14)0.28589 (14)0.0229 (3)
H13A0.15340.36490.20030.027*
H13B0.02380.34480.31260.027*
C120.33300 (16)0.60148 (15)0.33644 (13)0.0246 (3)
H120.32750.50820.35900.030*
C30.21953 (15)0.79562 (14)0.26365 (12)0.0211 (3)
C150.37834 (16)0.38554 (15)0.33649 (14)0.0243 (3)
H15A0.47830.39930.30900.029*
H15B0.34930.38170.42140.029*
C20.00519 (15)0.81452 (14)0.30203 (13)0.0208 (3)
C100.47383 (16)0.81431 (16)0.30737 (14)0.0259 (3)
H100.56330.86780.30910.031*
C40.20831 (15)0.65708 (14)0.29640 (13)0.0213 (3)
C80.20862 (17)0.81074 (16)0.53509 (15)0.0273 (3)
H8A0.14040.81440.60870.041*
H8B0.24670.89440.49810.041*
H8C0.28540.73840.55300.041*
C170.44267 (18)0.14983 (16)0.39751 (15)0.0301 (4)
H17A0.54230.16100.37460.045*
H17B0.43250.06690.38730.045*
H17C0.40660.14760.48080.045*
C110.46419 (16)0.67801 (16)0.34425 (14)0.0259 (3)
H110.54710.63730.37470.031*
C10.05185 (15)0.68643 (14)0.34722 (13)0.0206 (3)
C90.35177 (16)0.87206 (15)0.26790 (13)0.0241 (3)
H90.35850.96550.24330.029*
O1S0.44594 (13)0.77562 (13)0.87986 (11)0.0348 (3)
C2S0.50035 (18)0.80746 (17)0.96257 (14)0.0318 (4)
H2S0.56190.87730.91790.038*
C3S0.58641 (19)0.6878 (2)1.02927 (16)0.0425 (5)
H3S10.52780.61761.07120.064*
H3S20.62110.71071.08680.064*
H3S30.66640.65720.97330.064*
C1S0.3754 (2)0.8628 (2)1.04315 (16)0.0420 (5)
H1S10.32280.93970.99520.063*
H1S20.40870.88921.09940.063*
H1S30.31400.79521.08690.063*
O2S0.17158 (13)0.85357 (11)0.84879 (10)0.0308 (3)
C5S0.08774 (19)0.77005 (18)0.94873 (15)0.0345 (4)
H6S0.10120.78031.02320.041*
C4S0.0636 (2)0.8177 (2)0.93962 (18)0.0464 (5)
H5S10.08830.90950.94130.070*
H5S20.12420.76251.00660.070*
H5S30.07710.81200.86500.070*
C6S0.1325 (3)0.62811 (19)0.9508 (2)0.0577 (6)
H7S10.11920.61690.87830.087*
H7S20.07550.57231.02020.087*
H7S30.23200.60260.95520.087*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0235 (2)0.01788 (19)0.0328 (2)0.00162 (14)0.00854 (15)0.00866 (15)
N10.0219 (6)0.0188 (6)0.0268 (6)0.0008 (5)0.0093 (5)0.0029 (5)
N40.0211 (6)0.0199 (6)0.0267 (6)0.0027 (5)0.0098 (5)0.0092 (5)
N30.0173 (6)0.0179 (6)0.0316 (7)0.0013 (5)0.0065 (5)0.0092 (5)
N20.0208 (6)0.0206 (6)0.0259 (6)0.0006 (5)0.0085 (5)0.0074 (5)
C140.0241 (8)0.0187 (7)0.0306 (8)0.0019 (6)0.0050 (6)0.0088 (6)
C160.0181 (7)0.0198 (7)0.0306 (8)0.0027 (6)0.0051 (6)0.0096 (6)
C50.0203 (7)0.0181 (7)0.0208 (7)0.0029 (6)0.0051 (6)0.0039 (5)
C60.0182 (7)0.0204 (7)0.0258 (7)0.0008 (6)0.0063 (6)0.0072 (6)
C70.0188 (7)0.0232 (7)0.0272 (7)0.0017 (6)0.0054 (6)0.0088 (6)
C130.0202 (7)0.0201 (7)0.0310 (8)0.0023 (6)0.0068 (6)0.0103 (6)
C120.0247 (8)0.0246 (8)0.0283 (8)0.0023 (6)0.0121 (6)0.0082 (6)
C30.0210 (7)0.0236 (7)0.0201 (7)0.0008 (6)0.0074 (6)0.0071 (6)
C150.0210 (7)0.0249 (8)0.0315 (8)0.0009 (6)0.0098 (6)0.0135 (6)
C20.0171 (7)0.0209 (7)0.0253 (7)0.0022 (6)0.0044 (6)0.0084 (6)
C100.0201 (7)0.0337 (9)0.0267 (8)0.0042 (6)0.0096 (6)0.0140 (7)
C40.0211 (7)0.0231 (7)0.0223 (7)0.0005 (6)0.0099 (6)0.0082 (6)
C80.0261 (8)0.0267 (8)0.0346 (8)0.0025 (6)0.0105 (7)0.0138 (7)
C170.0330 (9)0.0266 (8)0.0309 (8)0.0065 (7)0.0143 (7)0.0094 (7)
C110.0201 (7)0.0337 (8)0.0279 (8)0.0037 (6)0.0083 (6)0.0119 (6)
C10.0167 (7)0.0201 (7)0.0256 (7)0.0008 (6)0.0050 (6)0.0084 (6)
C90.0259 (8)0.0225 (7)0.0244 (7)0.0027 (6)0.0100 (6)0.0079 (6)
O1S0.0261 (6)0.0516 (8)0.0322 (6)0.0042 (5)0.0095 (5)0.0228 (6)
C2S0.0355 (9)0.0347 (9)0.0283 (8)0.0080 (7)0.0084 (7)0.0104 (7)
C3S0.0288 (9)0.0608 (13)0.0309 (9)0.0016 (9)0.0060 (7)0.0098 (9)
C1S0.0504 (12)0.0442 (11)0.0350 (10)0.0068 (9)0.0151 (9)0.0201 (8)
O2S0.0258 (6)0.0242 (6)0.0362 (6)0.0032 (5)0.0058 (5)0.0019 (5)
C5S0.0340 (9)0.0412 (10)0.0281 (8)0.0136 (8)0.0074 (7)0.0042 (7)
C4S0.0314 (10)0.0684 (14)0.0401 (10)0.0170 (9)0.0035 (8)0.0139 (10)
C6S0.0651 (15)0.0318 (10)0.0726 (15)0.0172 (10)0.0297 (12)0.0074 (10)
Geometric parameters (Å, º) top
S1—C71.7415 (15)C10—C111.386 (2)
S1—C21.7415 (15)C10—C91.388 (2)
N1—C21.3959 (19)C10—H100.9500
N1—C31.4268 (19)C8—H8A0.9800
N1—H1N0.897 (19)C8—H8B0.9800
N4—C171.4627 (19)C8—H8C0.9800
N4—C141.4723 (19)C17—H17A0.9800
N4—C151.4728 (18)C17—H17B0.9800
N3—C51.3782 (18)C17—H17C0.9800
N3—C131.4558 (18)C11—H110.9500
N3—C161.4633 (18)C9—H90.9500
N2—C51.2897 (19)O1S—C2S1.430 (2)
N2—C41.4061 (18)O1S—H3S0.86 (2)
C14—C131.516 (2)C2S—C3S1.504 (2)
C14—H14A0.9900C2S—C1S1.515 (2)
C14—H14B0.9900C2S—H2S1.0000
C16—C151.513 (2)C3S—H3S10.9800
C16—H16A0.9900C3S—H3S20.9800
C16—H16B0.9900C3S—H3S30.9800
C5—C11.474 (2)C1S—H1S10.9800
C6—C71.355 (2)C1S—H1S20.9800
C6—C11.434 (2)C1S—H1S30.9800
C6—H60.9500O2S—C5S1.436 (2)
C7—C81.501 (2)O2S—H1S0.87 (2)
C13—H13A0.9900C5S—C6S1.502 (3)
C13—H13B0.9900C5S—C4S1.504 (3)
C12—C111.385 (2)C5S—H6S1.0000
C12—C41.399 (2)C4S—H5S10.9800
C12—H120.9500C4S—H5S20.9800
C3—C91.393 (2)C4S—H5S30.9800
C3—C41.409 (2)C6S—H7S10.9800
C15—H15A0.9900C6S—H7S20.9800
C15—H15B0.9900C6S—H7S30.9800
C2—C11.368 (2)
C7—S1—C291.98 (7)C7—C8—H8A109.5
C2—N1—C3114.13 (12)C7—C8—H8B109.5
C2—N1—H1N113.8 (12)H8A—C8—H8B109.5
C3—N1—H1N110.7 (12)C7—C8—H8C109.5
C17—N4—C14109.50 (12)H8A—C8—H8C109.5
C17—N4—C15110.02 (12)H8B—C8—H8C109.5
C14—N4—C15110.22 (11)N4—C17—H17A109.5
C5—N3—C13120.29 (12)N4—C17—H17B109.5
C5—N3—C16122.85 (12)H17A—C17—H17B109.5
C13—N3—C16110.77 (11)N4—C17—H17C109.5
C5—N2—C4123.11 (13)H17A—C17—H17C109.5
N4—C14—C13112.02 (12)H17B—C17—H17C109.5
N4—C14—H14A109.2C12—C11—C10119.60 (14)
C13—C14—H14A109.2C12—C11—H11120.2
N4—C14—H14B109.2C10—C11—H11120.2
C13—C14—H14B109.2C2—C1—C6112.09 (13)
H14A—C14—H14B107.9C2—C1—C5121.52 (13)
N3—C16—C15109.49 (12)C6—C1—C5126.38 (13)
N3—C16—H16A109.8C10—C9—C3121.24 (14)
C15—C16—H16A109.8C10—C9—H9119.4
N3—C16—H16B109.8C3—C9—H9119.4
C15—C16—H16B109.8C2S—O1S—H3S109.0 (15)
H16A—C16—H16B108.2O1S—C2S—C3S110.46 (14)
N2—C5—N3118.01 (13)O1S—C2S—C1S106.97 (14)
N2—C5—C1126.03 (13)C3S—C2S—C1S112.88 (15)
N3—C5—C1115.78 (12)O1S—C2S—H2S108.8
C7—C6—C1114.22 (13)C3S—C2S—H2S108.8
C7—C6—H6122.9C1S—C2S—H2S108.8
C1—C6—H6122.9C2S—C3S—H3S1109.5
C6—C7—C8128.92 (14)C2S—C3S—H3S2109.5
C6—C7—S1110.50 (11)H3S1—C3S—H3S2109.5
C8—C7—S1120.55 (11)C2S—C3S—H3S3109.5
N3—C13—C14108.59 (12)H3S1—C3S—H3S3109.5
N3—C13—H13A110.0H3S2—C3S—H3S3109.5
C14—C13—H13A110.0C2S—C1S—H1S1109.5
N3—C13—H13B110.0C2S—C1S—H1S2109.5
C14—C13—H13B110.0H1S1—C1S—H1S2109.5
H13A—C13—H13B108.4C2S—C1S—H1S3109.5
C11—C12—C4122.09 (14)H1S1—C1S—H1S3109.5
C11—C12—H12119.0H1S2—C1S—H1S3109.5
C4—C12—H12119.0C5S—O2S—H1S108.9 (15)
C9—C3—C4119.78 (14)O2S—C5S—C6S110.43 (16)
C9—C3—N1119.63 (13)O2S—C5S—C4S107.23 (14)
C4—C3—N1120.57 (13)C6S—C5S—C4S112.72 (17)
N4—C15—C16110.50 (12)O2S—C5S—H6S108.8
N4—C15—H15A109.5C6S—C5S—H6S108.8
C16—C15—H15A109.5C4S—C5S—H6S108.8
N4—C15—H15B109.5C5S—C4S—H5S1109.5
C16—C15—H15B109.5C5S—C4S—H5S2109.5
H15A—C15—H15B108.1H5S1—C4S—H5S2109.5
C1—C2—N1125.87 (13)C5S—C4S—H5S3109.5
C1—C2—S1111.18 (11)H5S1—C4S—H5S3109.5
N1—C2—S1122.83 (11)H5S2—C4S—H5S3109.5
C11—C10—C9119.46 (14)C5S—C6S—H7S1109.5
C11—C10—H10120.3C5S—C6S—H7S2109.5
C9—C10—H10120.3H7S1—C6S—H7S2109.5
C12—C4—N2116.18 (13)C5S—C6S—H7S3109.5
C12—C4—C3117.75 (13)H7S1—C6S—H7S3109.5
N2—C4—C3125.76 (13)H7S2—C6S—H7S3109.5
C17—N4—C14—C13176.70 (12)C7—S1—C2—N1175.64 (13)
C15—N4—C14—C1355.54 (16)C11—C12—C4—N2173.92 (13)
C5—N3—C16—C15146.27 (13)C11—C12—C4—C30.1 (2)
C13—N3—C16—C1561.22 (15)C5—N2—C4—C12142.24 (15)
C4—N2—C5—N3171.00 (13)C5—N2—C4—C344.3 (2)
C4—N2—C5—C14.0 (2)C9—C3—C4—C122.3 (2)
C13—N3—C5—N25.6 (2)N1—C3—C4—C12179.32 (13)
C16—N3—C5—N2144.38 (14)C9—C3—C4—N2171.08 (13)
C13—N3—C5—C1169.89 (13)N1—C3—C4—N27.3 (2)
C16—N3—C5—C140.10 (19)C4—C12—C11—C102.5 (2)
C1—C6—C7—C8179.38 (15)C9—C10—C11—C122.8 (2)
C1—C6—C7—S11.28 (16)N1—C2—C1—C6174.71 (13)
C2—S1—C7—C60.43 (12)S1—C2—C1—C61.34 (16)
C2—S1—C7—C8178.71 (13)N1—C2—C1—C55.7 (2)
C5—N3—C13—C14146.81 (13)S1—C2—C1—C5178.28 (11)
C16—N3—C13—C1459.88 (15)C7—C6—C1—C21.73 (19)
N4—C14—C13—N357.24 (16)C7—C6—C1—C5177.87 (13)
C2—N1—C3—C9126.29 (14)N2—C5—C1—C238.1 (2)
C2—N1—C3—C455.31 (18)N3—C5—C1—C2146.84 (14)
C17—N4—C15—C16176.32 (13)N2—C5—C1—C6142.37 (16)
C14—N4—C15—C1655.47 (16)N3—C5—C1—C632.7 (2)
N3—C16—C15—N458.31 (16)C11—C10—C9—C30.6 (2)
C3—N1—C2—C155.2 (2)C4—C3—C9—C102.0 (2)
C3—N1—C2—S1120.37 (13)N1—C3—C9—C10179.59 (13)
C7—S1—C2—C10.55 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2Si0.90 (2)2.04 (2)2.933 (2)177 (2)
O1S—H3S···N4ii0.86 (2)1.94 (2)2.778 (2)167 (2)
Symmetry codes: (i) x, y+2, z+1; (ii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2Si0.90 (2)2.04 (2)2.933 (2)177 (2)
O1S—H3S···N4ii0.86 (2)1.94 (2)2.778 (2)167 (2)
Symmetry codes: (i) x, y+2, z+1; (ii) x+1, y+1, z+1.
Acknowledgements top

RM thanks the Commonwealth Scholarship Commission for providing a scholarship.

references
References top

Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.

Bhardwaj, R. M., Price, L. S., Price, S. L., Reutzel-Edens, S. M., Miller, G. J., Oswald, I. D. H., Johnston, B. & Florence, A. J. (2013). Cryst. Growth Des. doi:10.1021/cg301826s.

Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Florence, A. J., Baumgartner, B., Weston, C., Shankland, N., Kennedy, A. R., Shankland, K. & David, W. I. F. (2003). J. Pharm. Sci. 92, 1930–1938.

Fulton, B. & Goa, K. L. (1997). Drugs, 53, 281–298.

Gelbrich, T. & Hursthouse, M. B. (2005). CrystEngComm, 7, 324–336.

Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.

Reutzel-Edens, S. M., Bush, J. K., Magee, P. A., Stephenson, G. A. & Byrn, S. R. (2003). Cryst. Growth Des. 3, 897–907.

Sanger, T. M., Grundy, S. L., Gibson, P. J., Namjoshi, M. A., Greaney, M. G. & Tohen, M. F. (2001). J. Clin. Psychiatry, 62, 273–281.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Tollefson, G. D., Beasley, C. M., Tran, P. V., Street, J. S., Krueger, J. A., Tamura, R. N., Graffeo, K. A. & Thieme, M. E. (1997). Am. J. Psychiatry, 154, 457–465.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.