$\gamma = 81.044 \ (9)^{\circ}$

Z = 4

V = 2120.6 (4) Å³

Mo $K\alpha$ radiation

 $0.50 \times 0.40 \times 0.30$ mm

17797 measured reflections 7458 independent reflections

4585 reflections with $I > 2\sigma(I)$

 $\mu = 0.08 \text{ mm}^{-1}$

T = 295 K

 $R_{\rm int}=0.034$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(2*E*)-1-[5-Methyl-1-(4-methylphenyl)-1*H*-1,2,3-triazol-4-yl]-3-[4-(piperidin-1-yl)phenyl]prop-2-en-1-one¹

Bakr F. Abdel-Wahab,^a Ehab Abdel-Latif,^a Seik Weng Ng^{b,c} and Edward R. T. Tiekink^b*

^aApplied Organic Chemistry Department, National Research Centre, Dokki, 12622 Giza, Egypt, ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and ^cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia Correspondence e-mail: edward.tiekink@gmail.com

Received 25 March 2013; accepted 25 March 2013

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.004 Å; R factor = 0.058; wR factor = 0.174; data-to-parameter ratio = 14.1.

Two independent molecules comprise the asymmetric unit of the title compound, C₂₄H₂₆N₄O. The major difference between them is found in the relative orientation of the triazole-bound *p*-tolyl group which have the opposite sense of twist [N–N– C-C torsion angles = 55.8 (3) and -49.8 (3)°]. The chalcone residue is almost coplanar with the triazole ring [N-C-C-O and C-C-C-C torsion angles = -178.9 (2) and -178.5 (2)°, respectively; cf. 177.9 (3) and 168.5 (3) $^{\circ}$, respectively, in the second molecule]. The conformation about each C=C double bond is E and in each case the triazole methyl group is syn to the carbonyl O atom. In the crystal, molecules aggregate into layers parallel to (113). The first independent molecule selfassociates into a layer via C-H···O and C-H··· π interactions. By contrast, layers comprising the second independent molecule do not feature specific interactions between molecules. The global crystal packing comprises alternating layers.

Related literature

For the biological activities of triazole-based chalcone derivatives, see: Abdel-Wahab *et al.* (2012); Guantai *et al.* (2010). For a related structure, see: Abdel-Wahab *et al.* (2013).

Experimental

Crystal data

 $\begin{array}{l} C_{24}H_{26}N_4O\\ M_r = 386.49\\ \text{Triclinic, } P\overline{1}\\ a = 12.9514 \ (16) \ \mathring{A}\\ b = 13.1000 \ (13) \ \mathring{A}\\ c = 13.3735 \ (14) \ \mathring{A}\\ a = 77.666 \ (9)^\circ\\ \beta = 74.123 \ (10)^\circ \end{array}$

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector Absorption correction: multi-scan (*CrysAlis PRO*; Agilent, 2011) $T_{min} = 0.955, T_{max} = 1.000$

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.058 & 528 \text{ parameters} \\ wR(F^2) &= 0.174 & \text{H-atom parameters constrained} \\ S &= 1.03 & \Delta\rho_{\text{max}} = 0.19 \text{ e } \text{\AA}^{-3} \\ 7458 \text{ reflections} & \Delta\rho_{\text{min}} = -0.19 \text{ e } \text{\AA}^{-3} \end{split}$$

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C14-C19 benzene

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C6-H6···O1 ⁱ	0.93	2.51	3.415 (3)	165
$C3-H3\cdots Cg1^{ii}$	0.93	2.73	3.469 (3)	137

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) x + 1, y, z.

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), Qmol (Gans & Shalloway, 2001) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

We thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM·C/HIR-MOHE/SC/03).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB7062).

References

Abdel-Wahab, B. F., Abdel-Latif, E., Mohamed, H. A. & Awad, G. E. A. (2012). *Eur. J. Med. Chem.* **52**, 263–268.

¹ Additional correspondence author, e-mail: bakrfatehy@yahoo.com.

Abdel-Wahab, B. F., Mohamed, H. A., Ng, S. W. & Tiekink, E. R. T. (2013). Acta Cryst. E69, 0638.

Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.

Brandenburg, K. (2006). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. Farrugia, L. J. (2012). J. Appl. Cryst. **45**, 849–854.

Gans, J. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557-559.

Guantai, E. M., Ncokazi, K., Egan, T. J., Gut, J., Rosenthal, P. J., Smith, P. J. & Chibale, K. (2010). *Biogram Mad. Cham.* 18, 8243-8256

Chibale, K. (2010). *Bioorg. Med. Chem.* **1**8, 8243-8256. Sheldrick, G. M. (2008). *Acta Cryst.* A**64**, 112–122.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

supporting information

Acta Cryst. (2013). E69, o639–o640 [https://doi.org/10.1107/S1600536813008258] (2E)-1-[5-Methyl-1-(4-methylphenyl)-1H-1,2,3-triazol-4-yl]-3-[4-(piperidin-1yl)phenyl]prop-2-en-1-one

Bakr F. Abdel-Wahab, Ehab Abdel-Latif, Seik Weng Ng and Edward R. T. Tiekink

S1. Comment

Triazole-based chalcone derivatives exhibit a range of biological activities (Abdel-Wahab *et al.*, 2012; Guantai *et al.*, 2010) and in this connection, the title compound was synthesized and characterized crystallographically.

In (I), Fig. 1, two independent molecules comprise the asymmetric unit. As illustrated in the overlay diagram, Fig. 2, variations exist in the relative orientations of the terminal substituents. In the central region of the molecule, the triazolebound *p*-tolyl residue is twisted with respect to the five-membered ring, forming a dihedral angle of 56.88 (14)° [the comparable angle for the second independent molecule is $51.92 (16)^{\circ}$]. By contrast, the chalcone residue is co-planar as seen in the values of the N3—C11—C12—O1 and C11—C12—C13—C14 torsion angles of -178.9 (2) and -178.5 (2)°, respectively [*cf.* 177.9 (3) and 168.5 (3)°]. The conformation about each of C12=C13 and C36=C37 double bonds [1.329 (4) and 1.330 (4) Å] is *E*, and in each case the triazole-methyl is *syn* to the carbonyl-O atom. In these respects, the structure of (I) resembles closely that of a recently described derivative (Abdel-Wahab *et al.*, 2013). The major difference between the two molecules in (I) is found in the relative orientation of the triazole-bound *p*-tolyl groups. Although having similar dihedral angles, see above, the orientations of the rings have the opposite sense as seen in the value of the N2— N1—C1—C2 torsion angle of 55.8 (3)° *cf.* -49.8 (3)° for N6—N5—C25—C26. Each of the piperidinyl rings has a chair conformation.

In the crystal structure, centrosymmetrically related O1-containing molecules associate into dimers *via* C—H···O interactions and these are connected into a supramolecular layer, parallel to (-1 1 3), *via* C—H··· π interactions, Fig. 3 and Table 1. The O2-containing molecules also assemble into a layer but without specific interactions between them. The global crystal packing comprises alternating layers of O1- and O2-containing layers with no specific interactions between them, Fig. 4.

S2. Experimental

The title compound was prepared following a reported method (Abdel-Wahab *et al.*, 2012). Yellow prisms were obtained from its DMF solution by slow evaporation at room temperature.

S3. Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H = 0.93 to 0.97 Å) and were included in the refinement in the riding model approximation, with $U_{iso}(H) = 1.2-1.5U_{equiv}(C)$.

Figure 1

The molecular structure of (I) showing displacement ellipsoids at the 35% probability level.

Figure 2

Overlay diagram of the two independent molecules comprising the asymmetric unit of (I). The O1- (red image) and O2- containing (blue) molecules have been superimposed so that the five-membered rings are coincident.

Figure 3

A view of the supramolecular layer in (I) comprising O1-containing molecules only, and sustained by C—H···O and C— H··· π interactions, shown as orange and purple dashed lines, respectively.

Figure 4

A view of the crystal packing in projection down the *a* axis, highlighting the alternating layers of O1- and O2-containing molecules. The C—H···O and C—H··· π interactions are shown as orange and purple dashed lines, respectively.

(2E) - 1 - [5 - Methyl - 1 - (4 - methylphenyl) - 1H - 1, 2, 3 - triazol - 4 - yl] - 3 - [4 - (piperidin - 1 - yl)phenyl] prop - 2 - en - 1 - one - 2 - en - 2

Crystal data	
$\begin{aligned} C_{24}H_{26}N_4O \\ M_r &= 386.49 \\ \text{Triclinic, } P\overline{1} \\ \text{Hall symbol: -P 1} \\ a &= 12.9514 (16) \text{ Å} \\ b &= 13.1000 (13) \text{ Å} \\ c &= 13.3735 (14) \text{ Å} \\ a &= 77.666 (9)^{\circ} \\ \beta &= 74.123 (10)^{\circ} \\ \gamma &= 81.044 (9)^{\circ} \\ V &= 2120.6 (4) \text{ Å}^3 \end{aligned}$	Z = 4 F(000) = 824 $D_x = 1.211 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3652 reflections $\theta = 3.0-27.5^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ T = 295 K Prism, yellow $0.50 \times 0.40 \times 0.30 \text{ mm}$
Data collection	
Agilent SuperNova Dual diffractometer with an Atlas detector Radiation source: SuperNova (Mo) X-ray Source Mirror monochromator Detector resolution: 10.4041 pixels mm ⁻¹ ω scan	Absorption correction: multi-scan (<i>CrysAlis PRO</i> ; Agilent, 2011) $T_{min} = 0.955$, $T_{max} = 1.000$ 17797 measured reflections 7458 independent reflections 4585 reflections with $I > 2\sigma(I)$ $R_{int} = 0.034$

$\theta_{\text{max}} = 25.0^{\circ}, \theta_{\text{min}} = 3.0^{\circ}$	$k = -15 \rightarrow 15$
$h = -14 \rightarrow 15$	$l = -15 \rightarrow 15$
Refinement	
Refinement on F^2	Hydrogen site location: inferred from
$R[F^2 > 2\sigma(F^2)] = 0.058$	H-atom parameters constrained
$wR(F^2) = 0.174$	$w = 1/[\sigma^2(F_o^2) + (0.0637P)^2 + 0.5896P]$
<i>S</i> = 1.03	where $P = (F_0^2 + 2F_c^2)/3$
7458 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
528 parameters	$\Delta \rho_{\rm max} = 0.19 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.19 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(2 θ)] ^{-1/4}
Secondary atom site location: difference Fourier	Extinction coefficient: 0.0048 (8)
map	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}^*/U_{\rm eq}$
01	0.44643 (15)	0.32264 (15)	0.48227 (14)	0.0724 (5)
O2	0.04267 (17)	0.20058 (17)	0.10647 (15)	0.0886 (6)
N1	0.64525 (16)	0.39564 (16)	0.65410 (15)	0.0563 (5)
N2	0.5765 (2)	0.3624 (2)	0.74989 (16)	0.0758 (7)
N3	0.49501 (19)	0.33089 (19)	0.73114 (16)	0.0716 (6)
N4	-0.14649 (16)	0.10222 (17)	0.86378 (15)	0.0592 (6)
N5	-0.14790 (18)	0.11974 (17)	0.41775 (16)	0.0632 (6)
N6	-0.0748 (2)	0.1474 (2)	0.46206 (18)	0.0782 (7)
N7	0.0042 (2)	0.1822 (2)	0.38478 (18)	0.0754 (7)
N8	0.6530 (2)	0.3801 (2)	0.09660 (18)	0.0793 (7)
C1	0.74396 (19)	0.43353 (19)	0.65210 (18)	0.0533 (6)
C2	0.8143 (2)	0.3704 (2)	0.7049 (2)	0.0764 (8)
H2	0.7979	0.3038	0.7416	0.092*
C3	0.9086 (2)	0.4059 (2)	0.7033 (3)	0.0794 (9)
H3	0.9556	0.3628	0.7397	0.095*
C4	0.9361 (2)	0.5039 (2)	0.6493 (2)	0.0625 (7)
C5	0.8635 (2)	0.5658 (2)	0.5981 (2)	0.0708 (8)
Н5	0.8796	0.6324	0.5613	0.085*
C6	0.7680 (2)	0.5322 (2)	0.5997 (2)	0.0651 (7)
H6	0.7198	0.5761	0.5653	0.078*
C7	1.0401 (2)	0.5407 (3)	0.6491 (3)	0.0925 (10)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H7A	1.0950	0.4823	0.6486	0.139*
H7B	1.0304	0.5702	0.7113	0.139*
H7C	1.0614	0.5932	0.5874	0.139*
C8	0.6648 (2)	0.4071 (2)	0.46175 (19)	0.0723 (8)
H8A	0.6801	0.4791	0.4437	0.108*
H8B	0.6211	0.3954	0.4185	0.108*
H8C	0.7312	0.3620	0.4500	0.108*
С9	0.60606 (19)	0.38366 (19)	0.57457 (17)	0.0530(6)
C10	0.5096 (2)	0.34268 (19)	0.62391 (18)	0.0561 (6)
C11	0.4303(2)	0.3127 (2)	0.5790 (2)	0.0582(7)
C12	0.3326(2)	0.2737(2)	0.6525(2)	0.0613(7)
H12	0.3218	0.2745	0.7240	0.074*
C13	0.2582(2)	0.27702(19)	0.6219(2)	0.0585(7)
H13	0.2728	0.2359	0.5501	0.070*
C14	0.15793 (19)	0.19881 (18)	0.68588(18)	0.0531 (6)
C15	0.13773(17)	0.19481 (19)	0.00500(10) 0.79543(19)	0.0551(0)
H15	0.1676	0.2154	0.8299	0.0570(0)
C16	0.1070	0.2134 0.16163 (10)	0.8233	0.009
U16	0.0239 (2)	0.16105 (19)	0.0256	0.0370(0)
C17	-0.04406(10)	0.1009 0.12926 (19)	0.9250	0.009°
C17	-0.04490(19)	0.12850(18) 0.12060(10)	0.80309(17)	0.0313(0)
	-0.0093(2)	0.15009 (19)	0.09007 (18)	0.0371(0)
HI8 C10	-0.0528	0.1082	0.0022	0.069°
C19	0.0881 (2)	0.16548 (19)	0.63936 (19)	0.0586(/)
HI9	0.1082	0.1668	0.5668	0.070*
C20	-0.1592 (2)	0.0469 (3)	0.97295 (19)	0.0757 (8)
H20A	-0.1140	0.0745	1.0057	0.091*
H20B	-0.1349	-0.0270	0.9730	0.091*
C21	-0.2732 (2)	0.0575 (3)	1.0365 (2)	0.0845 (9)
H21A	-0.2943	0.1302	1.0449	0.101*
H21B	-0.2782	0.0151	1.1063	0.101*
C22	-0.3501 (3)	0.0239 (3)	0.9860 (2)	0.0910 (10)
H22A	-0.4239	0.0395	1.0252	0.109*
H22B	-0.3367	-0.0513	0.9872	0.109*
C23	-0.3339 (2)	0.0817 (3)	0.8733 (2)	0.0828 (9)
H23A	-0.3780	0.0547	0.8388	0.099*
H23B	-0.3583	0.1556	0.8734	0.099*
C24	-0.2181 (2)	0.0711 (2)	0.8111 (2)	0.0673 (7)
H24A	-0.1966	-0.0014	0.8020	0.081*
H24B	-0.2112	0.1145	0.7416	0.081*
C25	-0.2421 (2)	0.0763 (2)	0.4871 (2)	0.0623 (7)
C26	-0.2301 (2)	-0.0049 (2)	0.5683 (2)	0.0728 (8)
H26	-0.1617	-0.0335	0.5759	0.087*
C27	-0.3209 (3)	-0.0434 (3)	0.6385 (2)	0.0871 (9)
H27	-0.3128	-0.0983	0.6937	0.105*
C28	-0.4233 (3)	-0.0031 (3)	0.6294 (2)	0.0863 (9)
C29	-0.4326 (3)	0.0774 (3)	0.5458 (3)	0.0850 (9)
H29	-0.5009	0.1046	0.5369	0.102*
C30	-0.3432 (2)	0.1182 (2)	0.4754 (2)	0.0743 (8)
	× /	~ /	× /	~ /

H30	-0.3510	0.1735	0.4205	0.089*
C31	-0.5221 (3)	-0.0425 (4)	0.7095 (3)	0.1369 (17)
H31A	-0.5179	-0.0379	0.7790	0.205*
H31B	-0.5258	-0.1143	0.7063	0.205*
H31C	-0.5854	-0.0003	0.6943	0.205*
C32	-0.1717(2)	0.1099 (2)	0.2409 (2)	0.0773 (8)
H32A	-0.2068	0.0477	0.2749	0.116*
H32B	-0.1215	0.0977	0.1759	0.116*
H32C	-0.2248	0.1670	0.2261	0.116*
C33	-0.1133 (2)	0.1368 (2)	0.3113 (2)	0.0603 (7)
C34	-0.0161 (2)	0.1772 (2)	0.2913 (2)	0.0625 (7)
C35	0.0615 (2)	0.2088 (2)	0.1895 (2)	0.0678 (7)
C36	0.1605 (2)	0.2454 (2)	0.1946 (2)	0.0746 (8)
H36	0.1645	0.2592	0.2588	0.089*
C37	0.2453 (3)	0.2599 (2)	0.1124 (2)	0.0728 (8)
H37	0.2372	0.2484	0.0488	0.087*
C38	0.3481 (2)	0.2913 (2)	0.1093 (2)	0.0696 (8)
C39	0.3716 (3)	0.3167 (3)	0.1962 (2)	0.0944 (11)
H39	0.3183	0.3134	0.2592	0.113*
C40	0.4691 (3)	0.3462 (3)	0.1931 (2)	0.0935 (10)
H40	0.4808	0.3613	0.2537	0.112*
C41	0.5526 (2)	0.3539 (2)	0.0993 (2)	0.0685 (8)
C42	0.5291 (3)	0.3297 (2)	0.0129 (2)	0.0785 (9)
H42	0.5815	0.3347	-0.0508	0.094*
C43	0.4311 (3)	0.2986 (2)	0.0178 (2)	0.0778 (9)
H43	0.4200	0.2819	-0.0424	0.093*
C44	0.6601 (3)	0.4424 (3)	0.1705 (3)	0.0968 (10)
H44A	0.6182	0.4131	0.2399	0.116*
H44B	0.6268	0.5128	0.1509	0.116*
C45	0.7688 (3)	0.4503 (4)	0.1784 (3)	0.1224 (14)
H45A	0.7938	0.3847	0.2185	0.147*
H45B	0.7651	0.5054	0.2179	0.147*
C46	0.8496 (3)	0.4727 (3)	0.0757 (3)	0.1112 (12)
H46A	0.8376	0.5460	0.0440	0.133*
H46B	0.9215	0.4602	0.0874	0.133*
C47	0.8415 (3)	0.4057 (4)	0.0032 (3)	0.1300 (15)
H47A	0.8833	0.4328	-0.0671	0.156*
H47B	0.8746	0.3357	0.0249	0.156*
C48	0.7316 (3)	0.3969 (3)	-0.0033 (3)	0.1035 (12)
H48A	0.7073	0.4607	-0.0463	0.124*
H48B	0.7346	0.3392	-0.0393	0.124*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0622 (12)	0.0989 (14)	0.0584 (11)	-0.0187 (10)	-0.0194 (9)	-0.0062 (10)
O2	0.0927 (16)	0.1176 (17)	0.0638 (12)	-0.0174 (12)	-0.0295 (11)	-0.0160 (11)
N1	0.0479 (13)	0.0748 (14)	0.0471 (11)	-0.0125 (10)	-0.0108 (10)	-0.0096 (10)

Acta Cryst. (2013). E69, 0639–0640

N2	0.0639 (16)	0.1163 (19)	0.0481 (12)	-0.0275 (14)	-0.0069 (11)	-0.0129 (12)
N3	0.0569 (15)	0.1061 (18)	0.0527 (13)	-0.0247 (13)	-0.0074 (11)	-0.0127 (12)
N4	0.0518 (13)	0.0839 (14)	0.0482 (11)	-0.0194 (11)	-0.0175 (10)	-0.0100 (10)
N5	0.0628 (15)	0.0776 (14)	0.0587 (13)	-0.0101 (11)	-0.0239(11)	-0.0189 (11)
N6	0.0723 (17)	0.1110 (19)	0.0635 (14)	-0.0238(14)	-0.0235 (13)	-0.0232(13)
N7	0.0757 (17)	0.0997 (18)	0.0625 (14)	-0.0223(13)	-0.0232(13)	-0.0221 (13)
N8	0.0688 (18)	0.1040 (19)	0.0600 (14)	-0.0185 (14)	0.0037 (12)	-0.0223 (13)
C1	0.0469 (15)	0.0683 (16)	0.0485 (13)	-0.0071 (12)	-0.0140(11)	-0.0153 (12)
C2	0.067 (2)	0.0680 (17)	0.098 (2)	-0.0094 (14)	-0.0361 (17)	-0.0012(15)
C3	0.064 (2)	0.079 (2)	0.106 (2)	0.0007 (15)	-0.0438(17)	-0.0145 (17)
C4	0.0486 (16)	0.0721 (17)	0.0746 (17)	-0.0040(13)	-0.0175(13)	-0.0288(14)
C5	0.0681 (19)	0.0701(17)	0.0785 (18)	-0.0174(14)	-0.0256(15)	-0.0055(14)
C6	0.0594(18)	0.0719(17)	0.0664 (16)	-0.0079(13)	-0.0261(14)	-0.0033(14)
C7	0.065 (2)	0.106(2)	0.123 (3)	-0.0109(17)	-0.0322(19)	-0.045(2)
C8	0.0708(19)	0.098(2)	0.0507(15)	-0.0301(16)	-0.0099(13)	-0.0102(14)
C9	0.0489(15)	0.050(2)	0.0207(12) 0.0455(13)	-0.0068(12)	-0.0126(11)	-0.0009(11)
C10	0.0470(15)	0.0001(10)	0.0492(14)	-0.0074(12)	-0.0093(12)	-0.0087(11)
C11	0.0496(16)	0.0676 (16)	0.0152(11) 0.0551(15)	-0.0038(12)	-0.0129(12)	-0.0078(12)
C12	0.0490(10)	0.0070(10) 0.0779(17)	0.0591(15) 0.0584(15)	-0.0111(13)	-0.0115(13)	-0.0098(12)
C12	0.0409(10) 0.0519(16)	0.0775(17) 0.0645(15)	0.0584(15)	-0.0072(12)	-0.0136(12)	-0.0092(12)
C14	0.0319(10) 0.0478(15)	0.0045(15) 0.0574(14)	0.0500(14) 0.0547(14)	-0.0057(11)	-0.0149(12)	-0.0092(12)
C15	0.0170(15) 0.0520(16)	0.0377(11)	0.0517(11) 0.0551(14)	-0.0122(12)	-0.0230(12)	-0.0000(11)
C16	0.0520(10) 0.0545(16)	0.0766(17)	0.0351(14) 0.0461(13)	-0.0122(12)	-0.0179(12)	-0.0098(12)
C17	0.0343(10) 0.0494(15)	0.0700(17) 0.0590(14)	0.0401(13) 0.0490(13)	-0.0026(11)	-0.0172(12)	-0.0078(11)
C17	0.0474(13) 0.0572(17)	0.0590(14)	0.0490(13) 0.0523(14)	-0.0158(13)	-0.0197(12)	-0.0127(12)
C10	0.0572(17)	0.0093(10)	0.0323(14) 0.0470(13)	-0.0135(13)	-0.0137(13)	-0.0127(12)
C20	0.0004(17)	0.0702(10)	0.0479(13) 0.0531(15)	-0.0232(16)	-0.0159(15)	-0.0003(15)
C20	0.0029(19)	0.110(2) 0.132(3)	0.0531(15) 0.0620(17)	-0.0232(10)	-0.0005(14)	-0.0150(17)
C21	0.002(2)	0.132(3)	0.0029(17)	-0.0405(18)	-0.0085(15)	-0.0238(17)
C22	0.000(2)	0.133(3)	0.078(2)	-0.0403(19) -0.0231(17)	-0.0033(10) -0.0222(16)	-0.0238(19) -0.0300(18)
C23	0.0370(19)	0.121(3)	0.063(2)	-0.0231(17)	-0.0222(10)	-0.0300(18)
C24	0.0003(18)	0.0870(19)	0.0033(10)	-0.0224(14)	-0.0220(14)	-0.0143(14)
C25	0.058/(18)	0.0760(17)	0.0607(15)	-0.0068(14)	-0.0169(14)	-0.02/9(14)
C20	0.071(2)	0.095(2)	0.0304(10)	-0.0062(10)	-0.0221(13)	-0.0102(13)
C27	0.085(2)	0.110(3)	0.0623(18)	-0.025(2)	-0.0180(17)	-0.0103(17)
C28	0.009(2)	0.128(3)	0.0097(19)	-0.0224(19)	-0.0008(17)	-0.0401(19)
C29	0.061(2)	0.104(2)	0.101(2)	0.0009(17)	-0.0214(19)	-0.04/(2)
C30	0.067(2)	0.0739 (18)	0.089(2)	-0.0024 (15)	-0.0246(17)	-0.0250 (15)
C31	0.090(3)	0.230 (5)	0.090(3)	-0.059(3)	0.001(2)	-0.029(3)
C32	0.082(2)	0.092(2)	0.0/30(18)	-0.01/8(16)	-0.0350(16)	-0.0202(15)
C33	0.0640 (18)	0.0640 (16)	0.0604 (16)	-0.0001 (13)	-0.0261(13)	-0.0185(12)
C34	0.0636 (18)	0.0677 (16)	0.0620 (16)	-0.0058 (13)	-0.0230(14)	-0.0154 (13)
C35	0.074(2)	0.0694 (17)	0.0645 (17)	-0.0038 (14)	-0.0247 (15)	-0.0140 (14)
C36	0.076 (2)	0.086 (2)	0.0659 (17)	-0.0157 (16)	-0.0156 (16)	-0.0179 (15)
C37	0.083 (2)	0.0752 (18)	0.0606 (17)	-0.0128 (16)	-0.0164 (16)	-0.0121 (14)
C38	0.079 (2)	0.0726 (18)	0.0556 (16)	-0.0137 (15)	-0.0100 (15)	-0.0130 (13)
C39	0.084 (3)	0.133 (3)	0.0667 (19)	-0.045 (2)	0.0155 (17)	-0.0390 (18)
C40	0.090 (3)	0.134 (3)	0.0633 (18)	-0.045 (2)	0.0076 (17)	-0.0426 (18)
C41	0.071 (2)	0.0749 (18)	0.0531 (15)	-0.0131 (15)	0.0015 (14)	-0.0151 (13)

supporting information

C42 C43 C44 C45 C46	0.072 (2) 0.084 (2) 0.083 (3) 0.078 (3)	0.106 (2) 0.095 (2) 0.134 (3) 0.207 (5) 0.153 (2)	0.0505 (16) 0.0521 (16) 0.080 (2) 0.087 (2)	-0.0104 (17) -0.0065 (17) -0.023 (2) -0.044 (3) -0.030 (2)	-0.0015 (15) -0.0126 (15) -0.0102 (18) -0.007 (2) -0.008 (2)	-0.0159 (15) -0.0154 (14) -0.037 (2) -0.033 (3) -0.016 (2)
C46	0.088 (3)	0.153 (3)	0.090 (2)	-0.039(2)	-0.008(2)	-0.016 (2)
C47 C48	0.086 (3) 0.091 (3)	0.201 (5) 0.139 (3)	0.099 (3) 0.077 (2)	-0.044(3) -0.042(2)	0.019 (2) 0.0142 (19)	-0.053(3) -0.034(2)

Geometric parameters (Å, °)

01—C11	1.234 (3)	C21—H21B	0.9700
O2—C35	1.230 (3)	C22—C23	1.510 (4)
N1—C9	1.343 (3)	C22—H22A	0.9700
N1—N2	1.372 (3)	C22—H22B	0.9700
N1-C1	1.433 (3)	C23—C24	1.505 (4)
N2—N3	1.293 (3)	C23—H23A	0.9700
N3—C10	1.372 (3)	C23—H23B	0.9700
N4—C17	1.385 (3)	C24—H24A	0.9700
N4-C24	1.456 (3)	C24—H24B	0.9700
N4—C20	1.462 (3)	C25—C26	1.373 (4)
N5—C33	1.350 (3)	C25—C30	1.375 (4)
N5—N6	1.372 (3)	C26—C27	1.377 (4)
N5—C25	1.429 (3)	C26—H26	0.9300
N6—N7	1.300 (3)	C27—C28	1.377 (4)
N7—C34	1.363 (3)	С27—Н27	0.9300
N8—C41	1.386 (4)	C28—C29	1.380 (4)
N8—C48	1.439 (4)	C28—C31	1.507 (4)
N8—C44	1.438 (4)	C29—C30	1.377 (4)
C1—C6	1.371 (3)	С29—Н29	0.9300
C1—C2	1.371 (3)	С30—Н30	0.9300
C2—C3	1.366 (4)	C31—H31A	0.9600
С2—Н2	0.9300	C31—H31B	0.9600
C3—C4	1.379 (4)	C31—H31C	0.9600
С3—Н3	0.9300	C32—C33	1.484 (4)
C4—C5	1.374 (4)	C32—H32A	0.9600
C4—C7	1.499 (4)	C32—H32B	0.9600
C5—C6	1.368 (4)	С32—Н32С	0.9600
С5—Н5	0.9300	C33—C34	1.377 (4)
С6—Н6	0.9300	C34—C35	1.474 (4)
C7—H7A	0.9600	C35—C36	1.460 (4)
С7—Н7В	0.9600	C36—C37	1.329 (4)
C7—H7C	0.9600	C36—H36	0.9300
С8—С9	1.482 (3)	C37—C38	1.441 (4)
C8—H8A	0.9600	С37—Н37	0.9300
C8—H8B	0.9600	C38—C43	1.387 (4)
C8—H8C	0.9600	C38—C39	1.395 (4)
C9—C10	1.375 (3)	C39—C40	1.365 (4)
C10-C11	1.461 (4)	С39—Н39	0.9300

supporting information

C11—C12	1.462 (3)	C40—C41	1.411 (4)
C12—C13	1.330 (4)	C40—H40	0.9300
C12—H12	0.9300	C41—C42	1.380 (4)
C13—C14	1.443 (3)	C42—C43	1.374 (4)
C13—H13	0.9300	C42—H42	0.9300
C14—C19	1.394 (3)	C43—H43	0.9300
C14—C15	1.402 (3)	C44—C45	1.460 (4)
C15—C16	1.365 (3)	C44—H44A	0.9700
C15—H15	0.9300	C44—H44B	0.9700
C16—C17	1.413 (3)	C45—C46	1.485 (4)
C16—H16	0.9300	C45—H45A	0.9700
C17— $C18$	1 399 (3)	C45—H45B	0.9700
C_{18} C_{19}	1.375(3)	C46-C47	1.474(5)
C18H18	0.9300	C_{46} H46A	0.9700
C10 H10	0.9300	C_{46} H46B	0.9700
C_{19}	1 490 (4)	C40 $C47$ $C48$	0.9700
C_{20} H_{20A}	0.0700	C47 = C48	1.472(3)
C20—H20A	0.9700	C47 = H47A	0.9700
C20—H20B	0.9700	C47 - H47B	0.9700
C21—C22	1.508 (4)	C48—H48A	0.9700
C21—H21A	0.9700	C48—H48B	0.9700
C0 N1 N2	110.6(2)	C22 C23 H23P	100.1
$C_{2} = N_{1} = N_{2}$	110.0(2) 130.4(2)	$\begin{array}{c} C22 - C23 - H23B \\ H23A - C22 - H23B \end{array}$	109.1
$N_2 = N_1 = C_1$	130.4(2)	N4 C24 C23	107.8 111.7(2)
N2—N1—C1	118.9 (2)	N4 C24 U24	111.7 (2)
$N_3 - N_2 - N_1$	107.3 (2)	N4 - C24 - H24A	109.3
$N_2 - N_3 - C_{10}$	109.0 (2)	C23—C24—H24A	109.3
C17 - N4 - C24	119.2 (2)	N4—C24—H24B	109.3
C17—N4—C20	118.6 (2)	C23—C24—H24B	109.3
C24—N4—C20	112.7 (2)	H24A—C24—H24B	107.9
C33—N5—N6	110.8 (2)	C26—C25—C30	120.5 (3)
C33—N5—C25	131.2 (2)	C26—C25—N5	118.8 (2)
N6—N5—C25	118.0 (2)	C30—C25—N5	120.6 (3)
N7—N6—N5	107.0 (2)	C25—C26—C27	119.0 (3)
N6—N7—C34	109.1 (2)	C25—C26—H26	120.5
C41—N8—C48	118.8 (3)	C27—C26—H26	120.5
C41—N8—C44	118.5 (2)	C28—C27—C26	122.0 (3)
C48—N8—C44	114.6 (3)	C28—C27—H27	119.0
C6—C1—C2	119.7 (2)	C26—C27—H27	119.0
C6-C1-N1	121.0 (2)	C27—C28—C29	117.6 (3)
C2-C1-N1	119.3 (2)	C27—C28—C31	121.5 (3)
C3—C2—C1	119.6 (3)	C29—C28—C31	120.9 (3)
C3—C2—H2	120.2	C30—C29—C28	121.5 (3)
С1—С2—Н2	120.2	С30—С29—Н29	119.2
C2—C3—C4	121.9 (3)	C28—C29—H29	119.2
С2—С3—Н3	119.0	C25—C30—C29	119.3 (3)
C4—C3—H3	119.0	C25—C30—H30	120.3
C5—C4—C3	117.1 (3)	C29—C30—H30	120.3
C5—C4—C7	122.2 (3)	C28—C31—H31A	109.5
	(-)		

C3—C4—C7	120.7 (3)	C28—C31—H31B	109.5
C6—C5—C4	121.9 (3)	H31A—C31—H31B	109.5
С6—С5—Н5	119.0	C28—C31—H31C	109.5
С4—С5—Н5	119.0	H31A—C31—H31C	109.5
C5—C6—C1	119.6 (2)	H31B—C31—H31C	109.5
С5—С6—Н6	120.2	С33—С32—Н32А	109.5
С1—С6—Н6	120.2	C33—C32—H32B	109.5
C4—C7—H7A	109.5	H32A—C32—H32B	109.5
C4—C7—H7B	109.5	C33—C32—H32C	109.5
H7A—C7—H7B	109.5	H32A—C32—H32C	109.5
C4—C7—H7C	109.5	H32B—C32—H32C	109.5
H7A—C7—H7C	109.5	N5-C33-C34	104.0 (2)
H7B-C7-H7C	109.5	N5-C33-C32	1237(3)
C9—C8—H8A	109.5	$C_{34} = C_{33} = C_{32}$	123.7(3) 132.2(3)
C9-C8-H8B	109.5	N7-C34-C33	102.2(3)
H8A - C8 - H8B	109.5	N7-C34-C35	109.1(2) 1213(3)
	109.5	C_{33} C_{34} C_{35}	121.5(3) 129.6(3)
	109.5	0^{2} C_{35}^{35} C_{36}^{36}	127.0(3) 123.5(3)
	109.5	02 - C35 - C30	123.3(3) 120.0(3)
N1 C0 C10	109.5 104.5(2)	$C_2 = C_3 = C_3 + C_3 $	120.0(3) 116.5(2)
N1 = C9 = C10	104.3(2) 123.4(2)	$C_{30} = C_{33} = C_{34}$	110.3(3) 122.4(2)
$NI = C_{9} = C_{8}$	123.4(2) 122.0(2)	$C_{27} = C_{26} = U_{26}$	123.4 (3)
10 - 0 - 0	132.0(2)	$C_{25} = C_{26} = H_{26}$	110.5
N3-C10-C11	108.0(2)	C35-C30-H30	110.5
N3-C10-C11	121.3 (2)	$C_{30} = C_{37} = C_{38}$	128.2 (3)
	130.1 (2)	$C_{36} = C_{37} = H_{37}$	115.9
	119.9 (2)	C38—C37—H37	115.9
01-01-012	122.6 (2)	C43—C38—C39	115.2 (3)
C10—C11—C12	117.5 (2)	C43—C38—C37	121.5 (3)
C13—C12—C11	123.0 (2)	C39—C38—C37	123.3 (3)
C13—C12—H12	118.5	C40—C39—C38	123.1 (3)
C11—C12—H12	118.5	С40—С39—Н39	118.4
C12—C13—C14	128.3 (2)	С38—С39—Н39	118.4
C12—C13—H13	115.9	C39—C40—C41	121.0 (3)
C14—C13—H13	115.9	C39—C40—H40	119.5
C19—C14—C15	116.0 (2)	C41—C40—H40	119.5
C19—C14—C13	120.4 (2)	C42—C41—N8	122.7 (3)
C15—C14—C13	123.6 (2)	C42—C41—C40	116.0 (3)
C16—C15—C14	122.1 (2)	N8—C41—C40	121.3 (3)
C16—C15—H15	118.9	C43—C42—C41	122.3 (3)
C14—C15—H15	118.9	C43—C42—H42	118.8
C15—C16—C17	121.7 (2)	C41—C42—H42	118.8
C15—C16—H16	119.1	C42—C43—C38	122.4 (3)
C17—C16—H16	119.1	C42—C43—H43	118.8
N4—C17—C18	122.6 (2)	C38—C43—H43	118.8
N4—C17—C16	121.0 (2)	N8—C44—C45	116.0 (3)
C18—C17—C16	116.2 (2)	N8—C44—H44A	108.3
C19—C18—C17	121.4 (2)	C45—C44—H44A	108.3
C19—C18—H18	119.3	N8—C44—H44B	108.3

C17—C18—H18	119.3	C45—C44—H44B	108.3
C18—C19—C14	122.5 (2)	H44A—C44—H44B	107.4
C18—C19—H19	118.8	C44—C45—C46	115.0 (3)
C14—C19—H19	118.8	C44—C45—H45A	108.5
N4—C20—C21	112.4 (2)	C46—C45—H45A	108.5
N4—C20—H20A	109.1	C44—C45—H45B	108.5
C21—C20—H20A	109.1	C46—C45—H45B	108.5
N4—C20—H20B	109.1	H45A—C45—H45B	107.5
C21—C20—H20B	109.1	C47—C46—C45	110.7 (3)
H20A—C20—H20B	107.9	C47—C46—H46A	109.5
C_{20} C_{21} C_{22}	112.3 (3)	C45—C46—H46A	109.5
C_{20} C_{21} H_{21A}	109.1	C47—C46—H46B	109.5
$C_{22} = C_{21} = H_{21A}$	109.1	C45—C46—H46B	109.5
C_{20} C_{21} H_{21R}	109.1	H46A - C46 - H46B	108.1
$C_{22} = C_{21} = H_{21B}$	109.1	C_{48} C_{47} C_{46}	116.0(3)
$H_{21} = C_{21} = H_{21} B$	107.9	$C_{48} = C_{47} = H_{47} = H_{47}$	108.3
C_{21} C_{22} C_{23}	107.9 109.2(2)	C_{46} C_{47} H_{47A}	108.3
$C_{21} = C_{22} = C_{23}$	109.2 (2)	C_{48} C_{47} H_{47B}	108.3
$C_{21} = C_{22} = H_{22A}$	109.8	$C_{46} = C_{47} = H_{47B}$	108.3
C_{23} C_{22} C_{22} C_{23} C	109.8	$H_{47A} = C_{47} = H_{47B}$	108.3
C_{21} C_{22} C_{22} H_{22} H_{22}	109.8	$\frac{H4}{A} - \frac{C4}{-H4} = \frac{H4}{B}$	107.4
C_{23} C_{22} C_{23} C	109.0	NO - C40 - C47	113.1 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	100.5 112.7(2)	$N_0 = C_{40} = \Pi_{40A}$	108.5
$C_{24} = C_{23} = C_{22}$	112.7 (5)	C47 - C40 - H40A	108.5
C24—C23—H23A	109.1	N8 - C48 - H48B	108.5
C22—C23—H23A	109.1	C4/-C48-H48B	108.5
C24—C23—H23B	109.1	H48A—C48—H48B	107.5
C9N1N2N3	-0.5(3)	C17—N4—C24—C23	-160.3(2)
C1 - N1 - N2 - N3	-1791(2)	C_{20} N4 C_{24} C_{23}	537(3)
$N1_N2_N3_C10$	0.2(3)	$C_{20} = C_{23} = C_{24} = 0.23$	-540(3)
C_{33} N5 N6 N7	0.2(3)	C_{33} N5 C_{25} C2 C_{26}	127.7(3)
$C_{25} N_{5} N_{6} N_{7}$	1786(2)	$N_{6} N_{5} C_{25} C_{26}$	-49.8(3)
$N_{2} = N_{2} = N_{2$	-0.3(3)	C_{33} N5 C_{25} C_{20}	-551(4)
$C_{0} N_{1} C_{1} C_{6}$	0.5 (5) 58 6 (4)	$N_{6} = N_{5} = C_{25} = C_{30}$	127.4(3)
$N_2 = N_1 = C_1 = C_0$	-1232(3)	C_{30} C_{25} C_{26} C_{27}	-0.5(4)
$N_2 - N_1 - C_1 - C_0$	-123.2(3)	$C_{30} - C_{23} - C_{20} - C_{27}$	0.3(4)
C_{2} N1 C_{1} C_{2}	122.4 (J) 55 8 (3)	$N_{3} = C_{23} = C_{20} = C_{27}$	170.7(3)
$N_2 - N_1 - C_1 - C_2$	-10(4)	$C_{25} = C_{20} = C_{27} = C_{28} = C_{20}$	0.2(5)
$C_0 - C_1 - C_2 - C_3$	-1.0(4)	$C_{20} = C_{27} = C_{28} = C_{29}$	0.0(3)
N1 - C1 - C2 - C3	180.0(3)	$C_{20} = C_{2} = C_{20} = C_{31}$	-177.1(3)
C1 - C2 - C3 - C4	-0.4(3)	$C_{21} = C_{20} = C_{20} = C_{30}$	-1.7(3)
$C_2 = C_3 = C_4 = C_3$	1.1(3)	$C_{31} = C_{28} = C_{29} = C_{30}$	1/0.3(3)
$C_2 = C_3 = C_4 = C_7$	1/9.9 (3)	$C_{20} = C_{20} = C_{30} = C_{29}$	-0.4(4)
$C_{2} - C_{4} - C_{5} - C_{6}$	-0.4(4)	$N_{2} = (2) = (3) = (2)$	-1/1.5(3)
C/-C4-C5-C6	-1/9.2(3)	$C_{28} - C_{29} - C_{30} - C_{25}$	1.5 (5)
$\begin{array}{c} C4 \\ \hline C2 \\ \hline C1 \\ \hline C2 \\ \hline C1 \\ \hline C2 \\ \hline C1 \\ \hline C2 \\ \hline C2 \\ \hline C1 \\ \hline C2 \\ \hline C1 \\ \hline C2 \\ \hline C2 \\ \hline C1 \\ \hline C2 \\ \hline C2 \\ \hline C1 \\ \hline C2 \\ \hline C2 \\ \hline C1 \\ \hline C2 \\ \hline C2 \\ \hline C1 \\ \hline C2 \\ \hline C2 \\ \hline C1 \\ \hline C2 \\ \hline C2 \\ \hline C1 \\ \hline C2 \\ \hline C2 \\ \hline C1 \\ \hline C2 \\ \hline C2 \\ \hline C1 \\ \hline C2 \\ \hline C2 \\ \hline C1 \\ \hline C2 \\ \hline C2 \\ \hline C1 \\ \hline C2 \\ \hline C2 \\ \hline C1 \\ \hline C2 \\ \hline C2 \\ \hline C1 \\ \hline C2 \\ \hline C2 \\ \hline C1 \\ \hline C2 \\ \hline C2 \\ \hline C1 \\ \hline C2 \\ \hline C2 \\ \hline C1 \\ \hline C2 \hline \hline C2 \\ \hline C2 \\ \hline C2 \hline \hline C2 \\ \hline C2 \hline \hline C2 \\ \hline C2 \hline \hline C2 \hline \hline C2 \\ \hline C2 \hline \hline C2$	-1.1(4)	NO-NO-C33-C34	-0.6(3)
$C_2 - C_1 - C_6 - C_5$	1.8 (4)	C_{25} —N5—C33—C34	-178.2(2)
NI-CI-C6-C5	-179.2(2)	N6—N5—C33—C32	176.9 (2)
N2—N1—C9—C10	0.6 (3)	C25—N5—C33—C32	-0.8(4)

C1—N1—C9—C10	178.9 (2)	N6—N7—C34—C33	-0.1 (3)
N2—N1—C9—C8	-176.6 (2)	N6—N7—C34—C35	-178.2(2)
C1—N1—C9—C8	1.8 (4)	N5-C33-C34-N7	0.4 (3)
N2—N3—C10—C9	0.2 (3)	C32—C33—C34—N7	-176.8 (3)
N2—N3—C10—C11	179.6 (2)	N5-C33-C34-C35	178.3 (3)
N1-C9-C10-N3	-0.4 (3)	C32—C33—C34—C35	1.1 (5)
C8—C9—C10—N3	176.4 (3)	N7—C34—C35—O2	177.9 (3)
N1-C9-C10-C11	-179.8 (2)	C33—C34—C35—O2	0.2 (4)
C8—C9—C10—C11	-3.0 (5)	N7—C34—C35—C36	0.0 (4)
N3—C10—C11—O1	-178.9 (2)	C33—C34—C35—C36	-177.6 (3)
C9-C10-C11-O1	0.4 (4)	O2—C35—C36—C37	-9.2 (5)
N3-C10-C11-C12	2.5 (4)	C34—C35—C36—C37	168.5 (3)
C9-C10-C11-C12	-178.2 (2)	C35—C36—C37—C38	-177.2 (3)
O1—C11—C12—C13	6.3 (4)	C36—C37—C38—C43	177.0 (3)
C10-C11-C12-C13	-175.1 (2)	C36—C37—C38—C39	-3.3 (5)
C11—C12—C13—C14	-178.5 (2)	C43—C38—C39—C40	-0.4 (5)
C12—C13—C14—C19	178.4 (2)	C37—C38—C39—C40	179.8 (3)
C12—C13—C14—C15	0.0 (4)	C38—C39—C40—C41	0.8 (6)
C19—C14—C15—C16	-0.9 (4)	C48—N8—C41—C42	8.7 (4)
C13—C14—C15—C16	177.7 (2)	C44—N8—C41—C42	155.8 (3)
C14—C15—C16—C17	0.6 (4)	C48—N8—C41—C40	-174.0 (3)
C24—N4—C17—C18	2.9 (4)	C44—N8—C41—C40	-27.0 (4)
C20—N4—C17—C18	146.9 (2)	C39—C40—C41—C42	-0.2 (5)
C24—N4—C17—C16	178.4 (2)	C39—C40—C41—N8	-177.6 (3)
C20—N4—C17—C16	-37.7 (3)	N8—C41—C42—C43	176.6 (3)
C15—C16—C17—N4	-175.2 (2)	C40—C41—C42—C43	-0.8 (5)
C15—C16—C17—C18	0.5 (4)	C41—C42—C43—C38	1.3 (5)
N4—C17—C18—C19	174.4 (2)	C39—C38—C43—C42	-0.7 (4)
C16—C17—C18—C19	-1.2 (3)	C37—C38—C43—C42	179.1 (3)
C17—C18—C19—C14	1.0 (4)	C41—N8—C44—C45	168.4 (3)
C15—C14—C19—C18	0.1 (4)	C48—N8—C44—C45	-43.2 (4)
C13—C14—C19—C18	-178.5 (2)	N8—C44—C45—C46	46.0 (5)
C17—N4—C20—C21	159.5 (3)	C44—C45—C46—C47	-45.7 (5)
C24—N4—C20—C21	-54.4 (3)	C45—C46—C47—C48	45.5 (5)
N4—C20—C21—C22	54.4 (4)	C41—N8—C48—C47	-169.6 (3)
C20—C21—C22—C23	-52.9 (4)	C44—N8—C48—C47	42.2 (5)
C21—C22—C23—C24	52.9 (4)	C46—C47—C48—N8	-44.9 (5)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C14–C19 benzene

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H… <i>A</i>
C6—H6…O1 ⁱ	0.93	2.51	3.415 (3)	165
C3—H3···Cg1 ⁱⁱ	0.93	2.73	3.469 (3)	137

Symmetry codes: (i) –*x*+1, –*y*+1, –*z*+1; (ii) *x*+1, *y*, *z*.