organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 5| May 2013| Pages o752-o753

2-Methyl-4-(4-methyl­piperazin-1-yl)-10H-thieno[2,3-b][1,5]benzodiazepine (olanzapine) propan-2-ol disolvate

aStrathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, Scotland
*Correspondence e-mail: alastair.florence@strath.ac.uk

(Received 16 March 2013; accepted 9 April 2013; online 20 April 2013)

In the title solvate, C17H20N4S·2C3H8O, pairs of olanzapine mol­ecules related by a centre of inversion stack along the a axis, forming columns, which are packed parallel to each other along the b axis, forming a sheet arrangement. The columns within these sheets are hydrogen bonded to each other through the propan-2-ol solvent mol­ecules. The diazepine ring of the olanzapine exists in a puckered conformation with the thiophene and phenyl rings making a dihedral angle of 57.66 (7)° and the piperazine ring adopts a chair conformation with the methyl group in an equatorial position.

Related literature

For literature on olanzapine and related structural studies, see: Fulton & Goa (1997[Fulton, B. & Goa, K. L. (1997). Drugs, 53, 281-298.]); Sanger et al. (2001[Sanger, T. M., Grundy, S. L., Gibson, P. J., Namjoshi, M. A., Greaney, M. G. & Tohen, M. F. (2001). J. Clin. Psychiatry, 62, 273-281.]); Tollefson et al. (1997[Tollefson, G. D., Beasley, C. M., Tran, P. V., Street, J. S., Krueger, J. A., Tamura, R. N., Graffeo, K. A. & Thieme, M. E. (1997). Am. J. Psychiatry, 154, 457-465.]); Reutzel-Edens et al. (2003[Reutzel-Edens, S. M., Bush, J. K., Magee, P. A., Stephenson, G. A. & Byrn, S. R. (2003). Cryst. Growth Des. 3, 897-907.]); Bhardwaj et al. (2013[Bhardwaj, R. M., Price, L. S., Price, S. L., Reutzel-Edens, S. M., Miller, G. J., Oswald, I. D. H., Johnston, B. & Florence, A. J. (2013). Cryst. Growth Des. 3, 1602-1617.]). For details of experimental methods used, see: Florence et al. (2003[Florence, A. J., Baumgartner, B., Weston, C., Shankland, N., Kennedy, A. R., Shankland, K. & David, W. I. F. (2003). J. Pharm. Sci. 92, 1930-1938.]). For details of XPac, see: Gelbrich & Hursthouse (2005[Gelbrich, T. & Hursthouse, M. B. (2005). CrystEngComm, 7, 324-336.]).

[Scheme 1]

Experimental

Crystal data
  • C17H20N4S·2C3H8O

  • Mr = 432.62

  • Triclinic, [P \overline 1]

  • a = 9.9621 (5) Å

  • b = 10.8702 (6) Å

  • c = 12.2298 (7) Å

  • α = 70.421 (2)°

  • β = 74.560 (2)°

  • γ = 77.296 (2)°

  • V = 1190.24 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.16 mm−1

  • T = 123 K

  • 0.41 × 0.34 × 0.11 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.581, Tmax = 0.745

  • 16365 measured reflections

  • 4880 independent reflections

  • 4073 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.106

  • S = 1.04

  • 4880 reflections

  • 289 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2Si 0.90 (2) 2.04 (2) 2.933 (2) 177 (2)
O1S—H3S⋯N4ii 0.86 (2) 1.94 (2) 2.778 (2) 167 (2)
Symmetry codes: (i) -x, -y+2, -z+1; (ii) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

2-methyl-4-(4-methylpiperazin-1-yl)-10H-thieno[2,3-b][1,5]benzodiazepine (Olanzapine, OZPN) is used in the treatment of schizophrenia and related psychoses (Fulton et al., 1997; Tollefson et al., 1997; Sanger et al., 2001). The compound is known to exist in three anhydrous polymorphic forms and 56 solvates including four hydrates have been reported. The crystal structures of two polymorphs and 33 solvates have been reported and all are based on a centrosymmetric dimer motif, which is considered to be the structural building block (Reutzel-Edens et al., 2003; Bhardwaj et al., 2013). The sample of OZPN propan-2-ol solvate was isolated during an experimental physical form screen. The sample was identified as a novel form using multi-sample foil transmission X-ray powder diffraction analysis (Florence et al., 2003).

A suitable sample for single-crystal X-ray diffraction analysis was obtained from slow evaporation of saturated propan-2-ol solution at room temperature. The title compound crystallizes in space group P-1 with one molecule of OZPN and two molecules of propan-2-ol in the asymmetric unit (Fig. 1). OZPN molecules form centrosymmetric dimers, which stack along the a-direction to form columns. These columns further stack along the b-direction to form sheets and are H-bonded to each other through propan-2-ol molecules, which are present between the sheets. The solvent separated sheets stack along the c-direction to form three-dimensional structure (Fig. 2). XPac (Gelbrich et al., 2005) analysis revealed that this solvate shares 2-D similarity with form I (CSD refcode: UNOGIN01) and dihydrate D (CSD refcode: AQOMAU). The major difference between the structures arises from the relative orientation of the sheets due to incorporation of solvent molecules between them.

Related literature top

For literature on olanzapine and related structural studies, see: Fulton & Goa (1997); Sanger et al. (2001); Tollefson et al. (1997); Reutzel-Edens et al. (2003); Bhardwaj et al. (2013). For details of experimental methods used, see: Florence et al. (2003). For details of XPac, see: Gelbrich & Hursthouse (2005).

Experimental top

A single plate shaped crystal was grown from the saturated solution of OZPN in propan-2-ol by isothermal solvent evaporation at 298 K.

Refinement top

The positions of the nitrogen and oxygen-bound H atoms were refined freely. All other H atoms were placed in calculated positions and refined in riding modes with C—H = 0.95, 0.98 and 0.99 Å for the aromatic CH, CH3 and CH2 groups respectively. The Uiso(H) values were set to 1.2 and 1.5 times Ueq of their parent C atoms for the aromatic CH, CH2 and CH3 groups respectively.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) and WinGX (Farrugia, 2012); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and WinGX (Farrugia, 2012); molecular graphics: Mercury (Macrae et al., 2008) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: enCIFer (Allen et al., 2004) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of olanzapine propan-2-ol solvate. Displacement ellipsoids are drawn at 50% probability level.
[Figure 2] Fig. 2. The crystal packing in olanzapine propan-2-ol solvate, viewed down the a-axis. H-bonds are shown by black dotted line. Carbon, nitrogen, oxygen, sulfur and hydrogen atoms are shown in blue, violet, red, yellow and green colour respectively. Other hydrogen atoms are omitted for clarity.
2-Methyl-4-(4-methylpiperazin-1-yl)-10H-thieno[2,3-b][1,5]benzodiazepine propan-2-ol disolvate top
Crystal data top
C17H20N4S·2C3H8OZ = 2
Mr = 432.62F(000) = 468
Triclinic, P1Dx = 1.207 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.9621 (5) ÅCell parameters from 8504 reflections
b = 10.8702 (6) Åθ = 2.3–26.5°
c = 12.2298 (7) ŵ = 0.16 mm1
α = 70.421 (2)°T = 123 K
β = 74.560 (2)°Plate, yellow
γ = 77.296 (2)°0.41 × 0.34 × 0.11 mm
V = 1190.24 (11) Å3
Data collection top
Bruker APEXII CCD
diffractometer
4880 independent reflections
Radiation source: fine-focus sealed tube4073 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ϕ and ω scansθmax = 26.6°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1210
Tmin = 0.581, Tmax = 0.745k = 1113
16365 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.055P)2 + 0.4568P]
where P = (Fo2 + 2Fc2)/3
4880 reflections(Δ/σ)max < 0.001
289 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C17H20N4S·2C3H8Oγ = 77.296 (2)°
Mr = 432.62V = 1190.24 (11) Å3
Triclinic, P1Z = 2
a = 9.9621 (5) ÅMo Kα radiation
b = 10.8702 (6) ŵ = 0.16 mm1
c = 12.2298 (7) ÅT = 123 K
α = 70.421 (2)°0.41 × 0.34 × 0.11 mm
β = 74.560 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
4880 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
4073 reflections with I > 2σ(I)
Tmin = 0.581, Tmax = 0.745Rint = 0.025
16365 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.33 e Å3
4880 reflectionsΔρmin = 0.29 e Å3
289 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
H1N0.1193 (19)0.9466 (19)0.1993 (16)0.032 (5)*
H3S0.514 (2)0.758 (2)0.825 (2)0.050 (6)*
H1S0.260 (3)0.830 (2)0.854 (2)0.058 (7)*
S10.04115 (4)0.91878 (4)0.36298 (3)0.02407 (11)
N10.09642 (13)0.85854 (13)0.22328 (11)0.0230 (3)
N40.36303 (13)0.26018 (12)0.32261 (11)0.0219 (3)
N30.14149 (12)0.47811 (12)0.30511 (11)0.0217 (3)
N20.08278 (13)0.56928 (12)0.28169 (11)0.0219 (3)
C140.21368 (16)0.24248 (14)0.35573 (14)0.0244 (3)
H14A0.17870.23250.44150.029*
H14B0.20460.16060.34140.029*
C160.28887 (15)0.49962 (14)0.26562 (14)0.0223 (3)
H16A0.29850.58310.27690.027*
H16B0.32100.50680.18010.027*
C50.03110 (15)0.57973 (14)0.30703 (12)0.0200 (3)
C60.13109 (15)0.67258 (14)0.43396 (13)0.0213 (3)
H60.17550.58980.47560.026*
C70.13712 (15)0.78773 (15)0.45145 (13)0.0228 (3)
C130.12395 (16)0.35797 (14)0.28589 (14)0.0229 (3)
H13A0.15340.36490.20030.027*
H13B0.02380.34480.31260.027*
C120.33300 (16)0.60148 (15)0.33644 (13)0.0246 (3)
H120.32750.50820.35900.030*
C30.21953 (15)0.79562 (14)0.26365 (12)0.0211 (3)
C150.37834 (16)0.38554 (15)0.33649 (14)0.0243 (3)
H15A0.47830.39930.30900.029*
H15B0.34930.38170.42140.029*
C20.00519 (15)0.81452 (14)0.30203 (13)0.0208 (3)
C100.47383 (16)0.81431 (16)0.30737 (14)0.0259 (3)
H100.56330.86780.30910.031*
C40.20831 (15)0.65708 (14)0.29640 (13)0.0213 (3)
C80.20862 (17)0.81074 (16)0.53509 (15)0.0273 (3)
H8A0.14040.81440.60870.041*
H8B0.24670.89440.49810.041*
H8C0.28540.73840.55300.041*
C170.44267 (18)0.14983 (16)0.39751 (15)0.0301 (4)
H17A0.54230.16100.37460.045*
H17B0.43250.06690.38730.045*
H17C0.40660.14760.48080.045*
C110.46419 (16)0.67801 (16)0.34425 (14)0.0259 (3)
H110.54710.63730.37470.031*
C10.05185 (15)0.68643 (14)0.34722 (13)0.0206 (3)
C90.35177 (16)0.87206 (15)0.26790 (13)0.0241 (3)
H90.35850.96550.24330.029*
O1S0.44594 (13)0.77562 (13)0.87986 (11)0.0348 (3)
C2S0.50035 (18)0.80746 (17)0.96257 (14)0.0318 (4)
H2S0.56190.87730.91790.038*
C3S0.58641 (19)0.6878 (2)1.02927 (16)0.0425 (5)
H3S10.52780.61761.07120.064*
H3S20.62110.71071.08680.064*
H3S30.66640.65720.97330.064*
C1S0.3754 (2)0.8628 (2)1.04315 (16)0.0420 (5)
H1S10.32280.93970.99520.063*
H1S20.40870.88921.09940.063*
H1S30.31400.79521.08690.063*
O2S0.17158 (13)0.85357 (11)0.84879 (10)0.0308 (3)
C5S0.08774 (19)0.77005 (18)0.94873 (15)0.0345 (4)
H6S0.10120.78031.02320.041*
C4S0.0636 (2)0.8177 (2)0.93962 (18)0.0464 (5)
H5S10.08830.90950.94130.070*
H5S20.12420.76251.00660.070*
H5S30.07710.81200.86500.070*
C6S0.1325 (3)0.62811 (19)0.9508 (2)0.0577 (6)
H7S10.11920.61690.87830.087*
H7S20.07550.57231.02020.087*
H7S30.23200.60260.95520.087*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0235 (2)0.01788 (19)0.0328 (2)0.00162 (14)0.00854 (15)0.00866 (15)
N10.0219 (6)0.0188 (6)0.0268 (6)0.0008 (5)0.0093 (5)0.0029 (5)
N40.0211 (6)0.0199 (6)0.0267 (6)0.0027 (5)0.0098 (5)0.0092 (5)
N30.0173 (6)0.0179 (6)0.0316 (7)0.0013 (5)0.0065 (5)0.0092 (5)
N20.0208 (6)0.0206 (6)0.0259 (6)0.0006 (5)0.0085 (5)0.0074 (5)
C140.0241 (8)0.0187 (7)0.0306 (8)0.0019 (6)0.0050 (6)0.0088 (6)
C160.0181 (7)0.0198 (7)0.0306 (8)0.0027 (6)0.0051 (6)0.0096 (6)
C50.0203 (7)0.0181 (7)0.0208 (7)0.0029 (6)0.0051 (6)0.0039 (5)
C60.0182 (7)0.0204 (7)0.0258 (7)0.0008 (6)0.0063 (6)0.0072 (6)
C70.0188 (7)0.0232 (7)0.0272 (7)0.0017 (6)0.0054 (6)0.0088 (6)
C130.0202 (7)0.0201 (7)0.0310 (8)0.0023 (6)0.0068 (6)0.0103 (6)
C120.0247 (8)0.0246 (8)0.0283 (8)0.0023 (6)0.0121 (6)0.0082 (6)
C30.0210 (7)0.0236 (7)0.0201 (7)0.0008 (6)0.0074 (6)0.0071 (6)
C150.0210 (7)0.0249 (8)0.0315 (8)0.0009 (6)0.0098 (6)0.0135 (6)
C20.0171 (7)0.0209 (7)0.0253 (7)0.0022 (6)0.0044 (6)0.0084 (6)
C100.0201 (7)0.0337 (9)0.0267 (8)0.0042 (6)0.0096 (6)0.0140 (7)
C40.0211 (7)0.0231 (7)0.0223 (7)0.0005 (6)0.0099 (6)0.0082 (6)
C80.0261 (8)0.0267 (8)0.0346 (8)0.0025 (6)0.0105 (7)0.0138 (7)
C170.0330 (9)0.0266 (8)0.0309 (8)0.0065 (7)0.0143 (7)0.0094 (7)
C110.0201 (7)0.0337 (8)0.0279 (8)0.0037 (6)0.0083 (6)0.0119 (6)
C10.0167 (7)0.0201 (7)0.0256 (7)0.0008 (6)0.0050 (6)0.0084 (6)
C90.0259 (8)0.0225 (7)0.0244 (7)0.0027 (6)0.0100 (6)0.0079 (6)
O1S0.0261 (6)0.0516 (8)0.0322 (6)0.0042 (5)0.0095 (5)0.0228 (6)
C2S0.0355 (9)0.0347 (9)0.0283 (8)0.0080 (7)0.0084 (7)0.0104 (7)
C3S0.0288 (9)0.0608 (13)0.0309 (9)0.0016 (9)0.0060 (7)0.0098 (9)
C1S0.0504 (12)0.0442 (11)0.0350 (10)0.0068 (9)0.0151 (9)0.0201 (8)
O2S0.0258 (6)0.0242 (6)0.0362 (6)0.0032 (5)0.0058 (5)0.0019 (5)
C5S0.0340 (9)0.0412 (10)0.0281 (8)0.0136 (8)0.0074 (7)0.0042 (7)
C4S0.0314 (10)0.0684 (14)0.0401 (10)0.0170 (9)0.0035 (8)0.0139 (10)
C6S0.0651 (15)0.0318 (10)0.0726 (15)0.0172 (10)0.0297 (12)0.0074 (10)
Geometric parameters (Å, º) top
S1—C71.7415 (15)C10—C111.386 (2)
S1—C21.7415 (15)C10—C91.388 (2)
N1—C21.3959 (19)C10—H100.9500
N1—C31.4268 (19)C8—H8A0.9800
N1—H1N0.897 (19)C8—H8B0.9800
N4—C171.4627 (19)C8—H8C0.9800
N4—C141.4723 (19)C17—H17A0.9800
N4—C151.4728 (18)C17—H17B0.9800
N3—C51.3782 (18)C17—H17C0.9800
N3—C131.4558 (18)C11—H110.9500
N3—C161.4633 (18)C9—H90.9500
N2—C51.2897 (19)O1S—C2S1.430 (2)
N2—C41.4061 (18)O1S—H3S0.86 (2)
C14—C131.516 (2)C2S—C3S1.504 (2)
C14—H14A0.9900C2S—C1S1.515 (2)
C14—H14B0.9900C2S—H2S1.0000
C16—C151.513 (2)C3S—H3S10.9800
C16—H16A0.9900C3S—H3S20.9800
C16—H16B0.9900C3S—H3S30.9800
C5—C11.474 (2)C1S—H1S10.9800
C6—C71.355 (2)C1S—H1S20.9800
C6—C11.434 (2)C1S—H1S30.9800
C6—H60.9500O2S—C5S1.436 (2)
C7—C81.501 (2)O2S—H1S0.87 (2)
C13—H13A0.9900C5S—C6S1.502 (3)
C13—H13B0.9900C5S—C4S1.504 (3)
C12—C111.385 (2)C5S—H6S1.0000
C12—C41.399 (2)C4S—H5S10.9800
C12—H120.9500C4S—H5S20.9800
C3—C91.393 (2)C4S—H5S30.9800
C3—C41.409 (2)C6S—H7S10.9800
C15—H15A0.9900C6S—H7S20.9800
C15—H15B0.9900C6S—H7S30.9800
C2—C11.368 (2)
C7—S1—C291.98 (7)C7—C8—H8A109.5
C2—N1—C3114.13 (12)C7—C8—H8B109.5
C2—N1—H1N113.8 (12)H8A—C8—H8B109.5
C3—N1—H1N110.7 (12)C7—C8—H8C109.5
C17—N4—C14109.50 (12)H8A—C8—H8C109.5
C17—N4—C15110.02 (12)H8B—C8—H8C109.5
C14—N4—C15110.22 (11)N4—C17—H17A109.5
C5—N3—C13120.29 (12)N4—C17—H17B109.5
C5—N3—C16122.85 (12)H17A—C17—H17B109.5
C13—N3—C16110.77 (11)N4—C17—H17C109.5
C5—N2—C4123.11 (13)H17A—C17—H17C109.5
N4—C14—C13112.02 (12)H17B—C17—H17C109.5
N4—C14—H14A109.2C12—C11—C10119.60 (14)
C13—C14—H14A109.2C12—C11—H11120.2
N4—C14—H14B109.2C10—C11—H11120.2
C13—C14—H14B109.2C2—C1—C6112.09 (13)
H14A—C14—H14B107.9C2—C1—C5121.52 (13)
N3—C16—C15109.49 (12)C6—C1—C5126.38 (13)
N3—C16—H16A109.8C10—C9—C3121.24 (14)
C15—C16—H16A109.8C10—C9—H9119.4
N3—C16—H16B109.8C3—C9—H9119.4
C15—C16—H16B109.8C2S—O1S—H3S109.0 (15)
H16A—C16—H16B108.2O1S—C2S—C3S110.46 (14)
N2—C5—N3118.01 (13)O1S—C2S—C1S106.97 (14)
N2—C5—C1126.03 (13)C3S—C2S—C1S112.88 (15)
N3—C5—C1115.78 (12)O1S—C2S—H2S108.8
C7—C6—C1114.22 (13)C3S—C2S—H2S108.8
C7—C6—H6122.9C1S—C2S—H2S108.8
C1—C6—H6122.9C2S—C3S—H3S1109.5
C6—C7—C8128.92 (14)C2S—C3S—H3S2109.5
C6—C7—S1110.50 (11)H3S1—C3S—H3S2109.5
C8—C7—S1120.55 (11)C2S—C3S—H3S3109.5
N3—C13—C14108.59 (12)H3S1—C3S—H3S3109.5
N3—C13—H13A110.0H3S2—C3S—H3S3109.5
C14—C13—H13A110.0C2S—C1S—H1S1109.5
N3—C13—H13B110.0C2S—C1S—H1S2109.5
C14—C13—H13B110.0H1S1—C1S—H1S2109.5
H13A—C13—H13B108.4C2S—C1S—H1S3109.5
C11—C12—C4122.09 (14)H1S1—C1S—H1S3109.5
C11—C12—H12119.0H1S2—C1S—H1S3109.5
C4—C12—H12119.0C5S—O2S—H1S108.9 (15)
C9—C3—C4119.78 (14)O2S—C5S—C6S110.43 (16)
C9—C3—N1119.63 (13)O2S—C5S—C4S107.23 (14)
C4—C3—N1120.57 (13)C6S—C5S—C4S112.72 (17)
N4—C15—C16110.50 (12)O2S—C5S—H6S108.8
N4—C15—H15A109.5C6S—C5S—H6S108.8
C16—C15—H15A109.5C4S—C5S—H6S108.8
N4—C15—H15B109.5C5S—C4S—H5S1109.5
C16—C15—H15B109.5C5S—C4S—H5S2109.5
H15A—C15—H15B108.1H5S1—C4S—H5S2109.5
C1—C2—N1125.87 (13)C5S—C4S—H5S3109.5
C1—C2—S1111.18 (11)H5S1—C4S—H5S3109.5
N1—C2—S1122.83 (11)H5S2—C4S—H5S3109.5
C11—C10—C9119.46 (14)C5S—C6S—H7S1109.5
C11—C10—H10120.3C5S—C6S—H7S2109.5
C9—C10—H10120.3H7S1—C6S—H7S2109.5
C12—C4—N2116.18 (13)C5S—C6S—H7S3109.5
C12—C4—C3117.75 (13)H7S1—C6S—H7S3109.5
N2—C4—C3125.76 (13)H7S2—C6S—H7S3109.5
C17—N4—C14—C13176.70 (12)C7—S1—C2—N1175.64 (13)
C15—N4—C14—C1355.54 (16)C11—C12—C4—N2173.92 (13)
C5—N3—C16—C15146.27 (13)C11—C12—C4—C30.1 (2)
C13—N3—C16—C1561.22 (15)C5—N2—C4—C12142.24 (15)
C4—N2—C5—N3171.00 (13)C5—N2—C4—C344.3 (2)
C4—N2—C5—C14.0 (2)C9—C3—C4—C122.3 (2)
C13—N3—C5—N25.6 (2)N1—C3—C4—C12179.32 (13)
C16—N3—C5—N2144.38 (14)C9—C3—C4—N2171.08 (13)
C13—N3—C5—C1169.89 (13)N1—C3—C4—N27.3 (2)
C16—N3—C5—C140.10 (19)C4—C12—C11—C102.5 (2)
C1—C6—C7—C8179.38 (15)C9—C10—C11—C122.8 (2)
C1—C6—C7—S11.28 (16)N1—C2—C1—C6174.71 (13)
C2—S1—C7—C60.43 (12)S1—C2—C1—C61.34 (16)
C2—S1—C7—C8178.71 (13)N1—C2—C1—C55.7 (2)
C5—N3—C13—C14146.81 (13)S1—C2—C1—C5178.28 (11)
C16—N3—C13—C1459.88 (15)C7—C6—C1—C21.73 (19)
N4—C14—C13—N357.24 (16)C7—C6—C1—C5177.87 (13)
C2—N1—C3—C9126.29 (14)N2—C5—C1—C238.1 (2)
C2—N1—C3—C455.31 (18)N3—C5—C1—C2146.84 (14)
C17—N4—C15—C16176.32 (13)N2—C5—C1—C6142.37 (16)
C14—N4—C15—C1655.47 (16)N3—C5—C1—C632.7 (2)
N3—C16—C15—N458.31 (16)C11—C10—C9—C30.6 (2)
C3—N1—C2—C155.2 (2)C4—C3—C9—C102.0 (2)
C3—N1—C2—S1120.37 (13)N1—C3—C9—C10179.59 (13)
C7—S1—C2—C10.55 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2Si0.90 (2)2.04 (2)2.933 (2)177 (2)
O1S—H3S···N4ii0.86 (2)1.94 (2)2.778 (2)167 (2)
Symmetry codes: (i) x, y+2, z+1; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC17H20N4S·2C3H8O
Mr432.62
Crystal system, space groupTriclinic, P1
Temperature (K)123
a, b, c (Å)9.9621 (5), 10.8702 (6), 12.2298 (7)
α, β, γ (°)70.421 (2), 74.560 (2), 77.296 (2)
V3)1190.24 (11)
Z2
Radiation typeMo Kα
µ (mm1)0.16
Crystal size (mm)0.41 × 0.34 × 0.11
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.581, 0.745
No. of measured, independent and
observed [I > 2σ(I)] reflections
16365, 4880, 4073
Rint0.025
(sin θ/λ)max1)0.629
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.106, 1.04
No. of reflections4880
No. of parameters289
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.29

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008) and WinGX (Farrugia, 2012), SHELXL97 (Sheldrick, 2008) and WinGX (Farrugia, 2012), Mercury (Macrae et al., 2008) and ORTEP-3 for Windows (Farrugia, 2012), enCIFer (Allen et al., 2004) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2Si0.90 (2)2.04 (2)2.933 (2)177 (2)
O1S—H3S···N4ii0.86 (2)1.94 (2)2.778 (2)167 (2)
Symmetry codes: (i) x, y+2, z+1; (ii) x+1, y+1, z+1.
 

Acknowledgements

RM thanks the Commonwealth Scholarship Commission for providing a scholarship.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals
First citationBhardwaj, R. M., Price, L. S., Price, S. L., Reutzel-Edens, S. M., Miller, G. J., Oswald, I. D. H., Johnston, B. & Florence, A. J. (2013). Cryst. Growth Des. 3, 1602–1617.  Web of Science CSD CrossRef
First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals
First citationFlorence, A. J., Baumgartner, B., Weston, C., Shankland, N., Kennedy, A. R., Shankland, K. & David, W. I. F. (2003). J. Pharm. Sci. 92, 1930–1938.  Web of Science CSD CrossRef PubMed CAS
First citationFulton, B. & Goa, K. L. (1997). Drugs, 53, 281–298.  CrossRef CAS PubMed Web of Science
First citationGelbrich, T. & Hursthouse, M. B. (2005). CrystEngComm, 7, 324–336.  Web of Science CrossRef CAS
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals
First citationReutzel-Edens, S. M., Bush, J. K., Magee, P. A., Stephenson, G. A. & Byrn, S. R. (2003). Cryst. Growth Des. 3, 897–907.  CAS
First citationSanger, T. M., Grundy, S. L., Gibson, P. J., Namjoshi, M. A., Greaney, M. G. & Tohen, M. F. (2001). J. Clin. Psychiatry, 62, 273–281.  CrossRef PubMed CAS
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationTollefson, G. D., Beasley, C. M., Tran, P. V., Street, J. S., Krueger, J. A., Tamura, R. N., Graffeo, K. A. & Thieme, M. E. (1997). Am. J. Psychiatry, 154, 457–465.  CAS PubMed Web of Science
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 5| May 2013| Pages o752-o753
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds