organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

3,4,5-Trimethoxy-4'-methylbiphenyl

Manu Lahtinen,^a Kalle Nättinen^b and Sami Nummelin^{c*}

^aUniversity of Jyväskylä, Department of Chemistry, PO Box 35, FI-40014 JY, Finland, ^bVTT Technical Research Centre of Finland, Tampere, FIN-33101, Finland, and ^cMolecular Materials, Department of Applied Physics, School of Science, Aalto University, PO Box 15100, FI-00076 Aalto, Finland Correspondence e-mail: sami.nummelin@aalto.fi

Received 22 April 2013; accepted 23 April 2013

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.002 Å; R factor = 0.043; wR factor = 0.117; data-to-parameter ratio = 15.0.

In the title compound, $C_{16}H_{18}O_3$, the dihedral angle between the benzene rings is 33.4 (2)°. In the crystal, molecules are packed in a zigzag arrangement along the *b*-axis and are interconnected *via* weak C-H···O hydrogen bonds, and C-H··· π interactions involving the methoxy groups and the benzene rings of neighbouring molecules.

Related literature

For related single-crystal structures based on AB_2 - and AB_3 branched biphenyls, see: Lahtinen *et al.* (2013*a,b,c*); Lahtinen & Nummelin (2013). For synthesis of the title compound, see: Percec *et al.* (2006, 2007). For crystal structures of dendrimers, see: Mekelburger *et al.* (1993); Nättinen & Rissanen (2003); Ropponen *et al.* (2004*a*). For related Percec-type self-assembling supramolecular dendrimers, see: Percec *et al.* (2006, 2007, 2008); Roche & Percec (2013). For dendrimersomes, see: Percec *et al.* (2010). For aliphatic and aromatic polyester building blocks for dendrimersomes, see: Ropponen *et al.* (2004*b,c*); Nummelin *et al.* (2000).

Experimental

Crystal data

$C_{16}H_{18}O_3$
$M_r = 258.30$
Orthorhombic, Pbca
a = 8.4669 (2) Å
b = 15.0636 (3) Å
c = 21.4516 (4) Å

 $V = 2735.98 (10) \text{ Å}^{3}$ Z = 8Mo K\alpha radiation $\mu = 0.09 \text{ mm}^{-1}$ T = 173 K $0.3 \times 0.25 \times 0.2 \text{ mm}$

17856 measured reflections

 $R_{\rm int} = 0.052$

2589 independent reflections 1984 reflections with $I > 2\sigma(I)$

Data collection

Bruker–Nonius KappaCCD
diffractometer equipped with an
APEXII detector
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min} = 0.975, T_{\max} = 0.983$

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.043 & 173 \text{ parameters} \\ wR(F^2) &= 0.117 & H\text{-atom parameters constrained} \\ S &= 1.03 & \Delta\rho_{max} &= 0.28 \text{ e } \text{\AA}^{-3} \\ 2589 \text{ reflections} & \Delta\rho_{min} &= -0.20 \text{ e } \text{\AA}^{-3} \end{split}$$

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C2–C7 and C8–C10/C13/C16/C19 aromatic rings, respectively.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C4-H4\cdots O11^{i}$	0.95	2.57	3.382 (2)	144
$C12-H12B\cdots O14^{i}$	0.98	2.56	3.465 (2)	154
C18−H18C···O17 ⁱⁱ	0.98	2.63	3.488 (2)	146
$C15-H15A\cdots Cg1^{iii}$	0.98	2.84	3.692 (2)	139
$C12-H12A\cdots Cg2^{iv}$	0.98	3.19	4.061 (2)	132
$C18 - H18B \cdot \cdot \cdot Cg1^{v}$	0.98	3.01	3.976 (2)	149

Symmetry codes: (i) $x - \frac{1}{2}, -y + \frac{1}{2}, -z$; (ii) $x - \frac{1}{2}, y, -z + \frac{1}{2}$; (iii) $x - \frac{1}{2}, -y + \frac{3}{2}, -z + 1$; (iv) $x + \frac{1}{2}, -y + \frac{1}{2}, -z$; (v) $-x + \frac{3}{2}, -y + 1, z - \frac{1}{2}$.

Data collection: *COLLECT* (Nonius, 1998); cell refinement: *SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *DENZO* (Otwinowski & Minor, 1997) and *SCALEPACK*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009) and *Mercury* (Macrae *et al.*, 2006); software used to prepare material for publication: *OLEX2*.

SN acknowledges the Academy of Finland for financial support (No. 138850).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GO2088).

References

- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Lahtinen, M., Nättinen, K. & Nummelin, S. (2013a). Acta Cryst. E69, o383.
- Lahtinen, M., Nättinen, K. & Nummelin, S. (2013b). Acta Cryst. E69, 0460.
- Lahtinen, M., Nättinen, K. & Nummelin, S. (2013c). Acta Cryst. E69, o510– o511.
- Lahtinen, M. & Nummelin, S. (2013). Acta Cryst. E69, 0681.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
- Mekelburger, H.-B., Rissanen, K. & Vögtle, F. (1993). Chem. Ber. 126, 1161–1169.
- Nättinen, K. & Rissanen, K. (2003). Cryst. Growth Des. 3, 339-353.
- Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Nummelin, S., Skrifvars, M. & Rissanen, K. (2000). Top. Curr. Chem. 210, 1–67.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Percec, V., Holerca, M. N., Nummelin, S., Morrison, J. J., Glodde, M., Smidrkal, J., Peterca, M., Uchida, S., Balagurusamy, V. S. K., Sienkowska, M. J. & Heiney, P. A. (2006). *Chem. Eur. J.* **12**, 6216–6241.

- Percec, V., Peterca, M., Dulcey, A. E., Imam, M. R., Hudson, S. D., Nummelin, S., Adelman, P. & Heiney, P. A. (2008). J. Am. Chem. Soc. 130, 13079–13094.Percec, V., Smidrkal, J., Peterca, M., Mitchell, C. M., Nummelin, S., Dulcey, A.
- E., Sienkowska, M. J. & Heiney, P. A. (2007). *Chem. Eur. J.* **13**, 3989–4007.
- Percec, V., Wilson, D. A., Leowanawat, P., Wilson, C. J., Hughes, A. D., Kaucher, M. S., Hammer, D. A., Levine, D. H., Kim, A. J., Bates, F. S., Davis, K. P., Lodge, T. P., Klein, M. L., DeVane, R. H., Aqad, E., Rosen, B. R., Argintaru, A. O., Sienkowska, M. J., Rissanen, K., Nummelin, S. & Ropponen, J. (2010). Science, **328**, 1009–1014.
- Roche, C. & Percec, V. (2013). Isr. J. Chem. 53, 30-44.
- Ropponen, J., Nättinen, K., Lahtinen, M. & Rissanen, K. (2004a). CrystEngComm, 6, 559-566.
- Ropponen, J., Nummelin, S. & Rissanen, K. (2004b). Org. Lett. 6, 2495–2497.
- Ropponen, J., Tuuttila, T., Lahtinen, M., Nummelin, S. & Rissanen, K. (2004c). J. Polym. Sci. Part A Polym. Chem. 42, 5574–5586.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Acta Cryst. (2013). E69, o810-o811 [https://doi.org/10.1107/S1600536813010969]

3,4,5-Trimethoxy-4'-methylbiphenyl

Manu Lahtinen, Kalle Nättinen and Sami Nummelin

S1. Comment

3,4,5-Trimethoxy-4'-methyl biphenyl was synthesized in a gram quantities by employing a metal catalyzed coupling reaction between an aryl bromide and *p*-tolylboronic acid (Percec *et al.* 2006, 2007). The title compound (I) was used as a building block for the construction of amphiphilic AB₂– and AB₃-branched biphenyl dendrons (Percec *et al.* 2006) and hybrid (phenyl–biphenyl) dendrons (Percec *et al.* 2007). With few exceptions (*e.g.* Mekelburger *et al.* 1993; Nättinen & Rissanen 2003; Ropponen *et al.* 2004*a*) most dendrimers are liquid or amorphous. However, Percec-type dendrons and dendrimers have the ability to self-assemble in the solid state and in selected solvents into supramolecular architectures, such as hollow or non-hollow columns or spheres, which, in turn, self-organize into periodic lattices or quasi-periodic arrays in the solid state (Percec *et al.* 2006, 2007, 2008). In addition, biphenyls (Percec *et al.* 2006, 2007) are key building blocks on expanding the scope of libraries of amphiphilic Janus-dendrimers (Ropponen *et al.* 2004*b*; Percec *et al.* 2010) based on hydrophobic Percec-type building blocks and hydrophilic aliphatic and aromatic polyester building blocks. (Ropponen *et al.* 2004*b,c*; Nummelin *et al.* 2000). Amphiphilic Janus-dendrimers self-assemble into uniform liposome-like structures denoted as *dendrimersomes* (Percec *et al.* 2010) and other complex adaptable systems (Roche & Percec 2013) in water and selected biological buffers. Herein, we report the title compound 3,4,5-trimethoxy-4'-methyl biphenyl (I) as a contribution to a structural study of biphenyl derivatives (Lahtinen *et al.* 2013*a,b,c*; Lahtinen & Nummelin 2013).

Compound (I) has a dihedral angle between the aromatic rings of $33.4 (2)^{\circ}$, and is analogous to various biphenyl structures (Lahtinen *et al.* 2103*a*,*b*). The methoxy groups in 3- and 5-positions (Fig. 1) are co-planar with the [C(8)>C(19)] ring with the dihedral angles of 0.2 (2)° and 0.7 (2)°, respectively, whereas the methoxy group in the 4-position is tilted out from the plane with angle 113.32 (13)°. The molecules are packed in a zigzag formation along *b* - axis. This formation origates from antiparallel rows of molecules running through *c* -axis (Figures 2 and 3). Three weak CH···O hydrogen bonds occur with donor-acceptor d(D···A) bond distances of 3.382 (2), 3.465 (2), and 3.488 (2) Å, respectively (Fig. 4). Moreover, a network of weak CH··· π interactions is observable between methoxy groups and nearby phenyl groups having ring-centroid to methyl(C) distances of 3.692 (2) - 4.061 (2)Å.

S2. Experimental

A flame-dried Schlenk-tube was loaded with *p*-tolylboronic acid (3.3 g, 24.3 mmol), KF (2.8 g, 48.6 mmol), 3,4,5-trimethoxy bromobenzene (4.0 g, 16.2 mmol), $Pd(OAc)_2$ (36 mg, 0.16 mmol, 1.0 mol%) and 2-(di-*tert*-butylphosphino)biphenyl (97 mg, 0.33 mmol, 2.0 mol%). The tube was sealed with a teflon screwcap and evacuated/backfilled with argon (5x). Then dry, degassed THF (30 ml) was added *via* syringe and the reaction mixture was stirred at RT until the aryl bromide had been completely consumed as judged by TLC analysis. The mixture was diluted with ether, filtered, and washed with 1*M* NaOH. The aqueous layer was extracted with ether, the combined organic layer was washed with brine and dried with MgSO₄. After evaporation the pale yellow solid was chromatographed on silica gel using dichloromethane as eluent. Recrystallization from ethanol gave 3.9 g (93%) of the title compound (I) as a white crystalline solid. Crystals suitable for a single-crystal structure determination were obtained from a slow evaporation of the solvent.

S3. Refinement

Hydrogen atoms were calculated to their positions as riding atoms (C host) using isotropic displacement parameters that were fixed to be 1.2 or 1.5 times larger than those of the attached non-hydrogen atom.

Figure 1

The molecular structure and atomic numbering of the title compound showing 50% probability displacement ellipsoids.

Figure 2

Antiparallel rows of molecules viewed along *a*-axis.

Figure 3

The zigzag arrangement of the molecules viewed along *c*-axis.

CH···O and CH··· π interactions shown by blue and black contact lines, respectively.

3,4,5-Trimethoxy-4'-methylbiphenyl

Crystal data

C₁₆H₁₈O₃ $M_r = 258.30$ Orthorhombic, *Pbca* a = 8.4669 (2) Å b = 15.0636 (3) Å c = 21.4516 (4) Å V = 2735.98 (10) Å³ Z = 8F(000) = 1104

Data collection

Bruker–Nonius KappaCCD diffractometer equipped with an APEXII detector Radiation source: sealed tube Graphite monochromator Detector resolution: 8 pixels mm⁻¹ ω and φ scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.043$ $wR(F^2) = 0.117$ S = 1.03 $D_x = 1.254 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71069 \text{ Å}$ Cell parameters from 9816 reflections $\theta = 2.9-25.7^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 173 KPlate, colourless $0.3 \times 0.25 \times 0.2 \text{ mm}$

 $T_{\min} = 0.975, T_{\max} = 0.983$ 17856 measured reflections 2589 independent reflections 1984 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.052$ $\theta_{\text{max}} = 25.7^{\circ}, \theta_{\text{min}} = 2.9^{\circ}$ $h = -10 \rightarrow 10$ $k = -16 \rightarrow 18$ $l = -25 \rightarrow 26$

2589 reflections 173 parameters 0 restraints 0 constraints

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	-0.5594 (2)	-0.00288 (14)	0.14685 (10)	0.0423 (5)
H1A	-0.6400	0.0432	0.1521	0.063*
H1B	-0.5619	-0.0432	0.1827	0.063*
H1C	-0.5807	-0.0364	0.1086	0.063*
C2	-0.3984 (2)	0.03996 (12)	0.14242 (9)	0.0324 (4)
C3	-0.3444 (2)	0.07517 (12)	0.08647 (9)	0.0333 (4)
Н3	-0.4095	0.0715	0.0505	0.040*
C4	-0.1974 (2)	0.11563 (11)	0.08190 (8)	0.0305 (4)
H4	-0.1630	0.1387	0.0430	0.037*
C5	-0.10199 (19)	0.12239 (10)	0.13322 (7)	0.0230 (4)
C6	-0.1534 (2)	0.08818 (12)	0.18971 (8)	0.0284 (4)
H6	-0.0881	0.0929	0.2256	0.034*
C7	-0.2995 (2)	0.04713 (11)	0.19405 (8)	0.0311 (4)
H7	-0.3327	0.0235	0.2329	0.037*
C8	0.0553 (2)	0.17020 (11)	0.12955 (8)	0.0245 (4)
C9	0.1441 (2)	0.16780 (11)	0.07478 (7)	0.0248 (4)
H9	0.1084	0.1337	0.0403	0.030*
C10	0.28466 (19)	0.21507 (11)	0.07052 (7)	0.0229 (4)
C12	0.3296 (2)	0.16804 (13)	-0.03432 (8)	0.0356 (5)
H12A	0.4071	0.1748	-0.0679	0.053*
H12B	0.2268	0.1904	-0.0483	0.053*
H12C	0.3201	0.1052	-0.0232	0.053*
C13	0.33806 (19)	0.26545 (11)	0.12094 (7)	0.0233 (4)
C15	0.4574 (2)	0.40464 (12)	0.10715 (9)	0.0347 (4)
H15A	0.5609	0.4335	0.1040	0.052*
H15B	0.3993	0.4294	0.1426	0.052*
H15C	0.3977	0.4150	0.0687	0.052*
C16	0.2514 (2)	0.26602 (11)	0.17617 (7)	0.0244 (4)
C18	0.2258 (2)	0.31828 (12)	0.28086 (7)	0.0294 (4)
H18A	0.2816	0.3556	0.3112	0.044*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H18B	0.2148	0.2581	0.2976	0.044*	
H18C	0.1209	0.3433	0.2728	0.044*	
C19	0.1099 (2)	0.21951 (11)	0.18045 (8)	0.0251 (4)	
H19	0.0502	0.2212	0.2179	0.030*	
011	0.38021 (14)	0.21736 (8)	0.01893 (5)	0.0286 (3)	
014	0.47847 (13)	0.31138 (8)	0.11607 (5)	0.0270 (3)	
O17	0.31410 (14)	0.31530 (8)	0.22369 (5)	0.0309 (3)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0279 (10)	0.0437 (12)	0.0554 (13)	-0.0092 (9)	0.0020 (9)	-0.0026 (10)
C2	0.0239 (9)	0.0260 (9)	0.0473 (11)	-0.0003 (8)	0.0001 (8)	-0.0004 (8)
C3	0.0298 (10)	0.0290 (10)	0.0413 (10)	-0.0032 (8)	-0.0080 (8)	0.0006 (8)
C4	0.0309 (10)	0.0260 (9)	0.0347 (9)	-0.0022 (8)	0.0003 (8)	0.0020 (8)
C5	0.0222 (9)	0.0167 (8)	0.0302 (8)	0.0055 (7)	0.0031 (7)	0.0009 (6)
C6	0.0242 (9)	0.0265 (9)	0.0346 (9)	-0.0002 (7)	-0.0020 (7)	-0.0013 (7)
C7	0.0294 (10)	0.0273 (10)	0.0366 (10)	-0.0011 (8)	0.0050 (8)	0.0009 (8)
C8	0.0201 (9)	0.0225 (8)	0.0307 (9)	0.0008 (7)	-0.0023 (7)	0.0020 (7)
C9	0.0251 (9)	0.0242 (9)	0.0252 (8)	-0.0010 (7)	-0.0038 (7)	-0.0020 (7)
C10	0.0218 (9)	0.0241 (9)	0.0229 (8)	0.0025 (7)	0.0009 (6)	0.0027 (6)
C12	0.0410 (11)	0.0395 (11)	0.0262 (9)	-0.0062 (9)	0.0034 (8)	-0.0062 (8)
C13	0.0173 (8)	0.0243 (9)	0.0283 (9)	0.0003 (7)	-0.0006 (6)	0.0013 (7)
C15	0.0336 (11)	0.0278 (10)	0.0426 (11)	-0.0050 (8)	0.0047 (9)	-0.0012 (8)
C16	0.0213 (8)	0.0259 (9)	0.0259 (8)	0.0011 (7)	-0.0029 (7)	-0.0034 (7)
C18	0.0287 (10)	0.0335 (10)	0.0259 (9)	-0.0017 (8)	0.0027 (7)	-0.0037 (7)
C19	0.0219 (9)	0.0272 (9)	0.0261 (9)	0.0001 (7)	0.0018 (7)	0.0002 (7)
011	0.0276 (7)	0.0353 (7)	0.0229 (6)	-0.0037 (5)	0.0021 (5)	-0.0031 (5)
O14	0.0191 (6)	0.0283 (7)	0.0335 (7)	-0.0037 (5)	0.0015 (5)	-0.0025 (5)
017	0.0247 (6)	0.0421 (8)	0.0259 (6)	-0.0074 (6)	0.0028 (5)	-0.0094 (5)

Geometric parameters (Å, °)

C1—H1A	0.9800	C10—C13	1.396 (2)
C1—H1B	0.9800	C10—O11	1.3713 (19)
C1—H1C	0.9800	C12—H12A	0.9800
C1—C2	1.511 (3)	C12—H12B	0.9800
C2—C3	1.389 (3)	C12—H12C	0.9800
C2—C7	1.393 (3)	C12—O11	1.429 (2)
С3—Н3	0.9500	C13—C16	1.394 (2)
C3—C4	1.389 (3)	C13—O14	1.3795 (19)
C4—H4	0.9500	C15—H15A	0.9800
C4—C5	1.370 (2)	C15—H15B	0.9800
C5—C6	1.387 (2)	C15—H15C	0.9800
C5—C8	1.516 (2)	C15—O14	1.429 (2)
С6—Н6	0.9500	C16—C19	1.391 (2)
С6—С7	1.386 (3)	C16—O17	1.3683 (19)
С7—Н7	0.9500	C18—H18A	0.9800

C8—C9	1.396 (2)	C18—H18B	0.9800
C8—C19	1.399 (2)	C18—H18C	0.9800
С9—Н9	0.9500	C18-017	14370(19)
	1,280 (2)		0.0500
C9—C10	1.389 (2)	С19—Н19	0.9500
H1A—C1—H1B	109 5	O11-C10-C13	114 86 (14)
	100.5	$H_{12A} = C_{12} = H_{12B}$	100.5
	109.5		109.5
HIB-CI-HIC	109.5	HI2A—CI2—HI2C	109.5
C2—C1—HIA	109.5	H12B—C12—H12C	109.5
C2—C1—H1B	109.5	O11—C12—H12A	109.5
C2C1H1C	109.5	O11—C12—H12B	109.5
C3—C2—C1	120.94 (17)	O11—C12—H12C	109.5
$C_{3}-C_{2}-C_{7}$	117 35 (16)	C16—C13—C10	119 42 (15)
C_{7} C_{2} C_{1}	121 70 (17)	O14 $C13$ $C10$	119.12(13) 110.53(14)
$C_1 - C_2 - C_1$	121.70 (17)	014 012 016	119.55(14)
C2—C3—H3	119.2	014—013—016	121.01 (14)
C4—C3—C2	121.55 (17)	H15A—C15—H15B	109.5
С4—С3—Н3	119.2	H15A—C15—H15C	109.5
С3—С4—Н4	119.9	H15B—C15—H15C	109.5
C5—C4—C3	120.30 (17)	O14—C15—H15A	109.5
C5—C4—H4	119.9	O14—C15—H15B	109 5
C_{4} C_{5} C_{6}	110.32 (16)	014 $C15$ $H15C$	109.5
$C_{4} - C_{5} - C_{0}$	120.90 (15)		109.5
C4—C5—C8	120.80 (15)	019-016-013	120.44 (15)
C6—C5—C8	119.83 (15)	O17—C16—C13	115.61 (15)
С5—С6—Н6	119.9	O17—C16—C19	123.95 (15)
C7—C6—C5	120.29 (16)	H18A—C18—H18B	109.5
С7—С6—Н6	119.9	H18A—C18—H18C	109.5
С2—С7—Н7	119.4	H18B—C18—H18C	109 5
C_{6} C_{7} C_{2}	121 10 (17)	017 $C18$ $H18A$	109.5
C6-C7-U2	121.19 (17)	017 - 018 - 1118A	109.5
Co-C/H/	119.4		109.5
C9—C8—C5	120.31 (14)	O17—C18—H18C	109.5
C9—C8—C19	119.55 (15)	C8—C19—H19	120.0
C19—C8—C5	120.11 (15)	C16—C19—C8	120.02 (15)
С8—С9—Н9	119.9	C16—C19—H19	120.0
C10—C9—C8	120.22 (15)	C10-011-C12	117.08 (13)
C10-C9-H9	119.9	$C_{13} - O_{14} - C_{15}$	113 32 (13)
C_{0} C_{10} C_{12}	120.22 (15)	$C_{16}^{16} O_{17}^{17} C_{18}^{18}$	115.52(13) 116.90(12)
C9-C10-C13	120.32(13)	01/01/	110.00 (13)
011-010-09	124.82 (14)		
C1 - C2 - C3 - C4	179 25 (17)	C9—C8—C19—C16	0.3(2)
C1 $C2$ $C7$ $C6$	-178.67(17)	C_{0} C_{10} C_{13} C_{16}	1.7(2)
$C_1 - C_2 - C_7 - C_0$	178.07(17)	$C_{2} = C_{10} = C_{13} = C_{10}$	1.7(2)
12 - 13 - 14 - 15	-0.5 (3)	C_{9} C_{10} C_{13} -0.014	1/9.48 (14)
C3—C2—C7—C6	0.3 (3)	C9—C10—O11—C12	0.7 (2)
C3—C4—C5—C6	0.2 (3)	C10-C13-C16-C19	-2.3 (2)
C3—C4—C5—C8	-177.12 (16)	C10-C13-C16-O17	178.43 (15)
C4—C5—C6—C7	0.4 (3)	C10-C13-O14-C15	104.14 (17)
C4—C5—C8—C9	-33.4 (2)	C13—C10—O11—C12	-179.01 (15)
C4—C5—C8—C19	144 48 (17)	C13—C16—C19—C8	14(3)
C_{5} C_{6} C_{7} C_{2}	-0.6(3)	C_{13} C_{16} C_{17} C_{18}	178.00(15)
-0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0	0.0(3)	013 - 010 - 017 - 010	1/0.27(12)

	17(07(15)		5 0.12 (10)
C5-C8-C9-C10	1/6.9/(15)	C16-C13-O14-C15	-/8.13 (19)
C5—C8—C19—C16	-177.60 (15)	C19—C8—C9—C10	-0.9 (2)
C6—C5—C8—C9	149.32 (16)	C19—C16—O17—C18	-0.2 (2)
C6—C5—C8—C19	-32.8 (2)	O11—C10—C13—C16	-178.55 (14)
C7—C2—C3—C4	0.3 (3)	O11—C10—C13—O14	-0.8 (2)
C8—C5—C6—C7	177.71 (15)	O14—C13—C16—C19	179.92 (15)
C8—C9—C10—C13	-0.1 (2)	O14—C13—C16—O17	0.7 (2)
C8—C9—C10—O11	-179.81 (15)	O17—C16—C19—C8	-179.47 (15)

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C2–C7 and C8–C10/C13/C16/C19 aromatic rings, respectively.

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A	
C4—H4…O11 ⁱ	0.95	2.57	3.382 (2)	144	
C12—H12 <i>B</i> ···O14 ⁱ	0.98	2.56	3.465 (2)	154	
C18—H18C…O17 ⁱⁱ	0.98	2.63	3.488 (2)	146	
C15—H15 <i>A</i> ··· <i>Cg</i> 1 ⁱⁱⁱ	0.98	2.84	3.692 (2)	139	
C12—H12 A ··· $Cg2^{iv}$	0.98	3.19	4.061 (2)	132	
C18—H18 B ···· $Cg1^{v}$	0.98	3.01	3.976 (2)	149	

Symmetry codes: (i) x-1/2, -y+1/2, -z; (ii) x-1/2, y, -z+1/2; (iii) x-1/2, -y+3/2, -z+1; (iv) x+1/2, -y+1/2, -z; (v) -x+3/2, -y+1, z-1/2.