supplementary materials


fj2627 scheme

Acta Cryst. (2013). E69, o790-o791    [ doi:10.1107/S1600536813010854 ]

(2E)-1-(4-Chlorophenyl)-3-(4-nitrophenyl)prop-2-en-1-one

T. S. Yamuna, H. S. Yathirajan, J. P. Jasinski, A. C. Keeley, B. Narayana and B. K. Sarojini

Abstract top

In the title compound, C15H10ClNO3, a substituted chalcone, the dihedral angle between the benzene rings is 5.1 (7)°. The nitro group makes a dihedral angle of 12.5 (3)° with the benzene ring to which it is attached. In the crystal, weak C-H...O interactions link the molecules into a one-dimensional array along [010]. The crystal studied was an inversion twin, with a refined ratio for the twin components of 0.6060 (9):0.3939 (1).

Comment top

Chalcones can be easily obtained from the Claisen-Schmidt reaction of aromatic aldehydes and aromatic ketones. Chalcones have been reported to possess many useful properties including anti-inflammatory, antimicrobial, antifungal, antioxidant, cytotoxic, antitumour and anticancer activities (Dimmock et al. 1999). The basic skeleton of chalcones which possess α,β-unsaturated carbonyl group is useful synthone for the synthesis of various biodynamic cyclic derivatives such as pyrazoline, benzodiazepine and cyclohexenone derivatives (Samshuddin et al., 2010; Fun et al., 2010a,b; Jasinski et al., 2010a; Baktır et al., 2011a,b). The crystal structures of some of chalcones containing nitro group, viz., (E)-1-(4-nitrophenyl)-3-phenylprop-2-en-1-one (Jing, 2009), (2E)-3-(4-methylphenyl)-1-(3-nitrophenyl)prop-2-en-1-one (Jasinski et al., 2008), (2E)-3-(2-chlorophenyl)-1-(3-nitrophenyl)prop-2-en-1-one (Sarojini et al., 2007); (2E)-1-(2,5-dimethoxyphenyl)-3-(3-nitrophenyl)prop-2-en-1-one (Fun et al., 2011) and (E)-3-(4-methoxyphenyl)-1-(3-nitrophenyl)prop-2-en-1-one (Ma, 2007) have been reported. In continuation of our work on synthesis of chalcones (Jasinski et al., 2010b) we report here in the crystal structure of the title compound C15H10ClNO3, (I).

In (I), the dihedral angle between the mean planes of the 4-chlorophenyl and 4-nitrophenyl rings is 5.1 (7)° (Fig. 1). The nitro group makes a dihedral angle of 12.5 (3)° with the plane of the benzene to which it is bonded. In the crystal, weak C—H···N intermolecular interactions are observed and contribute to packing stability (Fig. 2). The crystal studied was an inversion twin, the refined ratio of the twin components being 0.6060 (9):0.3939 (1).

Related literature top

For the biochemical activity of chalcones, see: Dimmock et al. (1999). For different chalcone derivatives, see: Samshuddin et al. (2010); Fun et al. (2010a,b); Jasinski et al. (2010a,b); Baktır et al. (2011a,b). For related structures, see: Jing (2009); Jasinski et al. (2008, 2010a,b); Fun et al. (2011); Sarojini et al. (2007); Ma (2007).

Experimental top

To a mixture of 4-nitrobenzaldehyde (1.51 g, 0.01 mol) and 4-chloroacetophenone (1.54 g, 0.01 mol) in ethanol (50 ml), 10 ml of 10% sodium hydroxide solution was added and stirred at 278-283 K for 3 hours (Fig. 3). The precipitate formed was collected by filtration and purified by recrystallization from ethanol. Single crystals were grown from acetone by the slow evaporation method (m.p.: 413–418 K).

Refinement top

All of the H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.93Å (CH). Isotropic displacement parameters for these atoms were set to 1.2 (CH) times Ueq of the parent atom.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labeling scheme and 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed along the c axis. Dashed lines indicate weak C—H···O intermolecular interactions. H atoms not involved as weak intermolecular interactions have been deleted for clarity.
[Figure 3] Fig. 3. Reaction scheme.
(2E)-1-(4-Chlorophenyl)-3-(4-nitrophenyl)prop-2-en-1-one top
Crystal data top
C15H10ClNO3Dx = 1.470 Mg m3
Mr = 287.69Cu Kα radiation, λ = 1.5418 Å
Orthorhombic, Pna21Cell parameters from 5168 reflections
a = 42.9266 (17) Åθ = 3.3–32.2°
b = 5.9741 (3) ŵ = 2.67 mm1
c = 5.0680 (2) ÅT = 173 K
V = 1299.68 (10) Å3Rod, colorless
Z = 40.42 × 0.08 × 0.04 mm
F(000) = 592
Data collection top
Agilent Xcalibur (Eos, Gemini)
diffractometer
2481 reflections with I > 2σ(I)
Detector resolution: 16.1500 pixels mm-1Rint = 0.037
ω scansθmax = 89.4°, θmin = 7.5°
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
h = 5555
Tmin = 0.803, Tmax = 1.000k = 77
12814 measured reflectionsl = 46
2538 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.048 w = 1/[σ2(Fo2) + (0.0202P)2 + 1.4764P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.100(Δ/σ)max < 0.001
S = 1.14Δρmax = 0.22 e Å3
2538 reflectionsΔρmin = 0.39 e Å3
182 parametersAbsolute structure: Refined as an inversion twin.
1 restraintFlack parameter: 0.39 (3)
Crystal data top
C15H10ClNO3V = 1299.68 (10) Å3
Mr = 287.69Z = 4
Orthorhombic, Pna21Cu Kα radiation
a = 42.9266 (17) ŵ = 2.67 mm1
b = 5.9741 (3) ÅT = 173 K
c = 5.0680 (2) Å0.42 × 0.08 × 0.04 mm
Data collection top
Agilent Xcalibur (Eos, Gemini)
diffractometer
2538 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
2481 reflections with I > 2σ(I)
Tmin = 0.803, Tmax = 1.000Rint = 0.037
12814 measured reflectionsθmax = 89.4°
Refinement top
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.100Δρmax = 0.22 e Å3
S = 1.14Δρmin = 0.39 e Å3
2538 reflectionsAbsolute structure: Refined as an inversion twin.
182 parametersFlack parameter: 0.39 (3)
1 restraintRogers parameter: ?
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.25813 (2)0.1905 (2)1.5999 (3)0.0500 (3)
O10.36902 (7)0.7676 (5)0.9840 (8)0.0475 (9)
O20.49287 (6)0.1656 (4)0.2914 (6)0.0318 (6)
O30.46280 (6)0.1223 (4)0.2523 (6)0.0325 (6)
N10.47115 (6)0.0656 (5)0.1880 (6)0.0233 (6)
C10.36318 (8)0.5698 (6)0.9597 (9)0.0275 (8)
C20.33781 (7)0.4654 (6)1.1220 (9)0.0263 (7)
C30.32630 (8)0.2524 (6)1.0729 (9)0.0326 (9)
H30.33510.16530.94060.039*
C40.30164 (9)0.1685 (7)1.2203 (9)0.0359 (9)
H40.29360.02701.18500.043*
C50.28918 (8)0.2975 (7)1.4195 (9)0.0317 (9)
C60.30051 (9)0.5094 (7)1.4746 (9)0.0340 (9)
H60.29180.59501.60910.041*
C70.32480 (8)0.5907 (7)1.3268 (9)0.0311 (9)
H70.33280.73201.36390.037*
C80.38006 (8)0.4296 (6)0.7654 (8)0.0263 (8)
H80.37430.28070.74360.032*
C90.40321 (7)0.5122 (6)0.6217 (9)0.0258 (7)
H90.40880.66020.65270.031*
C100.42078 (7)0.3904 (5)0.4177 (7)0.0204 (7)
C110.44691 (8)0.4917 (5)0.3052 (8)0.0238 (7)
H110.45310.63230.36360.029*
C120.46373 (7)0.3858 (5)0.1074 (8)0.0220 (7)
H120.48110.45380.03200.026*
C130.45406 (7)0.1771 (5)0.0260 (7)0.0188 (7)
C140.42835 (7)0.0721 (5)0.1327 (8)0.0242 (7)
H140.42230.06880.07370.029*
C150.41184 (8)0.1789 (6)0.3268 (8)0.0261 (8)
H150.39440.10970.39930.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0414 (5)0.0599 (7)0.0487 (6)0.0036 (5)0.0136 (5)0.0095 (7)
O10.0412 (15)0.0303 (14)0.071 (2)0.0065 (12)0.0231 (16)0.0156 (16)
O20.0357 (14)0.0297 (13)0.0301 (15)0.0025 (10)0.0093 (12)0.0015 (12)
O30.0381 (14)0.0251 (13)0.0343 (16)0.0044 (10)0.0002 (12)0.0136 (13)
N10.0264 (14)0.0223 (13)0.0213 (16)0.0014 (11)0.0021 (12)0.0037 (12)
C10.0201 (16)0.0260 (17)0.036 (2)0.0017 (13)0.0007 (15)0.0055 (17)
C20.0204 (14)0.0298 (18)0.0286 (19)0.0037 (12)0.0013 (16)0.0020 (18)
C30.0343 (18)0.032 (2)0.031 (2)0.0026 (15)0.0078 (18)0.0044 (19)
C40.0338 (19)0.0298 (18)0.044 (3)0.0037 (15)0.0088 (19)0.0001 (19)
C50.0233 (16)0.039 (2)0.033 (2)0.0030 (15)0.0001 (16)0.0133 (18)
C60.0293 (18)0.043 (2)0.029 (2)0.0116 (17)0.0002 (17)0.005 (2)
C70.0252 (17)0.0332 (19)0.035 (2)0.0038 (14)0.0031 (16)0.0070 (18)
C80.0228 (16)0.0266 (17)0.029 (2)0.0004 (13)0.0001 (15)0.0043 (17)
C90.0240 (15)0.0263 (16)0.0271 (19)0.0012 (13)0.0001 (16)0.0059 (18)
C100.0188 (14)0.0201 (15)0.0223 (18)0.0006 (12)0.0033 (13)0.0003 (14)
C110.0261 (16)0.0184 (15)0.027 (2)0.0011 (12)0.0018 (14)0.0059 (16)
C120.0220 (14)0.0189 (14)0.0252 (18)0.0030 (12)0.0021 (15)0.0006 (16)
C130.0206 (14)0.0187 (14)0.0172 (17)0.0016 (12)0.0021 (12)0.0017 (13)
C140.0256 (15)0.0188 (15)0.028 (2)0.0034 (12)0.0015 (15)0.0053 (16)
C150.0228 (16)0.0236 (16)0.032 (2)0.0053 (13)0.0019 (15)0.0025 (17)
Geometric parameters (Å, º) top
Cl1—C51.738 (4)C7—H70.9300
O1—C11.214 (4)C8—C91.327 (5)
O2—N11.225 (4)C8—H80.9300
O3—N11.222 (4)C9—C101.472 (5)
N1—C131.469 (4)C9—H90.9300
C1—C81.482 (5)C10—C111.397 (5)
C1—C21.501 (5)C10—C151.398 (5)
C2—C31.388 (5)C11—C121.388 (5)
C2—C71.396 (5)C11—H110.9300
C3—C41.389 (5)C12—C131.377 (4)
C3—H30.9300C12—H120.9300
C4—C51.378 (6)C13—C141.380 (4)
C4—H40.9300C14—C151.370 (5)
C5—C61.384 (6)C14—H140.9300
C6—C71.372 (6)C15—H150.9300
C6—H60.9300
O3—N1—O2123.8 (3)C9—C8—C1121.4 (3)
O3—N1—C13117.8 (3)C9—C8—H8119.3
O2—N1—C13118.3 (3)C1—C8—H8119.3
O1—C1—C8121.1 (4)C8—C9—C10125.8 (3)
O1—C1—C2119.9 (3)C8—C9—H9117.1
C8—C1—C2119.0 (3)C10—C9—H9117.1
C3—C2—C7118.9 (4)C11—C10—C15118.5 (3)
C3—C2—C1122.7 (4)C11—C10—C9119.0 (3)
C7—C2—C1118.4 (3)C15—C10—C9122.5 (3)
C2—C3—C4120.4 (4)C12—C11—C10121.0 (3)
C2—C3—H3119.8C12—C11—H11119.5
C4—C3—H3119.8C10—C11—H11119.5
C5—C4—C3119.2 (4)C13—C12—C11118.2 (3)
C5—C4—H4120.4C13—C12—H12120.9
C3—C4—H4120.4C11—C12—H12120.9
C4—C5—C6121.5 (4)C12—C13—C14122.4 (3)
C4—C5—Cl1118.5 (3)C12—C13—N1118.8 (3)
C6—C5—Cl1120.0 (3)C14—C13—N1118.9 (3)
C7—C6—C5118.7 (4)C15—C14—C13118.9 (3)
C7—C6—H6120.6C15—C14—H14120.5
C5—C6—H6120.6C13—C14—H14120.5
C6—C7—C2121.3 (4)C14—C15—C10121.0 (3)
C6—C7—H7119.3C14—C15—H15119.5
C2—C7—H7119.3C10—C15—H15119.5
O1—C1—C2—C3168.6 (4)C8—C9—C10—C11172.5 (4)
C8—C1—C2—C39.6 (6)C8—C9—C10—C159.2 (6)
O1—C1—C2—C79.9 (6)C15—C10—C11—C120.0 (5)
C8—C1—C2—C7172.0 (3)C9—C10—C11—C12178.3 (3)
C7—C2—C3—C41.9 (6)C10—C11—C12—C130.4 (5)
C1—C2—C3—C4176.5 (4)C11—C12—C13—C140.4 (5)
C2—C3—C4—C51.4 (7)C11—C12—C13—N1178.4 (3)
C3—C4—C5—C60.5 (6)O3—N1—C13—C12177.9 (3)
C3—C4—C5—Cl1179.5 (3)O2—N1—C13—C122.1 (5)
C4—C5—C6—C70.3 (6)O3—N1—C13—C144.1 (5)
Cl1—C5—C6—C7179.2 (3)O2—N1—C13—C14176.0 (3)
C5—C6—C7—C20.9 (6)C12—C13—C14—C150.1 (5)
C3—C2—C7—C61.7 (6)N1—C13—C14—C15178.1 (3)
C1—C2—C7—C6176.8 (4)C13—C14—C15—C100.3 (6)
O1—C1—C8—C93.7 (6)C11—C10—C15—C140.3 (5)
C2—C1—C8—C9178.3 (4)C9—C10—C15—C14178.6 (4)
C1—C8—C9—C10177.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···O2i0.932.693.304 (4)125
C14—H14···O1ii0.932.533.219 (4)131
Symmetry codes: (i) x+1, y1, z+1/2; (ii) x, y+1, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···O2i0.932.693.304 (4)125
C14—H14···O1ii0.932.533.219 (4)131
Symmetry codes: (i) x+1, y1, z+1/2; (ii) x, y+1, z1.
Acknowledgements top

TSY thanks the University of Mysore for research facilities. BN thanks the UGC for financial assistance through a BSR one-time grant for the purchase of chemicals. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

references
References top

Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.

Baktır, Z., Akkurt, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011a). Acta Cryst. E67, o1262–1263.

Baktır, Z., Akkurt, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011b). Acta Cryst. E67, o1292–1293.

Dimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem. 6, 1125–1149.

Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.

Fun, H.-K., Chia, T. S., Narayana, B., Nayak, P. S. & Sarojini, B. K. (2011). Acta Cryst. E67, o3058–o3059.

Fun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010a). Acta Cryst. E66, o582–o583.

Fun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010b). Acta Cryst. E66, o864–o865.

Jasinski, J. P., Butcher, R. J., Narayana, B., Lakshmana, K. & Yathirajan, H. S. (2008). Acta Cryst. E64, o1–o2.

Jasinski, J. P., Guild, C. J., Narayana, B., Nayak, P. S. & Yathirajan, H. S. (2010b). Acta Cryst. E66, o1996.

Jasinski, J. P., Guild, C. J., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010a). Acta Cryst. E66, o1948–o1949.

Jing, L.-H. (2009). Acta Cryst. E65, o2510.

Ma, J.-L. (2007). Acta Cryst. E63, o808–o809.

Samshuddin, S., Narayana, B., Yathirajan, H. S., Safwan, A. P. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1279–o1280.

Sarojini, B. K., Yathirajan, H. S., Lakshmana, K., Narayana, B. & Bolte, M. (2007). Acta Cryst. E63, o3211.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.