[Journal logo]

Volume 69 
Part 5 
Page o651  
May 2013  

Received 5 March 2013
Accepted 28 March 2013
Online 5 April 2013

Key indicators
Single-crystal X-ray study
T = 193 K
Mean [sigma](C-C) = 0.002 Å
Disorder in main residue
R = 0.041
wR = 0.099
Data-to-parameter ratio = 9.4
Details
Open access

(4-Ethoxybenzoyl)[8-(4-ethoxybenzoyl)-2,7-dimethoxynaphthalen-1-yl]methanone

aDepartment of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture & Technology, Koganei, Tokyo 184-8588, Japan
Correspondence e-mail: aokamoto@cc.tuat.ac.jp

The title molecule, C30H28O6, possesses crystallographically imposed twofold symmetry, with two central C atoms in the naphthalene unit lying on the rotation axis along [001]. The 4-ethoxybenzoyl groups at the peri positions of the naphthalene ring system are disordered over two sets of sites with occupancies of 0.769 (4) and 0.231 (4). They are directed in opposite directions from the naphthalene plane (anti orientation). For the major component, the dihedral angle between the aroyl benzene ring and the naphthalene ring system is 75.62 (13)° [minor component 75.5 (4)°], and that between the aroyl benzene rings is 32.58 (15)°. In the crystal, molecules are linked via C-H...O and C-H...[pi] interactions, forming a three-dimensional network.

Related literature

For formation reactions of aroylated naphthalene compounds via electrophilic aromatic substitution of naphthalene derivatives, see: Okamoto & Yonezawa (2009[Okamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914-915.]); Okamoto et al. (2011[Okamoto, A., Mitsui, R., Oike, H. & Yonezawa, N. (2011). Chem. Lett. 40, 1283-1284.]). For the structures of closely related compounds, see: Hijikata et al. (2010[Hijikata, D., Takada, T., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2902-o2903.]); Sasagawa et al. (2011[Sasagawa, K., Muto, T., Okamoto, A., Oike, H. & Yonezawa, N. (2011). Acta Cryst. E67, o3354.], 2012[Sasagawa, K., Hijikata, D., Sakamoto, R., Okamoto, A. & Yonezawa, N. (2012). Acta Cryst. E68, o3348.]); Sasagawa, Sakamoto et al. (2013[Sasagawa, K., Sakamoto, R., Kusakabe, T., Okamoto, A. & Yonezawa, N. (2013). Acta Cryst. E69, o146.]); Sasagawa, Takeuchi et al. (2013[Sasagawa, K., Takeuchi, R., Kusakabe, T., Yonezawa, N. & Okamoto, A. (2013). Acta Cryst. E69, o444-o445.]).

[Scheme 1]

Experimental

Crystal data
  • C30H28O6

  • Mr = 484.52

  • Orthorhombic, F d d d

  • a = 19.6446 (4) Å

  • b = 21.5251 (4) Å

  • c = 22.9585 (4) Å

  • V = 9708.0 (3) Å3

  • Z = 16

  • Cu K[alpha] radiation

  • [mu] = 0.75 mm-1

  • T = 193 K

  • 0.60 × 0.50 × 0.50 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.662, Tmax = 0.706

  • 40441 measured reflections

  • 2230 independent reflections

  • 2113 reflections with I > 2[sigma](I)

  • Rint = 0.025

Refinement
  • R[F2 > 2[sigma](F2)] = 0.041

  • wR(F2) = 0.099

  • S = 1.15

  • 2230 reflections

  • 238 parameters

  • 20 restraints

  • H-atom parameters constrained

  • [Delta][rho]max = 0.20 e Å-3

  • [Delta][rho]min = -0.31 e Å-3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C8-C13 and C1-C6 rings, respectively

D-H...A D-H H...A D...A D-H...A
C16-H16C...O1i 0.98 2.51 3.4919 (16) 175
C14-H14C...Cg1i 0.98 2.83 3.716 (2) 151
C15-H15B...Cg2i 0.99 2.80 3.6831 (19) 149
Symmetry code: (i) [-x+1, y+{\script{1\over 4}}, z+{\script{1\over 4}}].

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: PROCESS-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2562 ).


Acknowledgements

This work was partially supported by the Ogasawara Foundation for the Promotion of Science & Engineering, Tokyo, Japan.

References

Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.
Hijikata, D., Takada, T., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2902-o2903.  [CSD] [CrossRef] [ChemPort] [details]
Okamoto, A., Mitsui, R., Oike, H. & Yonezawa, N. (2011). Chem. Lett. 40, 1283-1284.  [ISI] [CrossRef] [ChemPort]
Okamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914-915.  [ISI] [CrossRef] [ChemPort]
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
Sasagawa, K., Hijikata, D., Sakamoto, R., Okamoto, A. & Yonezawa, N. (2012). Acta Cryst. E68, o3348.  [CSD] [CrossRef] [details]
Sasagawa, K., Muto, T., Okamoto, A., Oike, H. & Yonezawa, N. (2011). Acta Cryst. E67, o3354.  [CSD] [CrossRef] [details]
Sasagawa, K., Sakamoto, R., Kusakabe, T., Okamoto, A. & Yonezawa, N. (2013). Acta Cryst. E69, o146.  [CSD] [CrossRef] [details]
Sasagawa, K., Takeuchi, R., Kusakabe, T., Yonezawa, N. & Okamoto, A. (2013). Acta Cryst. E69, o444-o445.  [CrossRef] [ChemPort] [details]
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [ChemPort] [details]


Acta Cryst (2013). E69, o651  [ doi:10.1107/S1600536813008581 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.