supplementary materials


go2084 scheme

Acta Cryst. (2013). E69, o710    [ doi:10.1107/S1600536813009471 ]

1-(4-Methylphenyl)-2-[4-(trifluoromethyl)phenyl]-1H-phenanthro[9,10-d]imidazole

T. Mohandas, R. Sathishkumar, J. Jayabharathi, A. Pasupathy and P. Sakthivel

Abstract top

In the title compound, C29H19F3N2, the tetracyclic ring system is essentially planar [maximum deviation from the best plane = 0.076 (1) Å] and makes dihedral angles of 78.10 (5) and 33.71 (4)° with the methylphenyl and fluorophenyl rings, respectively. An intramolecular C-H...[pi] interaction occurs. In the crystal, pairs of C-H...[pi] interactions link inversion-related molecules.

Comment top

The optical and conductive properties of the conjugated materials containing imidazole and phenanthroline heterocycles have found in many applications (Moylan et al.,1993, Bu et al.,1996, Wang et al.,2002).

The 1H-phenanthro[9,10 - d]imidazole is a promising building block in the field of molecular materials. It has many desirable properties such as good heat stability, ease of introduction into molecules used as chromophores, fluorescent in nature and readily tunable absorption wavelengths.

The study of organic electroluminescent materials and devices (Loy et al., 2002, Adachi et al., 1995) is therefore of great importance. The photophysical, electrochemical and mobility properties of phenanthroimidazole derivatives have been reported (Yuan et al., 2011).

As our research group deals with organic light emitting devices, we are interested in the title compound (I), Figure 1, as a ligand for inorganic complexes.

The dihedral angle between the phenanthrene moiety and the flourobenzene ring is 33.71 (4)° and to that of the benzene ring of methylphenyl is 78.10 (5)°. The dihedral angle between methylphenyl and benzene ring of trifluorobenzene ring is 72.60 (5)°. The maximum deviation of C12 atom from the mean plane of phenanthrotetracyclic system is 0.076 (1)°. The crystal structure is stabilized by C—H···π interactions. One of these, C12–H12···Cg1 is an intramolecular interaction. The other, C26–H26···Cg2 links the molecules into centrosymmetically related pairs across the centre-of-symmetry at (0.5, 0, 0.5), Figure 2. Cg1 and Cg2 are the centres of gravity of the benzene rings C15–C20 and C8–C13 respectively.

Related literature top

For background to organic electroluminescent materials and devices, see: Adachi et al. (1995); Loy et al. (2002) and for the photophysical, electrochemical and mobility properties of phenanthroimidazole derivatives, see: Yuan et al. (2011). For applications of imidazole and phenanthrolene derivatives, see: Moylan et al. (1993); Bu et al. (1996); Wang et al. (2002).

Experimental top

A mixture of phenanthrene-9,10-dione (1.0 g, 4.8 mmol), ammonium acetate (1.48 g,19.2 mmol), 4-trifluoromethylbenzaldehyde (0.83 g, 4.8 mmol) and 4-methyl aniline (2.56 g, 24 mmol) were refluxed in ethanol (20 ml) at 80°C. The reaction was monitored by TLC and purified by column chromotography using petroleum ether: ethyl acetate (9:1) as the eluent. Yield: 0.69 g (52%). The compound was dissolved in dimethyl sulfoxide and allowed and slow evaporation produced crystal suitable for X-ray diffraction.

Refinement top

All the hydrogen atoms were geometrically fixed and allowed to ride on their parent atoms with C—H = 0.93 - 0.96 Å and Uiso(H) = 1.3Ueq(C).

The methyl group attached to atom C28 was refined as 6 half hydrogen atoms since a diiference map did not reveal any distinct peaks.

A difference map in the plane of the F atoms of the CF3 revealed 3 distinct peaks with evidence of oscillation around the C-C bond connecting the CF3 group to the main molecule. The highest difference map peaks were located in the vicinity of the F atoms. Attempts were made to obtain a disordered model but none were satisfactory. These distinct maxima in the difference map were used as the starting positions of F atoms despite problem with thermal parameters during th refinement refinement.

The crystal was a non-merohedral twin. Refinement was carried out using BASF and HKLF 5. The twin data was obtained from PLATON TwinRotMat function, (Spek, 2009).

The twin component ratio is 0.961/0.039.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: APEX2 and SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure and labelling scheme for (I) with displacement ellipsoids for non-H atoms are drawn at the 30% probability level.
[Figure 2] Fig. 2. A packing diagram for (I) showing the intramolecular interaction and the centrosymmetrically linked pair of molecules. Dashed lines indicate C—H···π interactions. Hydrogen atoms not involved in the interactions are omitted for clarity.
1-(4-Methylphenyl)-2-[4-(trifluoromethyl)phenyl]-1H-phenanthro[9,10-d]imidazole top
Crystal data top
C29H19F3N2Z = 2
Mr = 452.46F(000) = 468
Triclinic, P1Dx = 1.332 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.113 (3) ÅCell parameters from 6741 reflections
b = 11.733 (5) Åθ = 2.6–27.5°
c = 12.713 (2) ŵ = 0.10 mm1
α = 76.397 (1)°T = 293 K
β = 73.490 (2)°Block, colourless
γ = 86.185 (5)°0.35 × 0.30 × 0.25 mm
V = 1127.7 (7) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
22540 independent reflections
Radiation source: Rotating Anode14735 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.000
Detector resolution: 18.4 pixels mm-1θmax = 27.6°, θmin = 2.6°
ω and φ scanh = 1010
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
k = 1514
Tmin = 0.967, Tmax = 0.977l = 1616
22540 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.068H-atom parameters constrained
wR(F2) = 0.236 w = 1/[σ2(Fo2) + (0.1257P)2 + 0.462P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
22540 reflectionsΔρmax = 0.72 e Å3
310 parametersΔρmin = 0.38 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.022 (2)
Crystal data top
C29H19F3N2γ = 86.185 (5)°
Mr = 452.46V = 1127.7 (7) Å3
Triclinic, P1Z = 2
a = 8.113 (3) ÅMo Kα radiation
b = 11.733 (5) ŵ = 0.10 mm1
c = 12.713 (2) ÅT = 293 K
α = 76.397 (1)°0.35 × 0.30 × 0.25 mm
β = 73.490 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
22540 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
14735 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.977Rint = 0.000
22540 measured reflectionsθmax = 27.6°
Refinement top
R[F2 > 2σ(F2)] = 0.068H-atom parameters constrained
wR(F2) = 0.236Δρmax = 0.72 e Å3
S = 1.04Δρmin = 0.38 e Å3
22540 reflectionsAbsolute structure: ?
310 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.20865 (14)0.08289 (9)0.54048 (8)0.0456 (3)
N20.30849 (14)0.01502 (9)0.40358 (9)0.0482 (3)
F10.02200 (19)0.51343 (12)0.86107 (14)0.1730 (7)
F20.2485 (3)0.56334 (10)0.75953 (12)0.2022 (10)
F30.2496 (2)0.49122 (12)0.88779 (13)0.1697 (7)
C10.30932 (17)0.10375 (11)0.35746 (11)0.0464 (3)
C20.36035 (17)0.15914 (12)0.24009 (11)0.0486 (3)
C30.4141 (2)0.09473 (13)0.15691 (11)0.0596 (4)
H30.41960.01340.17740.071*
C40.4590 (2)0.15053 (15)0.04533 (12)0.0721 (5)
H40.49750.10740.00980.086*
C50.4467 (2)0.27171 (15)0.01490 (13)0.0788 (5)
H50.47320.30960.06090.095*
C60.3962 (2)0.33553 (14)0.09526 (13)0.0706 (5)
H60.39080.41680.07310.085*
C70.35215 (18)0.28235 (12)0.21037 (12)0.0545 (4)
C80.29676 (19)0.34923 (12)0.29833 (13)0.0565 (4)
C90.2970 (2)0.47253 (13)0.27083 (16)0.0762 (5)
H90.32720.51180.19540.091*
C100.2539 (3)0.53619 (14)0.35226 (17)0.0856 (6)
H100.25520.61770.33180.103*
C110.2086 (2)0.48010 (15)0.46402 (17)0.0793 (5)
H110.18060.52400.51880.095*
C120.2043 (2)0.36048 (13)0.49576 (14)0.0639 (4)
H120.17310.32380.57190.077*
C130.24672 (18)0.29210 (11)0.41417 (12)0.0518 (4)
C140.25034 (17)0.16657 (11)0.43936 (11)0.0461 (3)
C150.14817 (18)0.10502 (11)0.65183 (11)0.0470 (3)
C160.02091 (18)0.13450 (12)0.69267 (12)0.0570 (4)
H160.09720.13830.64950.068*
C170.0763 (2)0.15835 (13)0.79825 (13)0.0644 (4)
H170.19060.17890.82550.077*
C180.0345 (2)0.15247 (12)0.86492 (12)0.0600 (4)
C190.2023 (2)0.12097 (14)0.82111 (12)0.0675 (4)
H190.27900.11550.86430.081*
C200.26054 (19)0.09732 (12)0.71578 (11)0.0555 (4)
H200.37460.07640.68840.067*
C210.24755 (16)0.02465 (11)0.51342 (10)0.0445 (3)
C220.22638 (17)0.13928 (11)0.59353 (10)0.0454 (3)
C230.09865 (19)0.16471 (12)0.69527 (12)0.0555 (4)
H230.02330.10600.71730.067*
C240.0823 (2)0.27559 (13)0.76375 (12)0.0591 (4)
H240.00450.29180.83120.071*
C250.1960 (2)0.36339 (13)0.73183 (12)0.0576 (4)
C260.3215 (2)0.33900 (12)0.63148 (12)0.0586 (4)
H260.39700.39780.60980.070*
C270.33689 (18)0.22880 (11)0.56271 (11)0.0529 (4)
H270.42240.21380.49460.063*
C280.0263 (3)0.18059 (16)0.97975 (13)0.0901 (6)
H28A0.14540.20250.99460.135*0.50
H28B0.04030.24430.98170.135*0.50
H28C0.01240.11291.03600.135*0.50
H28D0.06710.17061.01350.135*0.50
H28E0.11860.12881.02650.135*0.50
H28F0.06590.26030.97220.135*0.50
C290.1800 (3)0.48202 (16)0.80656 (16)0.0830 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0526 (7)0.0431 (6)0.0404 (6)0.0026 (5)0.0128 (5)0.0092 (5)
N20.0554 (7)0.0463 (7)0.0405 (6)0.0003 (5)0.0133 (5)0.0057 (5)
F10.1158 (11)0.1110 (11)0.2194 (16)0.0340 (9)0.0277 (11)0.0896 (10)
F20.367 (3)0.0503 (7)0.1142 (11)0.0110 (11)0.0252 (13)0.0111 (7)
F30.2296 (18)0.1301 (11)0.1480 (12)0.0230 (11)0.1189 (13)0.0590 (10)
C10.0484 (8)0.0454 (8)0.0450 (8)0.0007 (6)0.0172 (6)0.0045 (6)
C20.0484 (8)0.0518 (8)0.0429 (8)0.0007 (6)0.0156 (6)0.0015 (6)
C30.0719 (10)0.0596 (9)0.0441 (8)0.0011 (8)0.0168 (7)0.0050 (7)
C40.0875 (12)0.0794 (12)0.0426 (9)0.0001 (9)0.0152 (8)0.0044 (8)
C50.0981 (13)0.0792 (12)0.0445 (9)0.0052 (10)0.0149 (9)0.0097 (9)
C60.0820 (12)0.0586 (10)0.0581 (10)0.0039 (9)0.0176 (9)0.0110 (8)
C70.0524 (8)0.0528 (9)0.0529 (9)0.0007 (7)0.0184 (7)0.0034 (7)
C80.0567 (9)0.0459 (8)0.0637 (10)0.0038 (7)0.0212 (7)0.0019 (7)
C90.0920 (13)0.0489 (9)0.0813 (12)0.0034 (9)0.0274 (10)0.0008 (9)
C100.1043 (15)0.0442 (9)0.1030 (15)0.0082 (9)0.0270 (12)0.0106 (10)
C110.0918 (13)0.0540 (10)0.0950 (14)0.0075 (9)0.0260 (11)0.0248 (10)
C120.0709 (10)0.0519 (9)0.0712 (10)0.0038 (8)0.0226 (8)0.0158 (8)
C130.0527 (8)0.0455 (8)0.0589 (9)0.0025 (6)0.0205 (7)0.0095 (7)
C140.0468 (8)0.0449 (8)0.0466 (8)0.0016 (6)0.0168 (6)0.0063 (6)
C150.0560 (8)0.0429 (7)0.0425 (7)0.0014 (6)0.0140 (6)0.0096 (6)
C160.0530 (9)0.0649 (10)0.0577 (9)0.0030 (7)0.0184 (7)0.0197 (8)
C170.0598 (10)0.0636 (10)0.0640 (10)0.0012 (8)0.0041 (8)0.0196 (8)
C180.0795 (11)0.0528 (9)0.0442 (8)0.0029 (8)0.0106 (8)0.0116 (7)
C190.0757 (11)0.0799 (11)0.0527 (9)0.0025 (9)0.0278 (8)0.0149 (8)
C200.0553 (9)0.0637 (9)0.0485 (8)0.0041 (7)0.0178 (7)0.0115 (7)
C210.0468 (8)0.0444 (8)0.0416 (8)0.0004 (6)0.0135 (6)0.0064 (6)
C220.0507 (8)0.0443 (8)0.0421 (7)0.0025 (6)0.0162 (6)0.0066 (6)
C230.0559 (9)0.0547 (9)0.0510 (8)0.0014 (7)0.0078 (7)0.0114 (7)
C240.0620 (9)0.0619 (10)0.0449 (8)0.0093 (8)0.0062 (7)0.0037 (7)
C250.0696 (10)0.0521 (9)0.0487 (9)0.0115 (8)0.0211 (8)0.0024 (7)
C260.0629 (9)0.0486 (9)0.0598 (9)0.0036 (7)0.0161 (8)0.0057 (7)
C270.0543 (9)0.0500 (8)0.0476 (8)0.0019 (7)0.0085 (7)0.0043 (7)
C280.1210 (16)0.0905 (13)0.0543 (10)0.0028 (11)0.0119 (10)0.0219 (9)
C290.1007 (15)0.0612 (12)0.0729 (12)0.0114 (11)0.0208 (11)0.0111 (10)
Geometric parameters (Å, º) top
N1—C211.3781 (17)C13—C141.4319 (18)
N1—C141.3909 (16)C15—C201.3698 (18)
N1—C151.4398 (16)C15—C161.3739 (19)
N2—C211.3222 (15)C16—C171.3780 (19)
N2—C11.3785 (16)C16—H160.9300
F1—C291.303 (2)C17—C181.388 (2)
F2—C291.259 (2)C17—H170.9300
F3—C291.291 (2)C18—C191.379 (2)
C1—C141.3738 (17)C18—C281.510 (2)
C1—C21.4312 (17)C19—C201.3751 (19)
C2—C31.3963 (19)C19—H190.9300
C2—C71.4077 (19)C20—H200.9300
C3—C41.3692 (19)C21—C221.4706 (18)
C3—H30.9300C22—C271.3889 (18)
C4—C51.388 (2)C22—C231.3906 (18)
C4—H40.9300C23—C241.3757 (19)
C5—C61.361 (2)C23—H230.9300
C5—H50.9300C24—C251.391 (2)
C6—C71.4006 (19)C24—H240.9300
C6—H60.9300C25—C261.369 (2)
C7—C81.466 (2)C25—C291.479 (2)
C8—C91.406 (2)C26—C271.3710 (18)
C8—C131.419 (2)C26—H260.9300
C9—C101.369 (2)C27—H270.9300
C9—H90.9300C28—H28A0.9600
C10—C111.372 (2)C28—H28B0.9600
C10—H100.9300C28—H28C0.9600
C11—C121.366 (2)C28—H28D0.9600
C11—H110.9300C28—H28E0.9600
C12—C131.4107 (19)C28—H28F0.9600
C12—H120.9300
C21—N1—C14106.48 (10)C19—C18—C28121.62 (16)
C21—N1—C15126.81 (10)C17—C18—C28121.34 (16)
C14—N1—C15126.58 (10)C20—C19—C18122.35 (14)
C21—N2—C1104.85 (10)C20—C19—H19118.8
C14—C1—N2111.39 (11)C18—C19—H19118.8
C14—C1—C2122.18 (12)C15—C20—C19119.07 (14)
N2—C1—C2126.42 (12)C15—C20—H20120.5
C3—C2—C7120.44 (12)C19—C20—H20120.5
C3—C2—C1122.02 (13)N2—C21—N1112.13 (11)
C7—C2—C1117.53 (13)N2—C21—C22121.79 (11)
C4—C3—C2120.45 (15)N1—C21—C22126.08 (11)
C4—C3—H3119.8C27—C22—C23118.28 (13)
C2—C3—H3119.8C27—C22—C21117.48 (12)
C3—C4—C5119.65 (16)C23—C22—C21124.18 (12)
C3—C4—H4120.2C24—C23—C22120.89 (13)
C5—C4—H4120.2C24—C23—H23119.6
C6—C5—C4120.40 (14)C22—C23—H23119.6
C6—C5—H5119.8C23—C24—C25119.79 (13)
C4—C5—H5119.8C23—C24—H24120.1
C5—C6—C7121.88 (15)C25—C24—H24120.1
C5—C6—H6119.1C26—C25—C24119.57 (13)
C7—C6—H6119.1C26—C25—C29120.74 (15)
C6—C7—C2117.13 (14)C24—C25—C29119.69 (15)
C6—C7—C8122.83 (14)C25—C26—C27120.67 (14)
C2—C7—C8120.03 (12)C25—C26—H26119.7
C9—C8—C13117.68 (15)C27—C26—H26119.7
C9—C8—C7121.00 (14)C26—C27—C22120.79 (13)
C13—C8—C7121.28 (13)C26—C27—H27119.6
C10—C9—C8121.66 (16)C22—C27—H27119.6
C10—C9—H9119.2C18—C28—H28A109.5
C8—C9—H9119.2C18—C28—H28B109.5
C9—C10—C11120.19 (16)H28A—C28—H28B109.5
C9—C10—H10119.9C18—C28—H28C109.5
C11—C10—H10119.9H28A—C28—H28C109.5
C12—C11—C10120.74 (17)H28B—C28—H28C109.5
C12—C11—H11119.6C18—C28—H28D109.5
C10—C11—H11119.6H28A—C28—H28D141.1
C11—C12—C13120.61 (15)H28B—C28—H28D56.3
C11—C12—H12119.7H28C—C28—H28D56.3
C13—C12—H12119.7C18—C28—H28E109.5
C12—C13—C8119.10 (13)H28A—C28—H28E56.3
C12—C13—C14124.56 (13)H28B—C28—H28E141.1
C8—C13—C14116.29 (13)H28C—C28—H28E56.3
C1—C14—N1105.14 (11)H28D—C28—H28E109.5
C1—C14—C13122.53 (12)C18—C28—H28F109.5
N1—C14—C13132.28 (12)H28A—C28—H28F56.3
C20—C15—C16120.59 (13)H28B—C28—H28F56.3
C20—C15—N1119.52 (12)H28C—C28—H28F141.1
C16—C15—N1119.88 (12)H28D—C28—H28F109.5
C15—C16—C17119.35 (14)H28E—C28—H28F109.5
C15—C16—H16120.3F2—C29—F3103.88 (19)
C17—C16—H16120.3F2—C29—F1107.1 (2)
C16—C17—C18121.58 (15)F3—C29—F1101.85 (18)
C16—C17—H17119.2F2—C29—C25115.41 (17)
C18—C17—H17119.2F3—C29—C25113.42 (16)
C19—C18—C17117.04 (13)F1—C29—C25113.81 (17)
C21—N2—C1—C140.56 (15)C12—C13—C14—N13.7 (2)
C21—N2—C1—C2178.25 (12)C8—C13—C14—N1178.95 (13)
C14—C1—C2—C3177.56 (13)C21—N1—C15—C2074.53 (17)
N2—C1—C2—C31.1 (2)C14—N1—C15—C20100.77 (15)
C14—C1—C2—C71.5 (2)C21—N1—C15—C16105.97 (15)
N2—C1—C2—C7179.81 (12)C14—N1—C15—C1678.73 (17)
C7—C2—C3—C40.3 (2)C20—C15—C16—C171.1 (2)
C1—C2—C3—C4178.76 (14)N1—C15—C16—C17178.39 (11)
C2—C3—C4—C51.6 (2)C15—C16—C17—C180.5 (2)
C3—C4—C5—C62.3 (3)C16—C17—C18—C190.4 (2)
C4—C5—C6—C71.1 (3)C16—C17—C18—C28179.00 (13)
C5—C6—C7—C20.7 (2)C17—C18—C19—C200.7 (2)
C5—C6—C7—C8179.74 (15)C28—C18—C19—C20178.69 (13)
C3—C2—C7—C61.4 (2)C16—C15—C20—C190.8 (2)
C1—C2—C7—C6177.69 (12)N1—C15—C20—C19178.68 (12)
C3—C2—C7—C8179.54 (13)C18—C19—C20—C150.1 (2)
C1—C2—C7—C81.4 (2)C1—N2—C21—N10.06 (14)
C6—C7—C8—C94.6 (2)C1—N2—C21—C22179.98 (11)
C2—C7—C8—C9176.33 (13)C14—N1—C21—N20.64 (15)
C6—C7—C8—C13177.54 (14)C15—N1—C21—N2176.70 (12)
C2—C7—C8—C131.5 (2)C14—N1—C21—C22179.41 (11)
C13—C8—C9—C101.2 (3)C15—N1—C21—C223.3 (2)
C7—C8—C9—C10176.67 (16)N2—C21—C22—C2728.74 (18)
C8—C9—C10—C110.1 (3)N1—C21—C22—C27151.30 (13)
C9—C10—C11—C120.6 (3)N2—C21—C22—C23148.34 (14)
C10—C11—C12—C130.2 (3)N1—C21—C22—C2331.6 (2)
C11—C12—C13—C81.0 (2)C27—C22—C23—C240.1 (2)
C11—C12—C13—C14178.22 (14)C21—C22—C23—C24177.17 (12)
C9—C8—C13—C121.6 (2)C22—C23—C24—C250.8 (2)
C7—C8—C13—C12176.25 (13)C23—C24—C25—C261.1 (2)
C9—C8—C13—C14179.10 (13)C23—C24—C25—C29178.93 (14)
C7—C8—C13—C141.2 (2)C24—C25—C26—C270.5 (2)
N2—C1—C14—N10.94 (14)C29—C25—C26—C27179.52 (14)
C2—C1—C14—N1177.93 (11)C25—C26—C27—C220.4 (2)
N2—C1—C14—C13176.67 (11)C23—C22—C27—C260.7 (2)
C2—C1—C14—C134.5 (2)C21—C22—C27—C26177.97 (12)
C21—N1—C14—C10.93 (13)C26—C25—C29—F220.8 (3)
C15—N1—C14—C1177.00 (12)C24—C25—C29—F2159.2 (2)
C21—N1—C14—C13176.36 (13)C26—C25—C29—F398.9 (2)
C15—N1—C14—C130.3 (2)C24—C25—C29—F381.2 (2)
C12—C13—C14—C1173.14 (14)C26—C25—C29—F1145.31 (19)
C8—C13—C14—C14.16 (19)C24—C25—C29—F134.7 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C15–C20 and C8–C13 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C12—H12···Cg10.932.843.698 (2)155
C26—H26···Cg2i0.932.863.487 (2)125
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C15–C20 and C8–C13 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C12—H12···Cg10.93002.84003.698 (2)155
C26—H26···Cg2i0.93002.86003.487 (2)125
Symmetry code: (i) x+1, y, z+1.
Acknowledgements top

PS and AP thank Dr Babu Varghese, Senior Scientific Officer, SAIF, IIT, Chennai, India, for the data collection.

references
References top

Adachi, C., Nagai, K. & Tamoto, N. (1995). Appl. Phys. Lett. 66, 2679–2681.

Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Bu, X. R., Li, H., Derveer, D. V. & Mintz, E. A. (1996). Tetrahedron Lett. 37, 7331–7334.

Loy, D. E., Koene, B. E. & Thompson, M. E. (2002). Adv. Funct. Mater. 12, 245–249.

Moylan, C. R., Miller, R. D., Twieg, R. J., Betterton, K. M., Lee, V. Y., Matray, T. J. & Nguyen, C. (1993). Chem. Mater. 5, 1499–1508.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.

Wang, S., Zhao, L., Xu, Z., Wu, C. & Cheng, S. (2002). Mater. Lett. 56, 1035–1038.

Yuan, Y., Li, D., Zhang, X., Zhao, X., Liu, Y., Zhang, J. & Wang, Y. (2011). New J. Chem. 35, 1534–1540.