supplementary materials


hb7073 scheme

Acta Cryst. (2013). E69, o798    [ doi:10.1107/S1600536813010817 ]

5-Acetyl-3-(5-phenyl-1H-pyrazol-3-yl)-1,3,4-thiadiazol-2(3H)-one monohydrate

A. M. Asiri, M. N. Arshad, A. Y. Obaid and G. Mustafa

Abstract top

In the title hydrate, C13H10N4O2S·H2O, the dihedral angles between the central pyrazole ring and its pendant phenyl and thiadiazole rings are 9.93 (8) and 4.56 (7)°, respectively. In the crystal, the components are linked by N-H...O, O-H...N and O-H...O hydrogen bonds, generating [100] chains incorporating R44(10) loops. A weak C-H...O interaction helps to consolidate the packing.

Comment top

In the title compound (I), shown in Fig. 1, the aromatic ring is inclined at angles of 9.93 (8)° & 6.36 (7)° with respect to pyrazole and thiadiazole rings. The pyrazole and thiadiazole rings are oriented at dihedral angle of 4.56 (7)°. The acetyl group is inclined at dihedral angle of 6.00 (2)° with thiadiazole ring. The water molecule as usual is involved in classical hydrogen bonding interactions. The interactions through N1—H1···O3w, and O3w—H3a···N2 give rise to inversion dimers forming ten membered ring motif R44(10). These dimers further connected through O3w—H3b···O1 interaction to make infinite one dimensional chain along a axis. Another non-classical interaction (C8—H8···O1) generates twelve membered ring motif R11(12) loops; for symmetry detail, see; Table. 1, Fig. 2.

Related literature top

For the synthesis of the title compound, see: Abdelhamid et al. (2001). For a related structure, see: Ge (2006).

Experimental top

The title compound was synthesised according to literature (Abdelhamid et al., 2001 ) procedure and recrystalized from methanol solution under slow evaporation to yield brown plates.

Refinement top

All the hydrogen atoms found from a Fourier difference map and allowed to refine freely with appropriate riding models.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012) and X-SEED (Barbour, 2001).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The packing diagram showing inversion dimers through hydrogen bonds, drawn using dashed lines.
5-Acetyl-3-(5-phenyl-1H-pyrazol-3-yl)-1,3,4-thiadiazol-2(3H)-one monohydrate top
Crystal data top
C13H10N4O2S·H2OF(000) = 632
Mr = 304.33Dx = 1.464 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ynCell parameters from 5915 reflections
a = 7.6084 (2) Åθ = 3.5–74.7°
b = 25.5788 (4) ŵ = 2.25 mm1
c = 7.6524 (2) ÅT = 296 K
β = 111.974 (3)°Plate, brown
V = 1381.07 (6) Å30.35 × 0.19 × 0.06 mm
Z = 4
Data collection top
Agilent SuperNova (Dual, Cu at zero, Atlas, CCD)
diffractometer
2806 independent reflections
Radiation source: SuperNova (Cu) X-ray Source2498 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.032
ω scansθmax = 74.8°, θmin = 3.5°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
h = 99
Tmin = 0.778, Tmax = 1.000k = 3131
10797 measured reflectionsl = 96
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106All H-atom parameters refined
S = 1.07 w = 1/[σ2(Fo2) + (0.0609P)2 + 0.1856P]
where P = (Fo2 + 2Fc2)/3
2806 reflections(Δ/σ)max = 0.002
238 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C13H10N4O2S·H2OV = 1381.07 (6) Å3
Mr = 304.33Z = 4
Monoclinic, P21/nCu Kα radiation
a = 7.6084 (2) ŵ = 2.25 mm1
b = 25.5788 (4) ÅT = 296 K
c = 7.6524 (2) Å0.35 × 0.19 × 0.06 mm
β = 111.974 (3)°
Data collection top
Agilent SuperNova (Dual, Cu at zero, Atlas, CCD)
diffractometer
2806 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
2498 reflections with I > 2σ(I)
Tmin = 0.778, Tmax = 1.000Rint = 0.032
10797 measured reflectionsθmax = 74.8°
Refinement top
R[F2 > 2σ(F2)] = 0.036All H-atom parameters refined
wR(F2) = 0.106Δρmax = 0.23 e Å3
S = 1.07Δρmin = 0.19 e Å3
2806 reflectionsAbsolute structure: ?
238 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S120.59223 (6)0.644569 (15)0.75319 (6)0.05072 (15)
O10.5175 (2)0.55662 (5)0.90067 (17)0.0659 (4)
N30.40123 (17)0.56623 (4)0.57705 (17)0.0362 (3)
O20.5725 (2)0.72711 (5)0.4716 (2)0.0757 (4)
N40.39508 (17)0.60041 (4)0.43842 (17)0.0375 (3)
N10.11453 (18)0.46444 (5)0.33689 (18)0.0408 (3)
N20.19673 (18)0.51164 (5)0.34177 (17)0.0398 (3)
C100.4991 (2)0.58140 (6)0.7612 (2)0.0439 (3)
C70.15808 (19)0.44351 (5)0.5095 (2)0.0361 (3)
C90.29698 (18)0.51911 (5)0.52301 (19)0.0338 (3)
C110.4876 (2)0.64236 (5)0.5106 (2)0.0398 (3)
C10.08453 (19)0.39258 (5)0.5408 (2)0.0383 (3)
C80.2800 (2)0.47822 (5)0.6365 (2)0.0387 (3)
C120.4979 (2)0.68747 (6)0.3918 (3)0.0487 (4)
C20.1125 (2)0.37673 (7)0.7226 (3)0.0505 (4)
H20.177 (3)0.3992 (9)0.834 (3)0.068 (6)*
C60.0130 (2)0.35941 (6)0.3906 (3)0.0480 (4)
H60.037 (3)0.3691 (8)0.264 (3)0.052 (5)*
C130.4163 (3)0.68076 (8)0.1839 (3)0.0589 (5)
H13B0.364 (5)0.7089 (14)0.126 (5)0.116 (11)*
H13C0.501 (6)0.6663 (17)0.145 (7)0.165 (17)*
H13A0.313 (4)0.6562 (12)0.135 (4)0.099 (9)*
C40.0469 (3)0.29574 (6)0.6054 (3)0.0599 (5)
H40.085 (3)0.2633 (9)0.629 (3)0.071 (6)*
C30.0476 (3)0.32821 (7)0.7542 (3)0.0600 (5)
H30.071 (3)0.3194 (9)0.876 (4)0.072 (7)*
C50.0788 (3)0.31131 (6)0.4244 (3)0.0570 (4)
H50.140 (4)0.2917 (9)0.319 (4)0.078 (7)*
H10.025 (3)0.4545 (8)0.221 (3)0.059 (6)*
H80.337 (3)0.4743 (7)0.766 (3)0.046 (5)*
O3W0.8281 (2)0.44007 (6)0.0009 (2)0.0683 (4)
H3A0.816 (4)0.4505 (10)0.110 (4)0.089 (8)*
H3B0.722 (6)0.4442 (16)0.006 (5)0.145 (16)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S120.0611 (3)0.0453 (2)0.0392 (2)0.01426 (16)0.01118 (19)0.00717 (15)
O10.0838 (9)0.0722 (8)0.0307 (6)0.0271 (7)0.0087 (6)0.0042 (6)
N30.0429 (6)0.0336 (5)0.0290 (6)0.0032 (4)0.0100 (5)0.0016 (4)
O20.0992 (11)0.0428 (6)0.0740 (10)0.0249 (7)0.0196 (8)0.0011 (6)
N40.0448 (6)0.0321 (5)0.0341 (6)0.0010 (4)0.0131 (5)0.0029 (4)
N10.0482 (6)0.0376 (6)0.0334 (7)0.0080 (5)0.0116 (5)0.0008 (5)
N20.0483 (6)0.0368 (6)0.0322 (6)0.0070 (5)0.0125 (5)0.0003 (5)
C100.0480 (8)0.0467 (8)0.0335 (8)0.0085 (6)0.0114 (6)0.0010 (6)
C70.0384 (6)0.0333 (6)0.0354 (7)0.0021 (5)0.0124 (6)0.0029 (5)
C90.0373 (6)0.0322 (6)0.0306 (7)0.0002 (5)0.0112 (5)0.0006 (5)
C110.0441 (7)0.0348 (7)0.0385 (8)0.0018 (5)0.0133 (6)0.0009 (6)
C10.0378 (6)0.0330 (6)0.0428 (8)0.0019 (5)0.0134 (6)0.0040 (5)
C80.0435 (7)0.0368 (7)0.0324 (8)0.0010 (5)0.0103 (6)0.0035 (6)
C120.0530 (8)0.0359 (7)0.0551 (10)0.0045 (6)0.0179 (7)0.0042 (7)
C20.0521 (8)0.0465 (8)0.0471 (10)0.0060 (7)0.0118 (7)0.0093 (7)
C60.0551 (9)0.0385 (7)0.0506 (10)0.0026 (6)0.0199 (8)0.0019 (7)
C130.0727 (12)0.0511 (10)0.0503 (11)0.0066 (9)0.0198 (9)0.0124 (8)
C40.0581 (9)0.0373 (8)0.0833 (15)0.0030 (7)0.0253 (10)0.0121 (8)
C30.0608 (10)0.0536 (9)0.0599 (12)0.0052 (8)0.0161 (9)0.0203 (8)
C50.0623 (10)0.0363 (8)0.0720 (13)0.0058 (7)0.0246 (9)0.0068 (8)
O3W0.0807 (10)0.0829 (10)0.0325 (7)0.0270 (8)0.0112 (6)0.0031 (6)
Geometric parameters (Å, º) top
S12—C111.7254 (16)C1—C61.398 (2)
S12—C101.7744 (15)C8—H80.92 (2)
O1—C101.2038 (19)C12—C131.486 (3)
N3—N41.3619 (16)C2—C31.390 (2)
N3—C101.3804 (19)C2—H20.99 (2)
N3—C91.4170 (17)C6—C51.388 (2)
O2—C121.210 (2)C6—H60.95 (2)
N4—C111.2887 (18)C13—H13B0.86 (4)
N1—C71.3466 (19)C13—H13C0.89 (5)
N1—N21.3538 (16)C13—H13A0.96 (3)
N1—H10.93 (2)C4—C51.372 (3)
N2—C91.3229 (19)C4—C31.375 (3)
C7—C81.385 (2)C4—H40.92 (2)
C7—C11.4724 (18)C3—H30.91 (3)
C9—C81.3960 (19)C5—H50.92 (3)
C11—C121.489 (2)O3W—H3A0.86 (3)
C1—C21.387 (2)O3W—H3B0.83 (4)
C11—S12—C1088.73 (7)C9—C8—H8129.2 (12)
N4—N3—C10117.57 (11)O2—C12—C13124.48 (16)
N4—N3—C9117.81 (11)O2—C12—C11117.62 (16)
C10—N3—C9124.49 (12)C13—C12—C11117.90 (14)
C11—N4—N3110.27 (12)C1—C2—C3120.31 (17)
C7—N1—N2112.70 (12)C1—C2—H2122.2 (13)
C7—N1—H1130.7 (13)C3—C2—H2117.5 (13)
N2—N1—H1115.8 (13)C5—C6—C1120.13 (17)
C9—N2—N1103.70 (11)C5—C6—H6118.6 (12)
O1—C10—N3126.60 (14)C1—C6—H6121.3 (12)
O1—C10—S12126.50 (12)C12—C13—H13B113 (2)
N3—C10—S12106.89 (10)C12—C13—H13C110 (3)
N1—C7—C8106.73 (12)H13B—C13—H13C115 (4)
N1—C7—C1122.84 (13)C12—C13—H13A116.2 (19)
C8—C7—C1130.42 (14)H13B—C13—H13A101 (3)
N2—C9—C8113.13 (12)H13C—C13—H13A101 (3)
N2—C9—N3117.96 (12)C5—C4—C3120.03 (16)
C8—C9—N3128.89 (13)C5—C4—H4120.7 (15)
N4—C11—C12121.91 (14)C3—C4—H4119.3 (15)
N4—C11—S12116.53 (11)C4—C3—C2120.32 (19)
C12—C11—S12121.52 (11)C4—C3—H3122.7 (15)
C2—C1—C6118.83 (14)C2—C3—H3116.9 (15)
C2—C1—C7119.80 (14)C4—C5—C6120.37 (18)
C6—C1—C7121.37 (14)C4—C5—H5124.8 (15)
C7—C8—C9103.72 (13)C6—C5—H5114.8 (16)
C7—C8—H8127.1 (12)H3A—O3W—H3B105 (3)
C10—N3—N4—C110.25 (18)N1—C7—C1—C2170.77 (14)
C9—N3—N4—C11176.34 (12)C8—C7—C1—C210.4 (2)
C7—N1—N2—C91.40 (16)N1—C7—C1—C69.5 (2)
N4—N3—C10—O1179.14 (16)C8—C7—C1—C6169.31 (15)
C9—N3—C10—O13.3 (3)N1—C7—C8—C90.87 (16)
N4—N3—C10—S120.66 (16)C1—C7—C8—C9179.81 (14)
C9—N3—C10—S12176.46 (10)N2—C9—C8—C70.03 (17)
C11—S12—C10—O1179.15 (18)N3—C9—C8—C7178.50 (13)
C11—S12—C10—N30.65 (11)N4—C11—C12—O2173.25 (16)
N2—N1—C7—C81.46 (17)S12—C11—C12—O24.4 (2)
N2—N1—C7—C1179.50 (12)N4—C11—C12—C136.8 (2)
N1—N2—C9—C80.80 (16)S12—C11—C12—C13175.50 (14)
N1—N2—C9—N3179.51 (12)C6—C1—C2—C31.3 (3)
N4—N3—C9—N21.44 (18)C7—C1—C2—C3178.47 (16)
C10—N3—C9—N2174.35 (14)C2—C1—C6—C50.6 (2)
N4—N3—C9—C8179.92 (13)C7—C1—C6—C5179.19 (14)
C10—N3—C9—C84.1 (2)C5—C4—C3—C20.4 (3)
N3—N4—C11—C12177.47 (13)C1—C2—C3—C40.8 (3)
N3—N4—C11—S120.32 (16)C3—C4—C5—C61.1 (3)
C10—S12—C11—N40.59 (13)C1—C6—C5—C40.7 (3)
C10—S12—C11—C12177.22 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3Wi0.93 (2)1.83 (2)2.749 (2)173 (2)
O3W—H3A···N2ii0.86 (3)1.99 (3)2.8402 (19)169 (2)
O3W—H3B···O1iii0.83 (5)2.19 (5)2.995 (2)163 (4)
C8—H8···O1iv0.93 (2)2.50 (2)3.4100 (19)167.8 (15)
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z; (iii) x+1, y+1, z+1; (iv) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3Wi0.93 (2)1.83 (2)2.749 (2)173 (2)
O3W—H3A···N2ii0.86 (3)1.99 (3)2.8402 (19)169 (2)
O3W—H3B···O1iii0.83 (5)2.19 (5)2.995 (2)163 (4)
C8—H8···O1iv0.93 (2)2.50 (2)3.4100 (19)167.8 (15)
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z; (iii) x+1, y+1, z+1; (iv) x+1, y+1, z+2.
Acknowledgements top

The authors thank the deanship of scientific research at King Abdulaziz University for the support of this research via Research Group Track of Grant No. ( 3-102/428).

references
References top

Abdelhamid, A. O., Salam, M. M. M. & Amer, S. A. (2001). Heteroat. Chem. 12, 468–474.

Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Ge, W.-Z. (2006). Acta Cryst. E62, o3109–o3110.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.