metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Butane-1,4-di­yl)(tri­methyl­phosphane-κP)[tris­­(3,5-di­methyl­pyrazol-1-yl-κN2)hydro­borato]iridium(III)

aInstituto de Investigaciones Químicas (IIQ) and Departamento de Química Inorgánica, Consejo Superior de Investigaciones Cientificas (CSIC) and Universidad de Sevilla, Avenida Américo Vespucio 49, 41092 Sevilla, Spain, and bInstitute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/164SC, A-1060 Vienna, Austria
*Correspondence e-mail: kurt.mereiter@tuwien.ac.at

(Received 17 March 2013; accepted 23 March 2013; online 5 April 2013)

In the mononuclear title iridium(III) complex, [Ir(C4H8)(C15H22BN6)(C3H9P)], which is based on the [tris­(3,5-dimethyl­pyrazol-1-yl)hydro­borato]iridium moiety, Ir[TpMe2], the IrIII atom is coordinated by a chelating butane-1,4-diyl fragment and a trimethyl­phosphane ligand in a modestly distorted octa­hedral coordination environment formed by three facial N, two C and one P atom. The iridium–butane-1,4-diyl ring has an envelope conformation. This ring is disordered because alternately the second or the third C atom of the butane-1,4-diyl fragment function as an envelope flap atom (the occupancy ratio is 1:1). In the crystal, mol­ecules are organized into densely packed columns extending along [101]. Coherence between the mol­ecules is essentially based on van der Waals inter­actions.

Related literature

For general aspects of hydrogen tris­pyrazolylborate ligands, see: Pettinari & Trofimenko (2008[Pettinari, C. & Trofimenko, S. (2008). In Scorpionates II: Chelating Borate Ligands. London: Imperial College Press.]). For general information on mechanistic aspects of organometallic reactions, involving oxidative addition and reductive elimination, see: Crabtree (2005[Crabtree, R. H. (2005). The Organometallic Chemistry of the Transition Metals, 4th ed. New Jersey: John Wiley and Sons Inc.]). For information on σ-CAM mechanisms, see: Perutz & Sabo-Etienne (2007[Perutz, R. N. & Sabo-Etienne, S. (2007). Angew. Chem. Int. Ed. 46, 2578-2592.]). For general information on the chemistry and potential of Ir[TpMe2] complexes, see: Conejero et al. (2010[Conejero, S., Paneque, M., Poveda, M. L., Santos, L. L. & Carmona, E. (2010). Acc. Chem. Res. 43, 572-580.]). For selected aspects of the synthesis and the crystal structure of the precursor of the title compound, see: Paneque et al. (2000[Paneque, M., Poveda, M. L., Salazar, V., Gutiérrez-Puebla, E. & Monge, A. (2000). Organometallics, 19, 3120-3126.]). For aspects of the chemistry of a CO- instead of PMe3-containing analogue to the precursor of the title compound, see: Gómez et al. (2007[Gómez, M., Paneque, M., Poveda, M. L. & Alvarez, E. (2007). J. Am. Chem. Soc. 129, 6092-6093.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • [Ir(C4H8)(C15H22BN6)(C3H9P)]

  • Mr = 621.57

  • Monoclinic, P 21 /n

  • a = 11.1865 (5) Å

  • b = 18.1771 (8) Å

  • c = 13.4748 (6) Å

  • β = 112.883 (1)°

  • V = 2524.3 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.37 mm−1

  • T = 173 K

  • 0.22 × 0.15 × 0.14 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.36, Tmax = 0.47

  • 37102 measured reflections

  • 7359 independent reflections

  • 6892 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.017

  • wR(F2) = 0.040

  • S = 1.08

  • 7359 reflections

  • 298 parameters

  • 25 restraints

  • H-atom parameters constrained

  • Δρmax = 0.86 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Selected bond lengths (Å)

Ir1—C19A 2.0780 (18)
Ir1—C16A 2.0871 (19)
Ir1—N5 2.1781 (14)
Ir1—N3 2.2233 (15)
Ir1—P1 2.2381 (5)
Ir1—N1 2.2590 (15)

Data collection: SMART (Bruker, 2003[Bruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Iridium complexes with the stabilizing ligand hydrogen tris(3,5-dimethylpyrazolyl)borate (TpMe2) (Pettinari & Trofimenko, 2008) and containing carbon bearing co-ligands possess a rich chemistry (Conejero et al., 2010) and are capable of a broad range of bond activation and coupling reactions either via oxidative addition and reductive elimination (Crabtree, 2005) or via σ-CAM mechanisms (Perutz & Sabo-Etienne, 2007). When the conveniently accessible Ir(I) complex [(TpMe2)Ir(η4-CH2CH—CHCH2)] containing a π-bonded butadiene is treated with a Lewis base like PMe3 it transforms cleanly into the Ir(III) complex [(TpMe2)Ir(κ2-CH2—CHCH—CH2)(PMe3)] in a process which implies the transformation of the butadiene ligand into a but-2-ene-1,4-diyl one (Paneque et al., 2000). This complex is inert to substitution of the phosphine ligand so the metallacyclic structure can experience some cyclopentene-like reactivity without rupturing the Ir—C bonds. The analogous product with a CO ligand instead of PMe3 behaves similarly and experiences for instance a series of reactions (subsequent hydroboration-oxidation of double bond, alcohol oxidation to ketone and α-formylation of ketone) leading to the formation a new α-formyl-3-iridacyclopentanone (Gómez et al., 2007). The catalytic hydrogenation of the PMe3 derivative under slightly harsher conditions leads to the formation of the title compound [(TpMe2)Ir(κ2-CH2—CH2—CH2—CH2)(PMe3)], (I). A view of the complex is shown in Fig. 1. Iridium has a modestly distorted octahedral coordination with bond lengths given in Table 1. Bond angles about Ir are in the ranges 82.12 (8)–96.06 (7)° and 172.64 (7)–175.42 (4)° with the smallest angle (C—Ir—C = 82.12 (8)°) for the Ir butane-1,4-diyl ring. This ring has an envelope conformation but is disordered because either the 2nd or the 3rd carbon atom of the butane fragment is the flap atom in 1:1 ratio (cf. Fig. 1). In the first case Ir1, C16A, C18A, and C19A are flat within 0.053 Å mean deviation from planarity and C17A is the flap atom that deviates by 0.569 (6) Å from the mean plane of the four. In the second case Ir1, C16B, C17B, and C19B are flat (0.028 Å mean deviation) and C18B is the flap atom which deviates by 0.537 (7) Å from the corresponding mean plane. Except for the envelope conformation of the IrC4 ring the molecular structure of I is closely similar to that of [(TpMe2)Ir(κ2-CH2—CHCH—CH2)(PMe3)] (Paneque et al., 2000; for crystal structure data see Cambridge Crystallographic Database, refcode ABIBOC; CCD version 5.33; Allen, 2002). This includes also bond lengths and bond angles about Ir, which for the latter complex are: Ir—N = 2.25 (1), 2.22 (1), 2.16 (1) Å; Ir—C = 2.09 (1), 2.09 (1) Å, Ir—P = 2.234 (3) Å; the CC bond in the olefinic IrC4 ring is 1.27 (2) Å compared with C—C = 1.536 (1) Å for the aliphatic IrC4 ring in I. Despite similar shapes of the two complexes under consideration and analogous crystallization conditions (see Experimental) their crystal structures are dissimilar: [(TpMe2)Ir(κ2-CH2—CHCH—CH2)(PMe3)] crystallized as a dichloromethane solvate of triclinic symmetry (Paneque et al., 2000), whereas I is monoclinic and unsolvated. In the lack of distinctly polar groups on the outer surface of the molecules of I, their crystal structure is held together essentially by van der Waals interactions. The most prominent feature of the crystal structure of I are columns of tightly packed molecules extending along [101], as exemplified in Fig. 2. Mutual contacts between the columns perpendicular to [101] are more open and appear to represent weaker coherence. In the crystal structure of [(TpMe2)Ir(κ2-CH2—CHCH—CH2)(PMe3)].1/4CH2Cl2 (Paneque et al., 2000) the column motif of I is absent.

Related literature top

For general aspects of hydrogen trispyrazolylborate ligands , see: Pettinari & Trofimenko (2008). For general information on mechanistic aspects of organometallic reactions, involving oxidative addition and reductive elimination, see: Crabtree (2005). For information on σ-CAM mechanisms, see: Perutz & Sabo-Etienne (2007). For general information on the chemistry and potential of Ir[TpMe2] complexes, see: Conejero et al. (2010). For selected aspects of the synthesis and the crystal structure of the precursor of the title compound, see: Paneque et al. (2000). For aspects of the chemistry of a CO- instead of PMe3-containing analogue to the precursor of the title compound, see: Gómez et al. (2007). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

A solution of [(TpMe2)Ir(κ2-CH2—CHCH—CH2)(PMe3)] (0.10 g, 0.16 mmol; for synthesis see Paneque et al., 2000) in dioxane (10 ml), with a small amount of PtO2 as catalyst, was transferred to a pressure vessel, charged with H2 at 4 bar and heated at 353 K for 4 days. Then the solvent was removed under reduced pressure and the crude product was purified by column chromatography (silicagel, hexane/Et2O 10/1 v/v) to give the title compound I in 44% yield. Crystallization from hexane/CH2Cl2 (1:2) at 253 K gave I as colourless crystals. 1H NMR (CDCl3, 298 K) δ 5.71, 5.68 (s, 2:1, 3 CHpz), 2.44, 2.37, 2.36, 2.26 (s, 1:2:2:1, 6 Mepz), 2.33 (m, 4 H, 2 CHAHB), 1.64, 1.27 (m, 2 H cada, 2 CHCHD), 1.37 (d, 9 H, 2JHP = 9.2 Hz, PMe3). 13C{1H} NMR (CDCl3, 298 K) δ 150.5, 148.9 (d, JCP = 3 Hz) (2:1:2:1, Cqpz), 108.3 (d, JCP = 4 Hz), 107.9 (1:2 CHpz), 34.8 (C2, 3JCP = 2 Hz, 1JCH = 122 Hz), 16.2 (d, 1JCP = 37 Hz, PMe3), 16.0, 15.1, 13.7, 13.4 (2:1:1:2, Mepz), -3.6 (C1, 2JCP = 8 Hz, 1JCH = 125 Hz). 31P {1H} NMR (CDCl3, 298 K) δ -48.0 p.p.m..

Refinement top

Conformational disorder in the 5-membered Ir-butane-1,4-diyl chelate ring was resolved with split positions (1:1; ratio fixed after preceeding refinement had indicated this) for the 2,3-carbon atoms (C17A/C17B and C18A/C18B) stabilized by a SADI restraint for all C—C bonds, EXYZ constraints (C16A/C16B, C19A/C19B), EADP constraints (C16A/C16B, C18A/C18B, C19A/C19B), and a DELU 0.001 0.001 restraint for C16A through C19B. H atoms were placed in calculated positions and thereafter treated as riding, C—H = 0.95–0.99 Å, B—H = 1.00 Å, Uiso(H) = 1.2–1.5Ueq(C,B), using AFIX 137 of program SHELXL97 (Sheldrick, 2008) for the methyl groups.

Structure description top

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with displacement ellipsoids drawn at the 30% probability level showing the disordered butane-1,4-diyl fragment C16—C17—C18—C19 in both conformations (A-conformation dark, B-conformation pale), see text.
[Figure 2] Fig. 2. Stacking of the molecules of I to form efficiently packed columns parallel to [101].
(Butane-1,4-diyl)(trimethylphosphane-κP)[tris(3,5-dimethylpyrazol-1-yl-κN2)hydroborato]iridium(III) top
Crystal data top
[Ir(C4H8)(C15H22BN6)(C3H9P)]F(000) = 1240
Mr = 621.57Dx = 1.636 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 8250 reflections
a = 11.1865 (5) Åθ = 2.3–30.0°
b = 18.1771 (8) ŵ = 5.37 mm1
c = 13.4748 (6) ÅT = 173 K
β = 112.883 (1)°Oval, colourless
V = 2524.3 (2) Å30.22 × 0.15 × 0.14 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
7359 independent reflections
Radiation source: fine-focus sealed tube6892 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
Detector resolution: 0.11 pixels mm-1θmax = 30.0°, θmin = 2.0°
ω and φ scansh = 1515
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
k = 2525
Tmin = 0.36, Tmax = 0.47l = 1818
37102 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.017Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.040H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0188P)2 + 1.5354P]
where P = (Fo2 + 2Fc2)/3
7359 reflections(Δ/σ)max = 0.002
298 parametersΔρmax = 0.86 e Å3
25 restraintsΔρmin = 0.32 e Å3
Crystal data top
[Ir(C4H8)(C15H22BN6)(C3H9P)]V = 2524.3 (2) Å3
Mr = 621.57Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.1865 (5) ŵ = 5.37 mm1
b = 18.1771 (8) ÅT = 173 K
c = 13.4748 (6) Å0.22 × 0.15 × 0.14 mm
β = 112.883 (1)°
Data collection top
Bruker SMART APEX CCD
diffractometer
7359 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
6892 reflections with I > 2σ(I)
Tmin = 0.36, Tmax = 0.47Rint = 0.018
37102 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.01725 restraints
wR(F2) = 0.040H-atom parameters constrained
S = 1.08Δρmax = 0.86 e Å3
7359 reflectionsΔρmin = 0.32 e Å3
298 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ir10.330539 (6)0.149427 (3)0.140251 (5)0.02163 (2)
P10.13156 (4)0.17885 (3)0.02261 (4)0.02555 (9)
N10.41101 (15)0.26249 (9)0.13371 (12)0.0279 (3)
N20.52542 (16)0.26511 (9)0.11853 (13)0.0313 (3)
N30.39782 (14)0.11256 (9)0.01330 (12)0.0271 (3)
N40.50615 (16)0.14845 (9)0.01311 (13)0.0289 (3)
N50.52880 (14)0.12008 (9)0.24383 (12)0.0258 (3)
N60.62443 (15)0.14889 (9)0.21463 (13)0.0299 (3)
B10.5921 (2)0.19391 (13)0.11026 (17)0.0312 (4)
H10.67480.20610.10170.037*
C10.2641 (3)0.35688 (13)0.1631 (3)0.0507 (6)
H1A0.23660.31780.19970.076*
H1B0.19400.36740.09340.076*
H1C0.28420.40140.20760.076*
C20.3816 (2)0.33261 (11)0.14579 (16)0.0342 (4)
C30.4767 (2)0.37982 (12)0.13857 (17)0.0402 (5)
H30.47910.43190.14460.048*
C40.5652 (2)0.33560 (13)0.12097 (17)0.0406 (5)
C50.6899 (3)0.35592 (16)0.1088 (2)0.0595 (8)
H5A0.69730.40960.10750.089*
H5B0.68940.33530.04150.089*
H5C0.76390.33600.16970.089*
C60.2510 (2)0.01374 (14)0.09982 (18)0.0441 (5)
H6A0.22930.00530.03700.066*
H6B0.27630.03290.12250.066*
H6C0.17530.03390.15890.066*
C70.36048 (18)0.06676 (11)0.07123 (15)0.0305 (4)
C80.4424 (2)0.07415 (12)0.12664 (16)0.0360 (4)
H80.43610.04860.19000.043*
C90.5333 (2)0.12547 (13)0.07166 (16)0.0345 (4)
C100.6438 (3)0.15446 (15)0.0960 (2)0.0503 (6)
H10A0.63570.20800.10490.075*
H10B0.64230.13200.16260.075*
H10C0.72580.14250.03650.075*
C110.5281 (2)0.04034 (13)0.39711 (17)0.0415 (5)
H11A0.46820.07280.41340.062*
H11B0.59490.02250.46450.062*
H11C0.48010.00160.35440.062*
C120.59054 (18)0.08183 (11)0.33483 (14)0.0304 (4)
C130.72443 (19)0.08640 (13)0.36404 (16)0.0375 (4)
H130.78980.06410.42470.045*
C140.74271 (19)0.12949 (14)0.28780 (16)0.0370 (4)
C150.8676 (2)0.15468 (18)0.2836 (2)0.0576 (8)
H15A0.87120.20850.28570.086*
H15B0.87340.13730.21680.086*
H15C0.94030.13480.34550.086*
C16A0.26125 (19)0.04707 (11)0.16388 (15)0.0317 (4)0.50
H16A0.22100.02140.09380.038*0.50
H16B0.33460.01670.21140.038*0.50
C17A0.1607 (4)0.0554 (2)0.2149 (3)0.0360 (8)0.50
H17A0.07580.07090.16030.043*0.50
H17B0.14920.00830.24710.043*0.50
C18A0.2157 (4)0.11462 (19)0.3022 (4)0.0356 (10)0.50
H18A0.27550.09080.36920.043*0.50
H18B0.14330.13620.31740.043*0.50
C19A0.28856 (18)0.17707 (11)0.27285 (15)0.0305 (3)0.50
H19A0.37030.18750.33510.037*0.50
H19B0.23480.22220.25670.037*0.50
C16B0.26125 (19)0.04707 (11)0.16388 (15)0.0317 (4)0.50
H16C0.19030.03120.09630.038*0.50
H16D0.33190.01030.18210.038*0.50
C17B0.2106 (4)0.0498 (2)0.2547 (3)0.0359 (8)0.50
H17C0.12970.02050.23270.043*0.50
H17D0.27530.02620.31970.043*0.50
C18B0.1831 (4)0.12778 (18)0.2842 (5)0.0356 (10)0.50
H18C0.18740.12920.35900.043*0.50
H18D0.09580.14430.23490.043*0.50
C19B0.28856 (18)0.17707 (11)0.27285 (15)0.0305 (3)0.50
H19C0.36860.17290.33890.037*0.50
H19D0.25940.22890.26600.037*0.50
C200.0148 (2)0.10666 (15)0.0424 (3)0.0766 (11)
H20A0.06700.12890.09080.115*
H20B0.00070.07730.01250.115*
H20C0.04900.07490.08390.115*
C210.0218 (2)0.23610 (18)0.0609 (2)0.0561 (7)
H21A0.05990.24290.00150.084*
H21B0.06210.28410.08580.084*
H21C0.00450.21200.11900.084*
C220.1375 (2)0.22637 (14)0.09285 (17)0.0415 (5)
H22A0.04920.23850.14270.062*
H22B0.17860.19470.12930.062*
H22C0.18810.27170.06930.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ir10.01893 (3)0.02738 (4)0.02017 (3)0.00079 (2)0.00933 (2)0.00218 (2)
P10.01929 (19)0.0272 (2)0.0285 (2)0.00024 (16)0.00746 (16)0.00237 (17)
N10.0266 (7)0.0315 (8)0.0238 (7)0.0045 (6)0.0080 (6)0.0011 (6)
N20.0303 (8)0.0394 (9)0.0256 (7)0.0122 (6)0.0122 (6)0.0033 (6)
N30.0234 (7)0.0362 (8)0.0225 (7)0.0001 (6)0.0098 (6)0.0009 (6)
N40.0251 (7)0.0427 (9)0.0228 (7)0.0014 (6)0.0137 (6)0.0009 (6)
N50.0214 (7)0.0345 (8)0.0225 (7)0.0022 (6)0.0096 (5)0.0004 (6)
N60.0198 (7)0.0476 (10)0.0235 (7)0.0001 (6)0.0096 (6)0.0025 (6)
B10.0238 (9)0.0479 (12)0.0254 (9)0.0078 (8)0.0134 (8)0.0018 (8)
C10.0451 (13)0.0331 (11)0.0691 (18)0.0079 (9)0.0169 (13)0.0008 (10)
C20.0351 (10)0.0329 (9)0.0276 (9)0.0014 (8)0.0047 (8)0.0022 (7)
C30.0493 (12)0.0316 (10)0.0318 (10)0.0108 (9)0.0073 (9)0.0005 (8)
C40.0473 (12)0.0437 (11)0.0305 (10)0.0227 (10)0.0148 (9)0.0029 (8)
C50.0594 (17)0.0677 (18)0.0575 (16)0.0358 (14)0.0295 (14)0.0074 (13)
C60.0388 (11)0.0524 (13)0.0364 (11)0.0083 (10)0.0094 (9)0.0112 (10)
C70.0289 (9)0.0366 (10)0.0236 (8)0.0043 (7)0.0076 (7)0.0016 (7)
C80.0378 (10)0.0473 (11)0.0249 (8)0.0051 (9)0.0144 (8)0.0057 (8)
C90.0358 (10)0.0483 (11)0.0259 (9)0.0044 (9)0.0190 (8)0.0007 (8)
C100.0542 (15)0.0689 (17)0.0444 (13)0.0078 (12)0.0371 (12)0.0049 (11)
C110.0430 (11)0.0474 (12)0.0287 (9)0.0013 (9)0.0080 (8)0.0111 (9)
C120.0293 (9)0.0364 (9)0.0229 (8)0.0066 (7)0.0074 (7)0.0002 (7)
C130.0273 (9)0.0522 (12)0.0267 (9)0.0113 (8)0.0036 (7)0.0031 (8)
C140.0214 (8)0.0593 (13)0.0288 (9)0.0030 (8)0.0082 (7)0.0085 (9)
C150.0223 (10)0.100 (2)0.0496 (15)0.0031 (11)0.0125 (10)0.0062 (13)
C16A0.0358 (9)0.0280 (8)0.0341 (9)0.0021 (7)0.0167 (7)0.0057 (7)
C17A0.033 (2)0.0384 (19)0.040 (2)0.0027 (15)0.0187 (18)0.0128 (13)
C18A0.017 (2)0.0585 (14)0.038 (2)0.0027 (16)0.018 (2)0.0024 (14)
C19A0.0327 (9)0.0356 (8)0.0287 (9)0.0026 (7)0.0180 (7)0.0002 (7)
C16B0.0358 (9)0.0280 (8)0.0341 (9)0.0021 (7)0.0167 (7)0.0057 (7)
C17B0.034 (2)0.0433 (12)0.032 (2)0.0098 (16)0.0145 (17)0.0081 (19)
C18B0.017 (2)0.0585 (14)0.038 (2)0.0027 (16)0.018 (2)0.0024 (14)
C19B0.0327 (9)0.0356 (8)0.0287 (9)0.0026 (7)0.0180 (7)0.0002 (7)
C200.0219 (10)0.0399 (13)0.136 (3)0.0061 (9)0.0040 (14)0.0021 (16)
C210.0346 (11)0.087 (2)0.0450 (13)0.0244 (12)0.0136 (10)0.0045 (13)
C220.0356 (10)0.0567 (13)0.0292 (9)0.0088 (9)0.0093 (8)0.0135 (9)
Geometric parameters (Å, º) top
Ir1—C19A2.0780 (18)C9—C101.492 (3)
Ir1—C16A2.0871 (19)C10—H10A0.9800
Ir1—N52.1781 (14)C10—H10B0.9800
Ir1—N32.2233 (15)C10—H10C0.9800
Ir1—P12.2381 (5)C11—C121.489 (3)
Ir1—N12.2590 (15)C11—H11A0.9800
P1—C221.803 (2)C11—H11B0.9800
P1—C201.818 (2)C11—H11C0.9800
P1—C211.830 (2)C12—C131.395 (3)
N1—C21.342 (3)C13—C141.369 (3)
N1—N21.373 (2)C13—H130.9500
N2—C41.353 (3)C14—C151.492 (3)
N2—B11.520 (3)C15—H15A0.9800
N3—C71.340 (2)C15—H15B0.9800
N3—N41.377 (2)C15—H15C0.9800
N4—C91.357 (2)C16A—C17A1.537 (2)
N4—B11.531 (3)C16A—H16A0.9900
N5—C121.344 (2)C16A—H16B0.9900
N5—N61.379 (2)C17A—C18A1.536 (2)
N6—C141.354 (2)C17A—H17A0.9900
N6—B11.544 (3)C17A—H17B0.9900
B1—H11.0000C18A—C19A1.536 (2)
C1—C21.489 (4)C18A—H18A0.9900
C1—H1A0.9800C18A—H18B0.9900
C1—H1B0.9800C19A—H19A0.9900
C1—H1C0.9800C19A—H19B0.9900
C2—C31.399 (3)C17B—C18B1.536 (2)
C3—C41.366 (4)C17B—H17C0.9900
C3—H30.9500C17B—H17D0.9900
C4—C51.512 (3)C18B—H18C0.9900
C5—H5A0.9800C18B—H18D0.9900
C5—H5B0.9800C20—H20A0.9800
C5—H5C0.9800C20—H20B0.9800
C6—C71.487 (3)C20—H20C0.9800
C6—H6A0.9800C21—H21A0.9800
C6—H6B0.9800C21—H21B0.9800
C6—H6C0.9800C21—H21C0.9800
C7—C81.395 (3)C22—H22A0.9800
C8—C91.367 (3)C22—H22B0.9800
C8—H80.9500C22—H22C0.9800
C19A—Ir1—C16A82.12 (8)N4—C9—C8107.64 (17)
C19A—Ir1—N591.29 (7)N4—C9—C10123.5 (2)
C16A—Ir1—N591.71 (7)C8—C9—C10128.87 (19)
C19A—Ir1—N3172.64 (7)C9—C10—H10A109.5
C16A—Ir1—N396.06 (7)C9—C10—H10B109.5
N5—Ir1—N381.62 (5)H10A—C10—H10B109.5
C19A—Ir1—P193.22 (6)C9—C10—H10C109.5
C16A—Ir1—P189.71 (6)H10A—C10—H10C109.5
N5—Ir1—P1175.42 (4)H10B—C10—H10C109.5
N3—Ir1—P193.90 (4)C12—C11—H11A109.5
C19A—Ir1—N192.31 (7)C12—C11—H11B109.5
C16A—Ir1—N1173.83 (6)H11A—C11—H11B109.5
N5—Ir1—N185.75 (6)C12—C11—H11C109.5
N3—Ir1—N189.14 (6)H11A—C11—H11C109.5
P1—Ir1—N193.25 (4)H11B—C11—H11C109.5
C22—P1—C20101.00 (15)N5—C12—C13109.95 (18)
C22—P1—C21103.01 (12)N5—C12—C11126.10 (17)
C20—P1—C2196.38 (14)C13—C12—C11123.96 (18)
C22—P1—Ir1111.42 (7)C14—C13—C12106.23 (17)
C20—P1—Ir1119.95 (9)C14—C13—H13126.9
C21—P1—Ir1121.84 (8)C12—C13—H13126.9
C2—N1—N2105.75 (16)N6—C14—C13107.86 (18)
C2—N1—Ir1137.67 (14)N6—C14—C15123.8 (2)
N2—N1—Ir1116.49 (12)C13—C14—C15128.3 (2)
C4—N2—N1110.26 (18)C14—C15—H15A109.5
C4—N2—B1129.95 (18)C14—C15—H15B109.5
N1—N2—B1119.62 (15)H15A—C15—H15B109.5
C7—N3—N4106.05 (15)C14—C15—H15C109.5
C7—N3—Ir1138.98 (13)H15A—C15—H15C109.5
N4—N3—Ir1114.84 (11)H15B—C15—H15C109.5
C9—N4—N3109.95 (16)C17A—C16A—Ir1111.13 (19)
C9—N4—B1127.88 (17)C17A—C16A—H16A109.4
N3—N4—B1121.00 (14)Ir1—C16A—H16A109.4
C12—N5—N6106.05 (15)C17A—C16A—H16B109.4
C12—N5—Ir1138.20 (13)Ir1—C16A—H16B109.4
N6—N5—Ir1115.71 (11)H16A—C16A—H16B108.0
C14—N6—N5109.89 (16)C18A—C17A—C16A105.5 (3)
C14—N6—B1128.16 (17)C18A—C17A—H17A110.6
N5—N6—B1121.92 (15)C16A—C17A—H17A110.6
N2—B1—N4111.05 (16)C18A—C17A—H17B110.6
N2—B1—N6109.40 (15)C16A—C17A—H17B110.6
N4—B1—N6109.86 (17)H17A—C17A—H17B108.8
N2—B1—H1108.8C17A—C18A—C19A114.6 (3)
N4—B1—H1108.8C17A—C18A—H18A108.6
N6—B1—H1108.8C19A—C18A—H18A108.6
C2—C1—H1A109.5C17A—C18A—H18B108.6
C2—C1—H1B109.5C19A—C18A—H18B108.6
H1A—C1—H1B109.5H18A—C18A—H18B107.6
C2—C1—H1C109.5C18A—C19A—Ir1111.3 (2)
H1A—C1—H1C109.5C18A—C19A—H19A109.4
H1B—C1—H1C109.5Ir1—C19A—H19A109.4
N1—C2—C3110.2 (2)C18A—C19A—H19B109.4
N1—C2—C1124.98 (19)Ir1—C19A—H19B109.4
C3—C2—C1124.8 (2)H19A—C19A—H19B108.0
C4—C3—C2105.85 (19)C18B—C17B—H17C108.7
C4—C3—H3127.1C18B—C17B—H17D108.7
C2—C3—H3127.1H17C—C17B—H17D107.6
N2—C4—C3107.92 (19)C17B—C18B—H18C110.6
N2—C4—C5122.5 (2)C17B—C18B—H18D110.6
C3—C4—C5129.5 (2)H18C—C18B—H18D108.7
C4—C5—H5A109.5P1—C20—H20A109.5
C4—C5—H5B109.5P1—C20—H20B109.5
H5A—C5—H5B109.5H20A—C20—H20B109.5
C4—C5—H5C109.5P1—C20—H20C109.5
H5A—C5—H5C109.5H20A—C20—H20C109.5
H5B—C5—H5C109.5H20B—C20—H20C109.5
C7—C6—H6A109.5P1—C21—H21A109.5
C7—C6—H6B109.5P1—C21—H21B109.5
H6A—C6—H6B109.5H21A—C21—H21B109.5
C7—C6—H6C109.5P1—C21—H21C109.5
H6A—C6—H6C109.5H21A—C21—H21C109.5
H6B—C6—H6C109.5H21B—C21—H21C109.5
N3—C7—C8110.04 (17)P1—C22—H22A109.5
N3—C7—C6125.19 (18)P1—C22—H22B109.5
C8—C7—C6124.74 (18)H22A—C22—H22B109.5
C9—C8—C7106.32 (17)P1—C22—H22C109.5
C9—C8—H8126.8H22A—C22—H22C109.5
C7—C8—H8126.8H22B—C22—H22C109.5
C19A—Ir1—P1—C22139.06 (10)C9—N4—B1—N6117.7 (2)
C16A—Ir1—P1—C22138.85 (10)N3—N4—B1—N648.6 (2)
N3—Ir1—P1—C2242.79 (10)C14—N6—B1—N2116.6 (2)
N1—Ir1—P1—C2246.56 (10)N5—N6—B1—N265.6 (2)
C19A—Ir1—P1—C20103.39 (16)C14—N6—B1—N4121.2 (2)
C16A—Ir1—P1—C2021.30 (16)N5—N6—B1—N456.6 (2)
N3—Ir1—P1—C2074.76 (16)N2—N1—C2—C30.1 (2)
N1—Ir1—P1—C20164.11 (16)Ir1—N1—C2—C3176.12 (14)
C19A—Ir1—P1—C2117.18 (14)N2—N1—C2—C1179.2 (2)
C16A—Ir1—P1—C2199.27 (14)Ir1—N1—C2—C14.5 (3)
N3—Ir1—P1—C21164.67 (13)N1—C2—C3—C40.3 (2)
N1—Ir1—P1—C2175.32 (13)C1—C2—C3—C4179.0 (2)
C19A—Ir1—N1—C240.51 (19)N1—N2—C4—C30.4 (2)
N5—Ir1—N1—C2131.63 (19)B1—N2—C4—C3174.72 (18)
N3—Ir1—N1—C2146.71 (19)N1—N2—C4—C5178.7 (2)
P1—Ir1—N1—C252.85 (19)B1—N2—C4—C53.6 (3)
C19A—Ir1—N1—N2135.43 (13)C2—C3—C4—N20.4 (2)
N5—Ir1—N1—N244.31 (12)C2—C3—C4—C5178.6 (2)
N3—Ir1—N1—N237.35 (12)N4—N3—C7—C81.2 (2)
P1—Ir1—N1—N2131.21 (11)Ir1—N3—C7—C8174.17 (15)
C2—N1—N2—C40.2 (2)N4—N3—C7—C6176.69 (19)
Ir1—N1—N2—C4177.32 (13)Ir1—N3—C7—C67.9 (3)
C2—N1—N2—B1175.50 (16)N3—C7—C8—C91.1 (2)
Ir1—N1—N2—B11.7 (2)C6—C7—C8—C9176.8 (2)
C16A—Ir1—N3—C737.8 (2)N3—N4—C9—C80.2 (2)
N5—Ir1—N3—C7128.7 (2)B1—N4—C9—C8167.3 (2)
P1—Ir1—N3—C752.3 (2)N3—N4—C9—C10179.1 (2)
N1—Ir1—N3—C7145.5 (2)B1—N4—C9—C1013.4 (3)
C16A—Ir1—N3—N4147.08 (13)C7—C8—C9—N40.5 (2)
N5—Ir1—N3—N456.23 (12)C7—C8—C9—C10179.7 (2)
P1—Ir1—N3—N4122.79 (12)N6—N5—C12—C130.3 (2)
N1—Ir1—N3—N429.60 (12)Ir1—N5—C12—C13177.23 (15)
C7—N3—N4—C90.9 (2)N6—N5—C12—C11179.78 (19)
Ir1—N3—N4—C9175.78 (13)Ir1—N5—C12—C112.7 (3)
C7—N3—N4—B1167.66 (17)N5—C12—C13—C140.5 (2)
Ir1—N3—N4—B115.7 (2)C11—C12—C13—C14179.4 (2)
C19A—Ir1—N5—C1245.3 (2)N5—N6—C14—C131.3 (2)
C16A—Ir1—N5—C1236.8 (2)B1—N6—C14—C13176.71 (19)
N3—Ir1—N5—C12132.7 (2)N5—N6—C14—C15176.8 (2)
N1—Ir1—N5—C12137.5 (2)B1—N6—C14—C155.2 (3)
C19A—Ir1—N5—N6132.07 (13)C12—C13—C14—N61.1 (2)
C16A—Ir1—N5—N6145.77 (13)C12—C13—C14—C15176.9 (2)
N3—Ir1—N5—N649.90 (12)C19A—Ir1—C16A—C17A29.0 (2)
N1—Ir1—N5—N639.86 (12)N5—Ir1—C16A—C17A120.0 (2)
C12—N5—N6—C141.0 (2)N3—Ir1—C16A—C17A158.2 (2)
Ir1—N5—N6—C14177.18 (13)P1—Ir1—C16A—C17A64.3 (2)
C12—N5—N6—B1177.15 (17)Ir1—C16A—C17A—C18A42.2 (4)
Ir1—N5—N6—B14.7 (2)C16A—C17A—C18A—C19A36.2 (5)
C4—N2—B1—N4123.3 (2)C17A—C18A—C19A—Ir114.3 (4)
N1—N2—B1—N462.0 (2)C16A—Ir1—C19A—C18A8.1 (2)
C4—N2—B1—N6115.2 (2)N5—Ir1—C19A—C18A99.6 (2)
N1—N2—B1—N659.4 (2)P1—Ir1—C19A—C18A81.2 (2)
C9—N4—B1—N2121.1 (2)N1—Ir1—C19A—C18A174.6 (2)
N3—N4—B1—N272.6 (2)

Experimental details

Crystal data
Chemical formula[Ir(C4H8)(C15H22BN6)(C3H9P)]
Mr621.57
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)11.1865 (5), 18.1771 (8), 13.4748 (6)
β (°) 112.883 (1)
V3)2524.3 (2)
Z4
Radiation typeMo Kα
µ (mm1)5.37
Crystal size (mm)0.22 × 0.15 × 0.14
Data collection
DiffractometerBruker SMART APEX CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.36, 0.47
No. of measured, independent and
observed [I > 2σ(I)] reflections
37102, 7359, 6892
Rint0.018
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.017, 0.040, 1.08
No. of reflections7359
No. of parameters298
No. of restraints25
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.86, 0.32

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Ir1—C19A2.0780 (18)Ir1—N32.2233 (15)
Ir1—C16A2.0871 (19)Ir1—P12.2381 (5)
Ir1—N52.1781 (14)Ir1—N12.2590 (15)
 

Acknowledgements

Financial support (FEDER) from the Spanish Ministry of Science (projects CTQ2010–17476 and Consolider-Ingenio 2010 CSD2007–00006) and the Junta de Andalucía (grant FQM-119 and project P09-FQM-4832) is acknowledged.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationConejero, S., Paneque, M., Poveda, M. L., Santos, L. L. & Carmona, E. (2010). Acc. Chem. Res. 43, 572–580.  Web of Science CrossRef CAS PubMed Google Scholar
First citationCrabtree, R. H. (2005). The Organometallic Chemistry of the Transition Metals, 4th ed. New Jersey: John Wiley and Sons Inc.  Google Scholar
First citationGómez, M., Paneque, M., Poveda, M. L. & Alvarez, E. (2007). J. Am. Chem. Soc. 129, 6092–6093.  Web of Science PubMed Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPaneque, M., Poveda, M. L., Salazar, V., Gutiérrez-Puebla, E. & Monge, A. (2000). Organometallics, 19, 3120–3126.  Web of Science CSD CrossRef CAS Google Scholar
First citationPerutz, R. N. & Sabo-Etienne, S. (2007). Angew. Chem. Int. Ed. 46, 2578–2592.  Web of Science CrossRef CAS Google Scholar
First citationPettinari, C. & Trofimenko, S. (2008). In Scorpionates II: Chelating Borate Ligands. London: Imperial College Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds