supplementary materials


gk2564 scheme

Acta Cryst. (2013). E69, m240    [ doi:10.1107/S160053681300785X ]

Bis[2-(hydroxyimino)cyclohexan-1-one oximato-[kappa]2N,N']copper(II)

E. Melnic, E. B. Coropceanu and L. Croitor

Abstract top

In the title compound, [Cu(C6H9N2O2)2], the CuII atom is located on an inversion center and has a square-planar environment. Two 2-(hydroxyimino)cyclohexan-1-one oximate monoanions chelate to the CuII atom and the Cu-N distances are 1.920 (3) and 1.930 (3) Å. There are two short intramolecular O-H...O hydrogen bonds between the ligands. The complex molecules stack into columns extended along the c axis, with a Cu...Cu distance between adjacent molecules of 3.3060 (3) Å.

Comment top

A large number of investigations on the complexation of copper(II) with 1,2-cyclohexanedionedioxime have been reported (Cervera et al., 1997; Mégnamisi-Bélombé et al., 1983; Simonov et al., 1982; Birkelbach et al., 1997; Coropceanu et al., 2011). We report here the crystal structure of the title compound.

In the title coordination compound, the CuII atom has a square-planar geometry being coordinated by four N atoms from two monodeprotonated dioxime ligands (Fig.1). The monodeprotonated 1,2-cyclohexanedionedioxime coordinates in a typical bidentate mode through its oxime nitrogen atoms, thus leading to the formation of a five-membered chelate ring around the metal core with a N1—Cu1—N2 angle of 82.84 (12)° and slightly asymmetric Cu—N distances of 1.920 (3) and 1.930 (3) Å. The cyclohexyl ring of the 1,2-cyclohexanedionedioxime molecule adopts a half-boat conformation. Two dioxime residues are connected via O—H···O hydrogen bonds, typical for all bis-ligand complexes of α -dioximes (Table 1). The packing of the molecules involves columns of Cu atoms with a Cu—Cu separation of 3.3060 (3) Å (Fig.2). Despite the fact that the title compound crystallizes in a lower symmetry space group (C2/c) its crystal packing strongly resembles that of bis(dimethyl-glyoximato-κ2N,N')nickel(II) (Ibam) (Li et al., 2003).

Related literature top

For complexes of copper(II) with 1,2-cyclohexanedionedioxime, see: Birkelbach et al. (1997); Cervera et al. (1997); Coropceanu et al. (2011); Mégnamisi-Bélombé & Endres (1983); Simonov et al. (1982). For the crystal structure of bis(dimethylglyoximato-κ2N,N')nickel(II), see: Li et al. (2003).

Experimental top

The title compound was obtained by disolving 0.02 g of copper acetate dihydrate and 0.028 g of 1,2-cyclohexanedionedioxime in the 30 ml methanol/dimethylformamide 1:5 (v/v) mixture. The resulting solution was boiled for ca 7 min, filtered off, and then slowly cooled to room temperature resulting in needle-shaped brown crystals (yield: 40%).

Refinement top

The C-bound hydrogen atoms were placed in calculated positions and were treated using a riding model approximation [Uiso(H) = 1.2Ueq(C)]. The O-bound hydrogen atoms were found from electron-density difference maps and refined freely.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are shown at the 40% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. The crystal packing of the title compound.
Bis[2-(hydroxyimino)cyclohexan-1-one oximato-κ2N,N']copper(II) top
Crystal data top
[Cu(C6H9N2O2)2]F(000) = 716
Mr = 345.84Dx = 1.681 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 636 reflections
a = 20.8009 (12) Åθ = 3.1–28.8°
b = 10.1124 (7) ŵ = 1.62 mm1
c = 6.6121 (5) ÅT = 293 K
β = 100.787 (6)°Needle, brown
V = 1366.26 (16) Å30.40 × 0.08 × 0.08 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
1459 independent reflections
Radiation source: Enhance (Mo) X-ray Source1013 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 15.9914 pixels mm-1θmax = 27.0°, θmin = 3.6°
ω scansh = 2620
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1212
Tmin = 0.878, Tmax = 1.000l = 88
2458 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0427P)2 + 1.319P]
where P = (Fo2 + 2Fc2)/3
1459 reflections(Δ/σ)max < 0.001
101 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
[Cu(C6H9N2O2)2]V = 1366.26 (16) Å3
Mr = 345.84Z = 4
Monoclinic, C2/cMo Kα radiation
a = 20.8009 (12) ŵ = 1.62 mm1
b = 10.1124 (7) ÅT = 293 K
c = 6.6121 (5) Å0.40 × 0.08 × 0.08 mm
β = 100.787 (6)°
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
1459 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
1013 reflections with I > 2σ(I)
Tmin = 0.878, Tmax = 1.000Rint = 0.022
2458 measured reflectionsθmax = 27.0°
Refinement top
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.109Δρmax = 0.31 e Å3
S = 1.00Δρmin = 0.30 e Å3
1459 reflectionsAbsolute structure: ?
101 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.00000.00000.50000.0373 (2)
O20.13049 (12)0.0982 (3)0.6603 (4)0.0539 (7)
O10.04254 (14)0.2753 (3)0.4482 (4)0.0547 (7)
N10.00765 (14)0.1893 (3)0.5076 (4)0.0422 (7)
N20.09204 (14)0.0082 (3)0.6185 (5)0.0419 (7)
C10.06607 (18)0.2333 (4)0.5736 (5)0.0448 (9)
C20.11585 (17)0.1266 (4)0.6355 (5)0.0435 (9)
C30.18591 (18)0.1589 (4)0.7027 (7)0.0617 (11)
H3A0.20940.13470.59450.074*
H3B0.20350.10670.82350.074*
C40.1975 (2)0.3041 (5)0.7532 (8)0.0828 (15)
H4A0.18720.32140.88790.099*
H4B0.24350.32380.76020.099*
C50.1582 (2)0.3931 (5)0.6018 (9)0.0923 (17)
H5A0.16910.37720.46750.111*
H5B0.16950.48400.63960.111*
C60.0852 (2)0.3748 (4)0.5874 (7)0.0640 (12)
H6A0.07220.41370.70770.077*
H6B0.06210.42110.46690.077*
H1O10.077 (3)0.224 (6)0.408 (9)0.15 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0342 (4)0.0406 (4)0.0358 (3)0.0013 (3)0.0032 (2)0.0015 (3)
O20.0417 (14)0.0558 (16)0.0611 (18)0.0155 (14)0.0019 (12)0.0037 (14)
O10.0532 (17)0.0465 (16)0.0633 (19)0.0142 (15)0.0078 (13)0.0032 (14)
N10.0428 (17)0.0414 (17)0.0418 (16)0.0028 (15)0.0062 (13)0.0024 (14)
N20.0343 (16)0.0479 (18)0.0419 (16)0.0013 (15)0.0029 (13)0.0010 (14)
C10.050 (2)0.048 (2)0.038 (2)0.009 (2)0.0122 (16)0.0028 (17)
C20.0383 (19)0.059 (2)0.0339 (19)0.0069 (19)0.0071 (15)0.0046 (17)
C30.045 (2)0.073 (3)0.065 (3)0.010 (2)0.0035 (19)0.003 (2)
C40.059 (3)0.091 (4)0.092 (4)0.029 (3)0.003 (2)0.003 (3)
C50.086 (4)0.078 (3)0.105 (5)0.037 (3)0.002 (3)0.014 (3)
C60.067 (3)0.049 (2)0.075 (3)0.013 (2)0.011 (2)0.000 (2)
Geometric parameters (Å, º) top
Cu1—N11.920 (3)C3—C41.515 (6)
Cu1—N1i1.920 (3)C3—H3A0.9700
Cu1—N21.930 (3)C3—H3B0.9700
Cu1—N2i1.930 (3)C4—C51.475 (7)
O2—N21.338 (3)C4—H4A0.9700
O1—N11.359 (4)C4—H4B0.9700
O1—H1O10.88 (6)C5—C61.514 (6)
N1—C11.291 (4)C5—H5A0.9700
N2—C21.293 (4)C5—H5B0.9700
C1—C61.483 (5)C6—H6A0.9700
C1—C21.499 (5)C6—H6B0.9700
C2—C31.478 (5)
N1—Cu1—N1i180.00 (17)C2—C3—H3B109.0
N1—Cu1—N282.85 (12)C4—C3—H3B109.0
N1i—Cu1—N297.15 (12)H3A—C3—H3B107.8
N1—Cu1—N2i97.15 (12)C5—C4—C3113.4 (4)
N1i—Cu1—N2i82.85 (12)C5—C4—H4A108.9
N2—Cu1—N2i180.00 (7)C3—C4—H4A108.9
N1—O1—H1O1104 (4)C5—C4—H4B108.9
C1—N1—O1120.0 (3)C3—C4—H4B108.9
C1—N1—Cu1114.9 (3)H4A—C4—H4B107.7
O1—N1—Cu1125.1 (2)C4—C5—C6113.0 (4)
C2—N2—O2121.5 (3)C4—C5—H5A109.0
C2—N2—Cu1114.2 (2)C6—C5—H5A109.0
O2—N2—Cu1123.9 (2)C4—C5—H5B109.0
N1—C1—C6125.3 (4)C6—C5—H5B109.0
N1—C1—C2113.7 (3)H5A—C5—H5B107.8
C6—C1—C2120.9 (3)C1—C6—C5112.1 (4)
N2—C2—C3124.8 (4)C1—C6—H6A109.2
N2—C2—C1114.2 (3)C5—C6—H6A109.2
C3—C2—C1121.0 (3)C1—C6—H6B109.2
C2—C3—C4112.8 (4)C5—C6—H6B109.2
C2—C3—H3A109.0H6A—C6—H6B107.9
C4—C3—H3A109.0
Symmetry code: (i) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O2i0.88 (6)1.69 (6)2.564 (4)168 (6)
Symmetry code: (i) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O2i0.88 (6)1.69 (6)2.564 (4)168 (6)
Symmetry code: (i) x, y, z+1.
references
References top

Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.

Birkelbach, F., Weyhermuller, T., Lengen, M., Gerdan, M., Trautwein, A. X., Wieghardt, K. & Chaudhuri, P. (1997). J. Chem. Soc. Dalton Trans. pp. 4529–4538.

Cervera, B., Ruiz, R., Lloret, F., Julve, M., Cano, J., Faus, J., Bois, C. & Mrozinski, J. (1997). J. Chem. Soc. Dalton Trans. pp. 395–401.

Coropceanu, E. B., Croitor, L., Botoshansky, M. M., Siminel, A. V. & Fonari, M. S. (2011). Polyhedron, 30, 2592–2598.

Li, D.-X., Xu, D.-J. & Xu, Y.-Z. (2003). Acta Cryst. E59, m1094–m1095.

Mégnamisi-Bélombé, M. & Endres, H. (1983). Acta Cryst. C39, 707–709.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Simonov, Y. A., Dvorkin, A. A., Malinovskii, T. I., Batir, D. G., Bulgak, I. I. & Ozol, L. D. (1982). Proc. Natl. Acad. Sci. USSR, 263, 1135–1138.