[Journal logo]

Volume 69 
Part 5 
Pages m250-m251  
May 2013  

Received 7 March 2013
Accepted 30 March 2013
Online 10 April 2013

Key indicators
Single-crystal X-ray study
T = 290 K
Mean [sigma](N-C) = 0.001 Å
R = 0.014
wR = 0.038
Data-to-parameter ratio = 30.5
Details
Open access

Pseudosymmetric fac-diaquatrichlorido[(dimethylphosphoryl)methanaminium-[kappa]O]manganese(II)

aInstitut für Anorganische Chemie und Strukturchemie, Lehrstuhl II: Material- und Strukturforschung, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
Correspondence e-mail: reissg@hhu.de

In the title compound, [Mn(C3H11NOP)Cl3(H2O)2], the MnII metal center has a distorted octahedral geometry, coordinated by the three chloride ligands showing a facial arrangement. Two water molecules and the O-coordinated dpmaH cation [dpmaH = (dimethylphosphoryl)methanaminium] complete the coordination sphere. Each complex molecule is connected to its neighbours by O-H...Cl and N-H...Cl hydrogen bonds. Two of the chloride ligands and the two water ligands form a hydrogen-bonded polymeric sheet in the ab plane. Furthermore, these planes are connected to adjacent planes by hydrogen bonds from the aminium function of cationic dpmaH ligand. A pseudo-mirror plane perpendicular to the b axis in the chiral space group P21 is observed together with inversion twinning [ratio = 0.864 (5):0.136 (5)].

Related literature

For related dpma compounds, see: Borisov et al. (1994[Borisov, G., Varbanov, S. G., Venanzi, L. M., Albinati, A. & Demartin, F. (1994). Inorg. Chem. 33, 5430-5437.]); Kochel (2009[Kochel, A. (2009). Inorg. Chim. Acta, 362, 1379-1382.]); Reiss & Jörgens (2012[Reiss, G. J. & Jörgens, S. (2012). Acta Cryst. E68, o2899-o2900.]). For a definition of the term tecton, see: Brunet et al. (1997[Brunet, P., Simard, M. & Wuest, J. D. (1997). J. Am. Chem. Soc. 119, 2737-2738.]). For the use of anionic phosphinic acid derivatives as supramolecular tectons, see: Glidewell et al. (2000[Glidewell, C., Ferguson, G. & Lough, A. J. (2000). Acta Cryst. C56, 855-858.]); Chen et al. (2010[Chen, S.-P., Zhang, Y.-Q., Hu, L., He, H.-Z. & Yuan, L.-J. (2010). CrystEngComm, 12, 3327-3336.]). For related methylphosphinic acids and derivatives, see: Reiss & Engel (2008[Reiss, G. J. & Engel, J. S. (2008). Acta Cryst. E64, o400.]); Meyer et al. (2010[Meyer, M. K., Graf, J. & Reiss, G. J. (2010). Z. Naturforsch. Teil B, 65, 1462-1466.]). For graph-set theory and its applications, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. 34, 1555-1573.]); Grell et al. (2002[Grell, J., Bernstein, J. & Tinhofer, G. (2002). Crystallogr. Rev. 8, 1-56.]). For related manganese complexes, see: Glowiak & Sawka-Dobrowolska (1977[Glowiak, T. & Sawka-Dobrowolska, W. (1977). Acta Cryst. B33, 2763-2766.]); Feist et al. (1997[Feist, M., Troyanov, S., Stiewe, A., Kemnitz, E. & Kunze, R. (1997). Z. Naturforsch. Teil B, 52, 1094-1102.]); Kubícek et al. (2003[Kubícek, V., Vojtícek, P., Rudovský, J., Hermann, P. & Lukes, I. (2003). Dalton Trans. pp. 3927-3938.]); Karthikeyan et al. (2011[Karthikeyan, M., Karthikeyan, S. & Manimaran, B. (2011). Acta Cryst. E67, m1367.]). For manganese complexes as model system for metalloproteins, see: Wieghardt (1989[Wieghardt, K. (1989). Angew. Chem. Int. Ed. 28, 1153-1172.]). For examples of pseudo-symmetry, see: Jones et al. (1988[Jones, P. G., Schelbach, R., Schwarzmann, E. & Thöne, C. (1988). Acta Cryst. C44, 1196-1198.]); Reiss (2002a[Reiss, G. J. (2002a). Z. Kristallogr. 217, 550-556.],b[Reiss, G. J. (2002b). Z. Natuforsch. Teil B, 57, 479-482.]); Reiss & Konietzny (2002[Reiss, G. J. & Konietzny, S. (2002). J. Chem. Soc. Dalton Trans. pp. 862-864.]); Ruck (2000[Ruck, M. (2000). Z. Kristallogr. 215, 148-156.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C3H11NOP)Cl3(H2O)2]

  • Mr = 305.42

  • Monoclinic, P 21

  • a = 6.3535 (3) Å

  • b = 10.7304 (6) Å

  • c = 8.5629 (4) Å

  • [beta] = 99.490 (2)°

  • V = 575.79 (5) Å3

  • Z = 2

  • Mo K[alpha] radiation

  • [mu] = 1.95 mm-1

  • T = 290 K

  • 0.41 × 0.30 × 0.26 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.723, Tmax = 0.980

  • 29900 measured reflections

  • 4538 independent reflections

  • 4518 reflections with I > 2[sigma](I)

  • Rint = 0.030

Refinement
  • R[F2 > 2[sigma](F2)] = 0.014

  • wR(F2) = 0.038

  • S = 1.11

  • 4538 reflections

  • 149 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • [Delta][rho]max = 0.49 e Å-3

  • [Delta][rho]min = -0.29 e Å-3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2165 Friedel pairs

  • Flack parameter: 0.136 (5)

Table 1
Hydrogen-bond geometry (Å, °)

D-H...A D-H H...A D...A D-H...A
N1-H11...Cl2i 0.928 (19) 2.402 (19) 3.3220 (10) 171.3 (15)
N1-H12...Cl2ii 0.82 (2) 2.56 (2) 3.2664 (9) 145.9 (19)
N1-H13...Cl3ii 0.899 (17) 2.436 (17) 3.2193 (8) 145.8 (14)
O1W-H1O...Cl3iii 0.84 (1) 2.42 (1) 3.2360 (8) 164 (2)
O1W-H2O...Cl1iv 0.86 (1) 2.37 (1) 3.2021 (7) 164 (2)
O2W-H3O...Cl1iii 0.82 (1) 2.39 (1) 3.2026 (8) 171 (2)
O2W-H4O...Cl3ii 0.84 (1) 2.35 (1) 3.1635 (8) 166 (2)
Symmetry codes: (i) x, y, z+1; (ii) [-x, y-{\script{1\over 2}}, -z]; (iii) x-1, y, z; (iv) [-x, y+{\script{1\over 2}}, -z].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2011)[Brandenburg, K. (2011). DIAMOND. Crystal Impact GbR, Bonn, Germany.]; software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GG2113 ).


Acknowledgements

Technical support by V. Verheyen and E. Hammes is gratefully acknowledged. Furthermore, I acknowledge the support for the publication fee by the Deutsche Forschungsgemeinschaft (DFG) and the open access publication fund of the Heinrich-Heine-Universität Düsseldorf.

References

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. 34, 1555-1573.  [CrossRef] [ChemPort] [ISI]
Borisov, G., Varbanov, S. G., Venanzi, L. M., Albinati, A. & Demartin, F. (1994). Inorg. Chem. 33, 5430-5437.  [CrossRef] [ChemPort] [ISI]
Brandenburg, K. (2011). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Bruker (2008). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Brunet, P., Simard, M. & Wuest, J. D. (1997). J. Am. Chem. Soc. 119, 2737-2738.  [CrossRef] [ChemPort] [ISI]
Chen, S.-P., Zhang, Y.-Q., Hu, L., He, H.-Z. & Yuan, L.-J. (2010). CrystEngComm, 12, 3327-3336.  [ISI] [CSD] [CrossRef] [ChemPort]
Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.  [CrossRef] [ISI] [details]
Feist, M., Troyanov, S., Stiewe, A., Kemnitz, E. & Kunze, R. (1997). Z. Naturforsch. Teil B, 52, 1094-1102.  [ChemPort]
Flack, H. D. (1983). Acta Cryst. A39, 876-881.  [CrossRef] [details]
Glidewell, C., Ferguson, G. & Lough, A. J. (2000). Acta Cryst. C56, 855-858.  [CSD] [CrossRef] [details]
Glowiak, T. & Sawka-Dobrowolska, W. (1977). Acta Cryst. B33, 2763-2766.  [CrossRef] [details] [ISI]
Grell, J., Bernstein, J. & Tinhofer, G. (2002). Crystallogr. Rev. 8, 1-56.  [CrossRef] [ChemPort]
Jones, P. G., Schelbach, R., Schwarzmann, E. & Thöne, C. (1988). Acta Cryst. C44, 1196-1198.  [CrossRef] [details]
Karthikeyan, M., Karthikeyan, S. & Manimaran, B. (2011). Acta Cryst. E67, m1367.  [CSD] [CrossRef] [details]
Kochel, A. (2009). Inorg. Chim. Acta, 362, 1379-1382.  [ISI] [CSD] [CrossRef] [ChemPort]
Kubícek, V., Vojtícek, P., Rudovský, J., Hermann, P. & Lukes, I. (2003). Dalton Trans. pp. 3927-3938.
Meyer, M. K., Graf, J. & Reiss, G. J. (2010). Z. Naturforsch. Teil B, 65, 1462-1466.  [ChemPort]
Reiss, G. J. (2002a). Z. Kristallogr. 217, 550-556.  [ChemPort]
Reiss, G. J. (2002b). Z. Natuforsch. Teil B, 57, 479-482.  [ChemPort]
Reiss, G. J. & Engel, J. S. (2008). Acta Cryst. E64, o400.  [CSD] [CrossRef] [details]
Reiss, G. J. & Jörgens, S. (2012). Acta Cryst. E68, o2899-o2900.  [CSD] [CrossRef] [ChemPort] [details]
Reiss, G. J. & Konietzny, S. (2002). J. Chem. Soc. Dalton Trans. pp. 862-864.  [CSD] [CrossRef]
Ruck, M. (2000). Z. Kristallogr. 215, 148-156.  [CrossRef] [ChemPort]
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [ChemPort] [details]
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.  [ISI] [CrossRef] [ChemPort] [details]
Wieghardt, K. (1989). Angew. Chem. Int. Ed. 28, 1153-1172.


Acta Cryst (2013). E69, m250-m251   [ doi:10.1107/S1600536813008751 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.