organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2E)-1-(4-Chloro­phen­yl)-3-(4-nitro­phen­yl)prop-2-en-1-one

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, cDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, and dDepartment of Chemistry, P.A. College of Engineering, Nadupadavu, Mangalore 574 153, India
*Correspondence e-mail: jjasinski@keene.edu

(Received 13 April 2013; accepted 21 April 2013; online 27 April 2013)

In the title compound, C15H10ClNO3, a substituted chalcone, the dihedral angle between the benzene rings is 5.1 (7)°. The nitro group makes a dihedral angle of 12.5 (3)° with the benzene ring to which it is attached. In the crystal, weak C—H⋯O inter­actions link the mol­ecules into a one-dimensional array along [010]. The crystal studied was an inversion twin, with a refined ratio for the twin components of 0.6060 (9):0.3939 (1).

Related literature

For the biochemical activity of chalcones, see: Dimmock et al. (1999[Dimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem. 6, 1125-1149.]). For different chalcone derivatives, see: Samshuddin et al. (2010[Samshuddin, S., Narayana, B., Yathirajan, H. S., Safwan, A. P. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1279-o1280.]); Fun et al. (2010a[Fun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010a). Acta Cryst. E66, o582-o583.],b[Fun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010b). Acta Cryst. E66, o864-o865.]); Jasinski et al. (2010a[Jasinski, J. P., Guild, C. J., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010a). Acta Cryst. E66, o1948-o1949.],b[Jasinski, J. P., Guild, C. J., Narayana, B., Nayak, P. S. & Yathirajan, H. S. (2010b). Acta Cryst. E66, o1996.]); Baktır et al. (2011a[Baktır, Z., Akkurt, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011a). Acta Cryst. E67, o1262-o1263.],b[Baktır, Z., Akkurt, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011b). Acta Cryst. E67, o1292-o1293.]). For related structures, see: Jing (2009[Jing, L.-H. (2009). Acta Cryst. E65, o2510.]); Jasinski et al. (2008[Jasinski, J. P., Butcher, R. J., Narayana, B., Lakshmana, K. & Yathirajan, H. S. (2008). Acta Cryst. E64, o1-o2.], 2010a[Jasinski, J. P., Guild, C. J., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010a). Acta Cryst. E66, o1948-o1949.],b[Jasinski, J. P., Guild, C. J., Narayana, B., Nayak, P. S. & Yathirajan, H. S. (2010b). Acta Cryst. E66, o1996.]); Fun et al. (2011[Fun, H.-K., Chia, T. S., Narayana, B., Nayak, P. S. & Sarojini, B. K. (2011). Acta Cryst. E67, o3058-o3059.]); Sarojini et al. (2007[Sarojini, B. K., Yathirajan, H. S., Lakshmana, K., Narayana, B. & Bolte, M. (2007). Acta Cryst. E63, o3211.]); Ma (2007[Ma, J.-L. (2007). Acta Cryst. E63, o808-o809.]).

[Scheme 1]

Experimental

Crystal data
  • C15H10ClNO3

  • Mr = 287.69

  • Orthorhombic, P n a 21

  • a = 42.9266 (17) Å

  • b = 5.9741 (3) Å

  • c = 5.0680 (2) Å

  • V = 1299.68 (10) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.67 mm−1

  • T = 173 K

  • 0.42 × 0.08 × 0.04 mm

Data collection
  • Agilent Xcalibur (Eos, Gemini) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]) Tmin = 0.803, Tmax = 1.000

  • 12814 measured reflections

  • 2538 independent reflections

  • 2481 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.100

  • S = 1.14

  • 2538 reflections

  • 182 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯O2i 0.93 2.69 3.304 (4) 125
C14—H14⋯O1ii 0.93 2.53 3.219 (4) 131
Symmetry codes: (i) [-x+1, -y-1, z+{\script{1\over 2}}]; (ii) x, y+1, z-1.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

Chalcones can be easily obtained from the Claisen-Schmidt reaction of aromatic aldehydes and aromatic ketones. Chalcones have been reported to possess many useful properties including anti-inflammatory, antimicrobial, antifungal, antioxidant, cytotoxic, antitumour and anticancer activities (Dimmock et al. 1999). The basic skeleton of chalcones which possess α,β-unsaturated carbonyl group is useful synthone for the synthesis of various biodynamic cyclic derivatives such as pyrazoline, benzodiazepine and cyclohexenone derivatives (Samshuddin et al., 2010; Fun et al., 2010a,b; Jasinski et al., 2010a; Baktır et al., 2011a,b). The crystal structures of some of chalcones containing nitro group, viz., (E)-1-(4-nitrophenyl)-3-phenylprop-2-en-1-one (Jing, 2009), (2E)-3-(4-methylphenyl)-1-(3-nitrophenyl)prop-2-en-1-one (Jasinski et al., 2008), (2E)-3-(2-chlorophenyl)-1-(3-nitrophenyl)prop-2-en-1-one (Sarojini et al., 2007); (2E)-1-(2,5-dimethoxyphenyl)-3-(3-nitrophenyl)prop-2-en-1-one (Fun et al., 2011) and (E)-3-(4-methoxyphenyl)-1-(3-nitrophenyl)prop-2-en-1-one (Ma, 2007) have been reported. In continuation of our work on synthesis of chalcones (Jasinski et al., 2010b) we report here in the crystal structure of the title compound C15H10ClNO3, (I).

In (I), the dihedral angle between the mean planes of the 4-chlorophenyl and 4-nitrophenyl rings is 5.1 (7)° (Fig. 1). The nitro group makes a dihedral angle of 12.5 (3)° with the plane of the benzene to which it is bonded. In the crystal, weak C—H···N intermolecular interactions are observed and contribute to packing stability (Fig. 2). The crystal studied was an inversion twin, the refined ratio of the twin components being 0.6060 (9):0.3939 (1).

Related literature top

For the biochemical activity of chalcones, see: Dimmock et al. (1999). For different chalcone derivatives, see: Samshuddin et al. (2010); Fun et al. (2010a,b); Jasinski et al. (2010a,b); Baktır et al. (2011a,b). For related structures, see: Jing (2009); Jasinski et al. (2008, 2010a,b); Fun et al. (2011); Sarojini et al. (2007); Ma (2007).

Experimental top

To a mixture of 4-nitrobenzaldehyde (1.51 g, 0.01 mol) and 4-chloroacetophenone (1.54 g, 0.01 mol) in ethanol (50 ml), 10 ml of 10% sodium hydroxide solution was added and stirred at 278-283 K for 3 hours (Fig. 3). The precipitate formed was collected by filtration and purified by recrystallization from ethanol. Single crystals were grown from acetone by the slow evaporation method (m.p.: 413–418 K).

Refinement top

All of the H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.93Å (CH). Isotropic displacement parameters for these atoms were set to 1.2 (CH) times Ueq of the parent atom.

Structure description top

Chalcones can be easily obtained from the Claisen-Schmidt reaction of aromatic aldehydes and aromatic ketones. Chalcones have been reported to possess many useful properties including anti-inflammatory, antimicrobial, antifungal, antioxidant, cytotoxic, antitumour and anticancer activities (Dimmock et al. 1999). The basic skeleton of chalcones which possess α,β-unsaturated carbonyl group is useful synthone for the synthesis of various biodynamic cyclic derivatives such as pyrazoline, benzodiazepine and cyclohexenone derivatives (Samshuddin et al., 2010; Fun et al., 2010a,b; Jasinski et al., 2010a; Baktır et al., 2011a,b). The crystal structures of some of chalcones containing nitro group, viz., (E)-1-(4-nitrophenyl)-3-phenylprop-2-en-1-one (Jing, 2009), (2E)-3-(4-methylphenyl)-1-(3-nitrophenyl)prop-2-en-1-one (Jasinski et al., 2008), (2E)-3-(2-chlorophenyl)-1-(3-nitrophenyl)prop-2-en-1-one (Sarojini et al., 2007); (2E)-1-(2,5-dimethoxyphenyl)-3-(3-nitrophenyl)prop-2-en-1-one (Fun et al., 2011) and (E)-3-(4-methoxyphenyl)-1-(3-nitrophenyl)prop-2-en-1-one (Ma, 2007) have been reported. In continuation of our work on synthesis of chalcones (Jasinski et al., 2010b) we report here in the crystal structure of the title compound C15H10ClNO3, (I).

In (I), the dihedral angle between the mean planes of the 4-chlorophenyl and 4-nitrophenyl rings is 5.1 (7)° (Fig. 1). The nitro group makes a dihedral angle of 12.5 (3)° with the plane of the benzene to which it is bonded. In the crystal, weak C—H···N intermolecular interactions are observed and contribute to packing stability (Fig. 2). The crystal studied was an inversion twin, the refined ratio of the twin components being 0.6060 (9):0.3939 (1).

For the biochemical activity of chalcones, see: Dimmock et al. (1999). For different chalcone derivatives, see: Samshuddin et al. (2010); Fun et al. (2010a,b); Jasinski et al. (2010a,b); Baktır et al. (2011a,b). For related structures, see: Jing (2009); Jasinski et al. (2008, 2010a,b); Fun et al. (2011); Sarojini et al. (2007); Ma (2007).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labeling scheme and 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed along the c axis. Dashed lines indicate weak C—H···O intermolecular interactions. H atoms not involved as weak intermolecular interactions have been deleted for clarity.
[Figure 3] Fig. 3. Reaction scheme.
(2E)-1-(4-Chlorophenyl)-3-(4-nitrophenyl)prop-2-en-1-one top
Crystal data top
C15H10ClNO3Dx = 1.470 Mg m3
Mr = 287.69Cu Kα radiation, λ = 1.5418 Å
Orthorhombic, Pna21Cell parameters from 5168 reflections
a = 42.9266 (17) Åθ = 3.3–32.2°
b = 5.9741 (3) ŵ = 2.67 mm1
c = 5.0680 (2) ÅT = 173 K
V = 1299.68 (10) Å3Rod, colorless
Z = 40.42 × 0.08 × 0.04 mm
F(000) = 592
Data collection top
Agilent Xcalibur (Eos, Gemini)
diffractometer
2481 reflections with I > 2σ(I)
Detector resolution: 16.1500 pixels mm-1Rint = 0.037
ω scansθmax = 89.4°, θmin = 7.5°
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
h = 5555
Tmin = 0.803, Tmax = 1.000k = 77
12814 measured reflectionsl = 46
2538 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.048 w = 1/[σ2(Fo2) + (0.0202P)2 + 1.4764P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.100(Δ/σ)max < 0.001
S = 1.14Δρmax = 0.22 e Å3
2538 reflectionsΔρmin = 0.39 e Å3
182 parametersAbsolute structure: Refined as an inversion twin.
1 restraintAbsolute structure parameter: 0.39 (3)
Crystal data top
C15H10ClNO3V = 1299.68 (10) Å3
Mr = 287.69Z = 4
Orthorhombic, Pna21Cu Kα radiation
a = 42.9266 (17) ŵ = 2.67 mm1
b = 5.9741 (3) ÅT = 173 K
c = 5.0680 (2) Å0.42 × 0.08 × 0.04 mm
Data collection top
Agilent Xcalibur (Eos, Gemini)
diffractometer
2538 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
2481 reflections with I > 2σ(I)
Tmin = 0.803, Tmax = 1.000Rint = 0.037
12814 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.100Δρmax = 0.22 e Å3
S = 1.14Δρmin = 0.39 e Å3
2538 reflectionsAbsolute structure: Refined as an inversion twin.
182 parametersAbsolute structure parameter: 0.39 (3)
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.25813 (2)0.1905 (2)1.5999 (3)0.0500 (3)
O10.36902 (7)0.7676 (5)0.9840 (8)0.0475 (9)
O20.49287 (6)0.1656 (4)0.2914 (6)0.0318 (6)
O30.46280 (6)0.1223 (4)0.2523 (6)0.0325 (6)
N10.47115 (6)0.0656 (5)0.1880 (6)0.0233 (6)
C10.36318 (8)0.5698 (6)0.9597 (9)0.0275 (8)
C20.33781 (7)0.4654 (6)1.1220 (9)0.0263 (7)
C30.32630 (8)0.2524 (6)1.0729 (9)0.0326 (9)
H30.33510.16530.94060.039*
C40.30164 (9)0.1685 (7)1.2203 (9)0.0359 (9)
H40.29360.02701.18500.043*
C50.28918 (8)0.2975 (7)1.4195 (9)0.0317 (9)
C60.30051 (9)0.5094 (7)1.4746 (9)0.0340 (9)
H60.29180.59501.60910.041*
C70.32480 (8)0.5907 (7)1.3268 (9)0.0311 (9)
H70.33280.73201.36390.037*
C80.38006 (8)0.4296 (6)0.7654 (8)0.0263 (8)
H80.37430.28070.74360.032*
C90.40321 (7)0.5122 (6)0.6217 (9)0.0258 (7)
H90.40880.66020.65270.031*
C100.42078 (7)0.3904 (5)0.4177 (7)0.0204 (7)
C110.44691 (8)0.4917 (5)0.3052 (8)0.0238 (7)
H110.45310.63230.36360.029*
C120.46373 (7)0.3858 (5)0.1074 (8)0.0220 (7)
H120.48110.45380.03200.026*
C130.45406 (7)0.1771 (5)0.0260 (7)0.0188 (7)
C140.42835 (7)0.0721 (5)0.1327 (8)0.0242 (7)
H140.42230.06880.07370.029*
C150.41184 (8)0.1789 (6)0.3268 (8)0.0261 (8)
H150.39440.10970.39930.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0414 (5)0.0599 (7)0.0487 (6)0.0036 (5)0.0136 (5)0.0095 (7)
O10.0412 (15)0.0303 (14)0.071 (2)0.0065 (12)0.0231 (16)0.0156 (16)
O20.0357 (14)0.0297 (13)0.0301 (15)0.0025 (10)0.0093 (12)0.0015 (12)
O30.0381 (14)0.0251 (13)0.0343 (16)0.0044 (10)0.0002 (12)0.0136 (13)
N10.0264 (14)0.0223 (13)0.0213 (16)0.0014 (11)0.0021 (12)0.0037 (12)
C10.0201 (16)0.0260 (17)0.036 (2)0.0017 (13)0.0007 (15)0.0055 (17)
C20.0204 (14)0.0298 (18)0.0286 (19)0.0037 (12)0.0013 (16)0.0020 (18)
C30.0343 (18)0.032 (2)0.031 (2)0.0026 (15)0.0078 (18)0.0044 (19)
C40.0338 (19)0.0298 (18)0.044 (3)0.0037 (15)0.0088 (19)0.0001 (19)
C50.0233 (16)0.039 (2)0.033 (2)0.0030 (15)0.0001 (16)0.0133 (18)
C60.0293 (18)0.043 (2)0.029 (2)0.0116 (17)0.0002 (17)0.005 (2)
C70.0252 (17)0.0332 (19)0.035 (2)0.0038 (14)0.0031 (16)0.0070 (18)
C80.0228 (16)0.0266 (17)0.029 (2)0.0004 (13)0.0001 (15)0.0043 (17)
C90.0240 (15)0.0263 (16)0.0271 (19)0.0012 (13)0.0001 (16)0.0059 (18)
C100.0188 (14)0.0201 (15)0.0223 (18)0.0006 (12)0.0033 (13)0.0003 (14)
C110.0261 (16)0.0184 (15)0.027 (2)0.0011 (12)0.0018 (14)0.0059 (16)
C120.0220 (14)0.0189 (14)0.0252 (18)0.0030 (12)0.0021 (15)0.0006 (16)
C130.0206 (14)0.0187 (14)0.0172 (17)0.0016 (12)0.0021 (12)0.0017 (13)
C140.0256 (15)0.0188 (15)0.028 (2)0.0034 (12)0.0015 (15)0.0053 (16)
C150.0228 (16)0.0236 (16)0.032 (2)0.0053 (13)0.0019 (15)0.0025 (17)
Geometric parameters (Å, º) top
Cl1—C51.738 (4)C7—H70.9300
O1—C11.214 (4)C8—C91.327 (5)
O2—N11.225 (4)C8—H80.9300
O3—N11.222 (4)C9—C101.472 (5)
N1—C131.469 (4)C9—H90.9300
C1—C81.482 (5)C10—C111.397 (5)
C1—C21.501 (5)C10—C151.398 (5)
C2—C31.388 (5)C11—C121.388 (5)
C2—C71.396 (5)C11—H110.9300
C3—C41.389 (5)C12—C131.377 (4)
C3—H30.9300C12—H120.9300
C4—C51.378 (6)C13—C141.380 (4)
C4—H40.9300C14—C151.370 (5)
C5—C61.384 (6)C14—H140.9300
C6—C71.372 (6)C15—H150.9300
C6—H60.9300
O3—N1—O2123.8 (3)C9—C8—C1121.4 (3)
O3—N1—C13117.8 (3)C9—C8—H8119.3
O2—N1—C13118.3 (3)C1—C8—H8119.3
O1—C1—C8121.1 (4)C8—C9—C10125.8 (3)
O1—C1—C2119.9 (3)C8—C9—H9117.1
C8—C1—C2119.0 (3)C10—C9—H9117.1
C3—C2—C7118.9 (4)C11—C10—C15118.5 (3)
C3—C2—C1122.7 (4)C11—C10—C9119.0 (3)
C7—C2—C1118.4 (3)C15—C10—C9122.5 (3)
C2—C3—C4120.4 (4)C12—C11—C10121.0 (3)
C2—C3—H3119.8C12—C11—H11119.5
C4—C3—H3119.8C10—C11—H11119.5
C5—C4—C3119.2 (4)C13—C12—C11118.2 (3)
C5—C4—H4120.4C13—C12—H12120.9
C3—C4—H4120.4C11—C12—H12120.9
C4—C5—C6121.5 (4)C12—C13—C14122.4 (3)
C4—C5—Cl1118.5 (3)C12—C13—N1118.8 (3)
C6—C5—Cl1120.0 (3)C14—C13—N1118.9 (3)
C7—C6—C5118.7 (4)C15—C14—C13118.9 (3)
C7—C6—H6120.6C15—C14—H14120.5
C5—C6—H6120.6C13—C14—H14120.5
C6—C7—C2121.3 (4)C14—C15—C10121.0 (3)
C6—C7—H7119.3C14—C15—H15119.5
C2—C7—H7119.3C10—C15—H15119.5
O1—C1—C2—C3168.6 (4)C8—C9—C10—C11172.5 (4)
C8—C1—C2—C39.6 (6)C8—C9—C10—C159.2 (6)
O1—C1—C2—C79.9 (6)C15—C10—C11—C120.0 (5)
C8—C1—C2—C7172.0 (3)C9—C10—C11—C12178.3 (3)
C7—C2—C3—C41.9 (6)C10—C11—C12—C130.4 (5)
C1—C2—C3—C4176.5 (4)C11—C12—C13—C140.4 (5)
C2—C3—C4—C51.4 (7)C11—C12—C13—N1178.4 (3)
C3—C4—C5—C60.5 (6)O3—N1—C13—C12177.9 (3)
C3—C4—C5—Cl1179.5 (3)O2—N1—C13—C122.1 (5)
C4—C5—C6—C70.3 (6)O3—N1—C13—C144.1 (5)
Cl1—C5—C6—C7179.2 (3)O2—N1—C13—C14176.0 (3)
C5—C6—C7—C20.9 (6)C12—C13—C14—C150.1 (5)
C3—C2—C7—C61.7 (6)N1—C13—C14—C15178.1 (3)
C1—C2—C7—C6176.8 (4)C13—C14—C15—C100.3 (6)
O1—C1—C8—C93.7 (6)C11—C10—C15—C140.3 (5)
C2—C1—C8—C9178.3 (4)C9—C10—C15—C14178.6 (4)
C1—C8—C9—C10177.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···O2i0.932.693.304 (4)125
C14—H14···O1ii0.932.533.219 (4)131
Symmetry codes: (i) x+1, y1, z+1/2; (ii) x, y+1, z1.

Experimental details

Crystal data
Chemical formulaC15H10ClNO3
Mr287.69
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)173
a, b, c (Å)42.9266 (17), 5.9741 (3), 5.0680 (2)
V3)1299.68 (10)
Z4
Radiation typeCu Kα
µ (mm1)2.67
Crystal size (mm)0.42 × 0.08 × 0.04
Data collection
DiffractometerAgilent Xcalibur (Eos, Gemini)
Absorption correctionMulti-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
Tmin, Tmax0.803, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
12814, 2538, 2481
Rint0.037
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.100, 1.14
No. of reflections2538
No. of parameters182
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.39
Absolute structureRefined as an inversion twin.
Absolute structure parameter0.39 (3)

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL2012 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···O2i0.932.693.304 (4)125
C14—H14···O1ii0.932.533.219 (4)131
Symmetry codes: (i) x+1, y1, z+1/2; (ii) x, y+1, z1.
 

Acknowledgements

TSY thanks the University of Mysore for research facilities. BN thanks the UGC for financial assistance through a BSR one-time grant for the purchase of chemicals. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

References

First citationAgilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBaktır, Z., Akkurt, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011a). Acta Cryst. E67, o1262–o1263.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBaktır, Z., Akkurt, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011b). Acta Cryst. E67, o1292–o1293.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem. 6, 1125–1149.  Web of Science PubMed CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Chia, T. S., Narayana, B., Nayak, P. S. & Sarojini, B. K. (2011). Acta Cryst. E67, o3058–o3059.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010a). Acta Cryst. E66, o582–o583.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010b). Acta Cryst. E66, o864–o865.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationJasinski, J. P., Butcher, R. J., Narayana, B., Lakshmana, K. & Yathirajan, H. S. (2008). Acta Cryst. E64, o1–o2.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationJasinski, J. P., Guild, C. J., Narayana, B., Nayak, P. S. & Yathirajan, H. S. (2010b). Acta Cryst. E66, o1996.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJasinski, J. P., Guild, C. J., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010a). Acta Cryst. E66, o1948–o1949.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationJing, L.-H. (2009). Acta Cryst. E65, o2510.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMa, J.-L. (2007). Acta Cryst. E63, o808–o809.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSamshuddin, S., Narayana, B., Yathirajan, H. S., Safwan, A. P. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1279–o1280.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSarojini, B. K., Yathirajan, H. S., Lakshmana, K., Narayana, B. & Bolte, M. (2007). Acta Cryst. E63, o3211.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds