[Journal logo]

Volume 69 
Part 5 
Pages o639-o640  
May 2013  

Received 25 March 2013
Accepted 25 March 2013
Online 5 April 2013

Key indicators
Single-crystal X-ray study
T = 295 K
Mean [sigma](C-C) = 0.004 Å
R = 0.058
wR = 0.174
Data-to-parameter ratio = 14.1
Details
Open access

(2E)-1-[5-Methyl-1-(4-methylphenyl)-1H-1,2,3-triazol-4-yl]-3-[4-(piperidin-1-yl)phenyl]prop-2-en-1-one1

aApplied Organic Chemistry Department, National Research Centre, Dokki, 12622 Giza, Egypt,bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
Correspondence e-mail: edward.tiekink@gmail.com

Two independent molecules comprise the asymmetric unit of the title compound, C24H26N4O. The major difference between them is found in the relative orientation of the triazole-bound p-tolyl group which have the opposite sense of twist [N-N-C-C torsion angles = 55.8 (3) and -49.8 (3)°]. The chalcone residue is almost coplanar with the triazole ring [N-C-C-O and C-C-C-C torsion angles = -178.9 (2) and -178.5 (2)°, respectively; cf. 177.9 (3) and 168.5 (3)°, respectively, in the second molecule]. The conformation about each C=C double bond is E and in each case the triazole methyl group is syn to the carbonyl O atom. In the crystal, molecules aggregate into layers parallel to (-113). The first independent molecule self-associates into a layer via C-H...O and C-H...[pi] interactions. By contrast, layers comprising the second independent molecule do not feature specific interactions between molecules. The global crystal packing comprises alternating layers.

Related literature

For the biological activities of triazole-based chalcone derivatives, see: Abdel-Wahab et al. (2012[Abdel-Wahab, B. F., Abdel-Latif, E., Mohamed, H. A. & Awad, G. E. A. (2012). Eur. J. Med. Chem. 52, 263-268.]); Guantai et al. (2010[Guantai, E. M., Ncokazi, K., Egan, T. J., Gut, J., Rosenthal, P. J., Smith, P. J. & Chibale, K. (2010). Bioorg. Med. Chem. 18, 8243-8256.]). For a related structure, see: Abdel-Wahab et al. (2013[Abdel-Wahab, B. F., Mohamed, H. A., Ng, S. W. & Tiekink, E. R. T. (2013). Acta Cryst. E69, o638.]).

[Scheme 1]

Experimental

Crystal data
  • C24H26N4O

  • Mr = 386.49

  • Triclinic, [P \overline 1]

  • a = 12.9514 (16) Å

  • b = 13.1000 (13) Å

  • c = 13.3735 (14) Å

  • [alpha] = 77.666 (9)°

  • [beta] = 74.123 (10)°

  • [gamma] = 81.044 (9)°

  • V = 2120.6 (4) Å3

  • Z = 4

  • Mo K[alpha] radiation

  • [mu] = 0.08 mm-1

  • T = 295 K

  • 0.50 × 0.40 × 0.30 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.955, Tmax = 1.000

  • 17797 measured reflections

  • 7458 independent reflections

  • 4585 reflections with I > 2[sigma](I)

  • Rint = 0.034

Refinement
  • R[F2 > 2[sigma](F2)] = 0.058

  • wR(F2) = 0.174

  • S = 1.03

  • 7458 reflections

  • 528 parameters

  • H-atom parameters constrained

  • [Delta][rho]max = 0.19 e Å-3

  • [Delta][rho]min = -0.19 e Å-3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C14-C19 benzene

D-H...A D-H H...A D...A D-H...A
C6-H6...O1i 0.93 2.51 3.415 (3) 165
C3-H3...Cg1ii 0.93 2.73 3.469 (3) 137
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x+1, y, z.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Qmol (Gans & Shalloway, 2001[Gans, J. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557-559.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB7062 ).


Acknowledgements

We thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM·C/HIR-MOHE/SC/03).

References

Abdel-Wahab, B. F., Abdel-Latif, E., Mohamed, H. A. & Awad, G. E. A. (2012). Eur. J. Med. Chem. 52, 263-268.  [ISI] [ChemPort] [PubMed]
Abdel-Wahab, B. F., Mohamed, H. A., Ng, S. W. & Tiekink, E. R. T. (2013). Acta Cryst. E69, o638.  [CrossRef] [details]
Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.  [ISI] [CrossRef] [ChemPort] [details]
Gans, J. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557-559.  [CrossRef] [PubMed] [ChemPort]
Guantai, E. M., Ncokazi, K., Egan, T. J., Gut, J., Rosenthal, P. J., Smith, P. J. & Chibale, K. (2010). Bioorg. Med. Chem. 18, 8243-8256.  [CrossRef] [ChemPort] [PubMed]
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [ChemPort] [details]
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.  [ISI] [CrossRef] [ChemPort] [details]


Acta Cryst (2013). E69, o639-o640   [ doi:10.1107/S1600536813008258 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.