supplementary materials


hg5301 scheme

Acta Cryst. (2013). E69, o743-o744    [ doi:10.1107/S1600536813009963 ]

5-{4'-[(5-Benzyl-2H-tetrazol-2-yl)methyl]biphenyl-2-yl}-1H-tetrazole monohydrate

G. Y. Meti, S. Jeyaseelan, R. R. Kamble, A. Dorababu and H. C. Devarajegowda

Abstract top

In the title compound, C22H18N8·H2O, the dihedral angle between the tetrazole rings is 69.58 (1)° while the terminal phenyl ring makes dihedral angles of 26.98 (8) and 39.75 (8)° with the other benzene rings. The rings of the biphenyl unit subtend a dihedral angle of 55.23 (8)°. In the crystal, the solvent water molecule is linked to the main molecule via an N-H...O hydrogen bond. In addition, C-H...N and O-H...N hydrogen bonds link the components into chains along [010]. The crystal structure also features C-H...[pi] and [pi]-[pi] interactions, with centroid-centroid distances of 3.6556 (9) and 3.826 (1) Å.

Comment top

Biphenyl and tetrazole and derivatives are present in many of the bioactive heterocyclic compounds which are of wide interest because of their diverse pharmaceutical and clinical applications (Li et al., 2011; Tomori et al., 2000). As the tetrazole moiety functions as a carboxylic acid biostere that imparts the greater metabolic stability and increased absorption relative to the carboxylic acid. Tetrazole linked biphenyl moiety is the building block of all the Antihypertensive saratans (Rao & Babu, 2011; Reddy et al., 2007; Wang et al., 2010; Zhang et al., 2008).

The asymmetric unit of 5-{4'-[(5-Benzyl-2H-tetrazol-2-yl) methyl] biphenyl -2-yl}-1H-tetrazole is shown in Fig. 1. the dihedral angle between the tetrazole (C6/N2/N3–N5, C23/C24/N25–N27) rings is 69.58 (1)° while the terminal phenyl ring (C8–C13) makes dihedral angles of 26.98 (8)° and 39.75 (8)° with the other benzene rings (C15–C20 & C21/C22/C28/C29–C31) and also dihedral angle for biphenyl (C15–C20 & C21\C22\C28\···C31 is 55.23 (8)°. In the crystal, the solvent water molecule is linked to the main molecule via N27—H12···O1 and O1—H11···N27 hydrogen bonds. In addition, there are intermolecular C7—H71···N25 hydrogen. The structure contains π-π, with a centroid–centroid (Cg(1), C6/N2/N3–N5) and (Cg(2), C23/24/N25–N27) distance of 3.6556 (9) Å and 3.826 (1) A° respectively and also C—H···π interactions (Table 1). In the structure, all bond lengths and angles are within normal ranges (Kamble et al., 2011; Zhang et al., 2004). The crystal packing shows stack the molecules along the b axis (Fig. 2).

Related literature top

For general background to biphenyl derivatives, see: Li et al. (2011); Tomori et al. (2000). For the synthesis and biological activity of tetrazole derivatives, see: Kamble et al. (2011); Rao & Babu (2011). For biological properties of tetrazole-derivatized biphenyl moieties, see: Zhang et al. (2008); Wang et al. (2010); Reddy et al. (2007). For related structures, see: Zhang et al. (2004). For the extinction correction, see: Larson (1970).

Experimental top

Prepared using 4'-[(5-benzyl-2H-tetrazol-2-yl) methyl] biphenyl-2-carbonitrile according the method reported by Kamble et al. (2011). (mp. 393 K). Spectral data IR (KBr) cm-1 3421 (N—H), 3125, 2985 (C—H of CH2), 1616 (C=C, str). 1H NMR (CDCl3): 7.3–8.00 (13 H, m Ar—H) 5.7 (2H, s, biphenyl CH2) 4.2 (2H, s, benzyl CH2). MS (m/z, 70 eV): 394 (M+), 382, 318, 235, 205,192, 178 (base peak),165, 91 and 77.

Refinement top

The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically, with N–H = 0.91 Å, O–H = 0.83 Å and 0.96 Å, C—H = 0.93–0.98 Å for aromatic H and C—H = 0.97–0.99 Å for methylene H and refined using a riding model with Uiso(H) = 1.2Ueq(C) for aromatic and methylene H.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: CAMERON (Watkin et al., 1996).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. Crystal packing for the title compound with hydrogen bonds drawn as dashed lines.
5-{4'-[(5-Benzyl-2H-tetrazol-2-yl)methyl]biphenyl-2-yl}-1H-tetrazole monohydrate top
Crystal data top
C22H18N8·H2OF(000) = 864
Mr = 412.45Dx = 1.336 Mg m3
Monoclinic, P21/cMelting point: 393 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 14.7659 (4) ÅCell parameters from 3923 reflections
b = 7.6507 (3) Åθ = 1.4–25.9°
c = 18.2922 (5) ŵ = 0.09 mm1
β = 97.153 (2)°T = 293 K
V = 2050.38 (11) Å3Plate, colourless
Z = 40.24 × 0.20 × 0.12 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3923 independent reflections
Radiation source: fine-focus sealed tube3469 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω/2θ scansθmax = 25.9°, θmin = 1.4°
Absorption correction: ψ scan
(SADABS; Sheldrick, 2007)
h = 1818
Tmin = 0.770, Tmax = 1.000k = 94
18220 measured reflectionsl = 2222
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.048 Method, part 1, Chebychev polynomial, (Watkin, 1994, Prince, 1982) [weight] = 1.0/[A0*T0(x) + A1*T1(x) ··· + An-1]*Tn-1(x)]
where Ai are the Chebychev coefficients listed below and x = F /Fmax Method = Robust Weighting (Prince, 1982) W = [weight] * [1-(deltaF/6*sigmaF)2]2 Ai are: 2.08 2.65 0.641
wR(F2) = 0.107(Δ/σ)max = 0.0003916
S = 1.00Δρmax = 0.49 e Å3
3881 reflectionsΔρmin = 0.41 e Å3
281 parametersExtinction correction: Larson (1970), eq. 22
0 restraintsExtinction coefficient: 194 (8)
Primary atom site location: structure-invariant direct methods
Crystal data top
C22H18N8·H2OV = 2050.38 (11) Å3
Mr = 412.45Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.7659 (4) ŵ = 0.09 mm1
b = 7.6507 (3) ÅT = 293 K
c = 18.2922 (5) Å0.24 × 0.20 × 0.12 mm
β = 97.153 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3923 independent reflections
Absorption correction: ψ scan
(SADABS; Sheldrick, 2007)
3469 reflections with I > 2σ(I)
Tmin = 0.770, Tmax = 1.000Rint = 0.026
18220 measured reflectionsθmax = 25.9°
Refinement top
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.107Δρmax = 0.49 e Å3
S = 1.00Δρmin = 0.41 e Å3
3881 reflectionsAbsolute structure: ?
281 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.6409 (2)0.1472 (2)0.47303 (14)0.1327
N20.83657 (9)0.38128 (17)0.49755 (7)0.0418
N30.90644 (9)0.31880 (16)0.46640 (7)0.0393
N40.98138 (9)0.29937 (19)0.51215 (7)0.0458
N50.96150 (10)0.35174 (19)0.57699 (7)0.0467
C60.87317 (10)0.40044 (19)0.56678 (8)0.0376
C70.82354 (12)0.4669 (2)0.62728 (9)0.0450
C80.84982 (10)0.6537 (2)0.64806 (8)0.0379
C90.89345 (11)0.6936 (2)0.71693 (8)0.0405
C100.91827 (12)0.8634 (2)0.73543 (10)0.0497
C110.89843 (14)0.9950 (2)0.68486 (11)0.0559
C120.85406 (15)0.9565 (2)0.61566 (11)0.0583
C130.82998 (13)0.7868 (2)0.59720 (9)0.0490
C140.90005 (12)0.2733 (2)0.38826 (9)0.0469
C150.83532 (10)0.1230 (2)0.36911 (8)0.0376
C160.85021 (11)0.0387 (2)0.40347 (8)0.0413
C170.79254 (11)0.1773 (2)0.38405 (8)0.0396
C180.71895 (10)0.1599 (2)0.32939 (8)0.0377
C190.70374 (11)0.0023 (2)0.29551 (9)0.0441
C200.76118 (11)0.1420 (2)0.31558 (9)0.0435
C210.66114 (10)0.3118 (2)0.30243 (8)0.0396
C220.61489 (10)0.4190 (2)0.34797 (8)0.0393
C230.61203 (10)0.3818 (2)0.42664 (9)0.0419
N240.61342 (10)0.5040 (2)0.47864 (8)0.0503
N250.60308 (12)0.4293 (3)0.54318 (8)0.0616
N260.59523 (12)0.2645 (3)0.53016 (9)0.0658
N270.60071 (11)0.2297 (2)0.45804 (9)0.0574
C280.56465 (11)0.5620 (2)0.31777 (10)0.0479
C290.55904 (12)0.5987 (3)0.24391 (10)0.0559
C300.60313 (13)0.4927 (3)0.19858 (10)0.0575
C310.65331 (12)0.3514 (2)0.2277 (1)0.0513
H720.83600.38880.66940.0557*
H710.75760.46190.61010.0561*
H910.90830.60170.75350.0474*
H1010.94990.88720.78320.0609*
H1110.91981.11340.69660.0685*
H1210.83971.04800.58000.0720*
H1310.79770.76240.54830.0586*
H1420.96170.24060.38060.0582*
H1410.87690.37830.35990.0583*
H1610.90030.05160.44090.0493*
H1710.80330.28670.40870.0477*
H1910.65370.02020.25690.0536*
H2010.74930.25510.29190.0532*
H2810.53250.63710.34930.0572*
H2910.52200.69620.22320.0682*
H3010.60070.51950.14760.0699*
H3110.68530.27670.19660.0623*
H120.58160.10270.45400.1934*
H2410.62420.62060.47280.0639*
H110.65630.05080.49130.1953*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.203 (3)0.0529 (11)0.150 (2)0.0060 (13)0.0539 (19)0.0055 (11)
N20.0411 (7)0.0413 (7)0.0432 (7)0.0038 (6)0.0065 (5)0.0056 (6)
N30.0433 (7)0.0357 (7)0.0398 (7)0.0059 (5)0.0082 (5)0.0056 (5)
N40.0450 (7)0.0446 (8)0.0475 (8)0.0014 (6)0.0041 (6)0.0028 (6)
N50.0513 (8)0.0472 (8)0.0403 (7)0.0009 (6)0.0000 (6)0.0014 (6)
C60.0474 (8)0.0267 (7)0.0391 (8)0.0051 (6)0.0066 (6)0.0003 (6)
C70.0564 (9)0.0375 (8)0.0431 (8)0.0063 (7)0.0147 (7)0.0016 (7)
C80.0441 (8)0.0344 (8)0.0368 (7)0.0008 (6)0.0118 (6)0.0013 (6)
C90.0450 (8)0.0420 (9)0.0353 (7)0.0063 (7)0.0081 (6)0.0020 (6)
C100.0564 (10)0.0497 (10)0.0419 (8)0.0007 (8)0.0013 (7)0.0093 (7)
C110.0668 (11)0.0369 (9)0.0628 (11)0.0026 (8)0.0030 (9)0.0073 (8)
C120.0781 (13)0.0379 (9)0.0565 (10)0.0010 (9)0.0011 (9)0.0108 (8)
C130.0627 (10)0.0459 (9)0.0369 (8)0.0045 (8)0.0007 (7)0.0036 (7)
C140.0559 (9)0.0470 (9)0.0396 (8)0.0124 (8)0.0128 (7)0.0063 (7)
C150.0427 (8)0.0384 (8)0.0335 (7)0.0038 (6)0.0116 (6)0.0059 (6)
C160.0439 (8)0.0441 (9)0.0346 (7)0.0004 (7)0.0006 (6)0.0040 (6)
C170.0463 (8)0.0362 (8)0.0361 (7)0.0005 (6)0.0039 (6)0.0005 (6)
C180.0382 (7)0.0384 (8)0.0374 (7)0.0011 (6)0.0084 (6)0.0013 (6)
C190.0398 (8)0.0453 (9)0.0458 (9)0.0023 (7)0.0002 (6)0.0038 (7)
C200.0489 (9)0.0352 (8)0.0467 (8)0.0012 (7)0.0074 (7)0.0033 (7)
C210.0350 (7)0.0399 (8)0.0433 (8)0.0007 (6)0.0027 (6)0.0014 (7)
C220.0347 (7)0.0385 (8)0.0442 (8)0.0028 (6)0.0037 (6)0.0013 (7)
C230.0368 (7)0.0419 (9)0.0473 (9)0.0043 (6)0.0067 (6)0.0016 (7)
N240.0527 (8)0.0508 (8)0.0479 (8)0.0012 (7)0.0082 (6)0.0028 (6)
N250.0634 (10)0.0743 (12)0.0490 (9)0.0070 (8)0.0143 (7)0.0005 (8)
N260.0736 (11)0.0714 (12)0.0564 (9)0.0080 (9)0.0236 (8)0.0117 (8)
N270.0702 (10)0.0481 (9)0.0574 (9)0.0025 (7)0.0211 (8)0.0061 (7)
C280.0438 (8)0.0432 (9)0.0557 (10)0.0061 (7)0.0030 (7)0.0012 (7)
C290.0502 (10)0.0518 (10)0.0629 (11)0.0108 (8)0.0038 (8)0.0100 (9)
C300.0583 (10)0.0660 (12)0.0460 (9)0.0093 (9)0.0017 (8)0.0125 (9)
C310.0519 (9)0.0587 (11)0.0434 (8)0.0105 (8)0.0067 (7)0.0026 (8)
Geometric parameters (Å, º) top
O1—H120.963C15—C201.383 (2)
O1—H110.830C16—C171.379 (2)
N2—N31.3281 (18)C16—H1610.947
N2—C61.3218 (19)C17—C181.388 (2)
N3—N41.3101 (19)C17—H1710.954
N3—C141.4626 (19)C18—C191.393 (2)
N4—N51.3191 (19)C18—C211.489 (2)
N5—C61.347 (2)C19—C201.385 (2)
C6—C71.491 (2)C19—H1910.966
C7—C81.517 (2)C20—H2010.974
C7—H720.975C21—C221.405 (2)
C7—H710.985C21—C311.390 (2)
C8—C91.376 (2)C22—C231.473 (2)
C8—C131.386 (2)C22—C281.396 (2)
C9—C101.381 (2)C23—N241.332 (2)
C9—H910.977C23—N271.317 (2)
C10—C111.374 (3)N24—N251.337 (2)
C10—H1010.955N24—H2410.915
C11—C121.382 (3)N25—N261.286 (3)
C11—H1110.975N26—N271.358 (2)
C12—C131.377 (3)C28—C291.372 (3)
C12—H1210.962C28—H2810.978
C13—H1310.978C29—C301.380 (3)
C14—C151.508 (2)C29—H2910.973
C14—H1420.971C30—C311.380 (3)
C14—H1410.994C30—H3010.952
C15—C161.392 (2)C31—H3110.970
H12—O1—H1191.3C15—C16—C17120.61 (14)
N3—N2—C6101.78 (12)C15—C16—H161118.9
N2—N3—N4113.97 (12)C17—C16—H161120.5
N2—N3—C14123.09 (13)C16—C17—C18120.98 (14)
N4—N3—C14122.94 (13)C16—C17—H171119.5
N3—N4—N5105.97 (12)C18—C17—H171119.5
N4—N5—C6106.23 (13)C17—C18—C19118.31 (14)
N5—C6—N2112.06 (14)C17—C18—C21121.92 (14)
N5—C6—C7123.27 (14)C19—C18—C21119.60 (13)
N2—C6—C7124.67 (14)C18—C19—C20120.66 (14)
C6—C7—C8111.93 (13)C18—C19—H191121.2
C6—C7—H72108.4C20—C19—H191118.2
C8—C7—H72111.3C19—C20—C15120.74 (14)
C6—C7—H71107.9C19—C20—H201119.8
C8—C7—H71109.2C15—C20—H201119.4
H72—C7—H71108.0C18—C21—C22124.06 (14)
C7—C8—C9120.94 (14)C18—C21—C31118.03 (14)
C7—C8—C13119.87 (14)C22—C21—C31117.91 (14)
C9—C8—C13119.19 (15)C21—C22—C23122.78 (14)
C8—C9—C10120.84 (15)C21—C22—C28119.75 (15)
C8—C9—H91120.5C23—C22—C28117.37 (14)
C10—C9—H91118.6C22—C23—N24124.20 (15)
C9—C10—C11119.77 (16)C22—C23—N27128.14 (15)
C9—C10—H101119.2N24—C23—N27107.47 (15)
C11—C10—H101121.0C23—N24—N25109.70 (16)
C10—C11—C12119.85 (17)C23—N24—H241126.0
C10—C11—H111119.8N25—N24—H241124.1
C12—C11—H111120.2N24—N25—N26105.85 (15)
C11—C12—C13120.23 (17)N25—N26—N27110.93 (15)
C11—C12—H121120.3N26—N27—C23106.06 (15)
C13—C12—H121119.4C22—C28—C29120.93 (16)
C8—C13—C12120.11 (16)C22—C28—H281120.0
C8—C13—H131120.8C29—C28—H281119.0
C12—C13—H131119.1C28—C29—C30119.74 (16)
N3—C14—C15111.74 (12)C28—C29—H291120.1
N3—C14—H142104.8C30—C29—H291120.1
C15—C14—H142110.4C29—C30—C31119.95 (17)
N3—C14—H141107.1C29—C30—H301120.0
C15—C14—H141109.2C31—C30—H301120.0
H142—C14—H141113.6C21—C31—C30121.71 (17)
C14—C15—C16120.83 (14)C21—C31—H311117.4
C14—C15—C20120.47 (14)C30—C31—H311120.8
C16—C15—C20118.68 (14)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg3, Cg4 and Cg5 are the centroids of the C6/N2–N5 tetrazole ring, the C8–C13 benzene ring, the C15–C20 benzene ring and the C21/C22/C28–C31 benzene ring, respectively.
D—H···AD—HH···AD···AD—H···A
C7—H71···N25i0.992.593.514 (2)156
N24—H241···O1ii0.921.792.703 (2)173
O1—H11···N270.832.352.950 (2)130
C9—H91···Cg4iii0.962.853.418 (1)119
C12—H121···Cg1i0.942.823.602 (1)141
C14—H142···Cg3iv0.962.723.676 (1)171
C29—H291···Cg5v0.962.803.682 (2)153
C31—H311···Cg3vi0.952.963.582 (1)125
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z; (iii) x, y+1/2, z+1/2; (iv) x+2, y+1, z+1; (v) x+1, y1/2, z+1/2; (vi) x, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
Cg1, Cg3, Cg4 and Cg5 are the centroids of the C6/N2–N5 tetrazole ring, the C8–C13 benzene ring, the C15–C20 benzene ring and the C21/C22/C28–C31 benzene ring, respectively.
D—H···AD—HH···AD···AD—H···A
C7—H71···N25i0.9852.5893.514 (2)156.26
N24—H241···O1ii0.9151.7932.703 (2)172.54
O1—H11···N270.8302.3512.950 (2)129.64
C9—H91···Cg4iii0.962.853.418 (1)119
C12—H121···Cg1i0.942.823.602 (1)141
C14—H142···Cg3iv0.962.723.676 (1)171
C29—H291···Cg5v0.962.803.682 (2)153
C31—H311···Cg3vi0.952.963.582 (1)125
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z; (iii) x, y+1/2, z+1/2; (iv) x+2, y+1, z+1; (v) x+1, y1/2, z+1/2; (vi) x, y+1/2, z1/2.
Acknowledgements top

The authors thank the University Sophisticated Instrumental Centre, Karnatak University, Dharwad, for the data collection and Professor T. N. Guru Row, Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, for his constant support.

references
References top

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.

Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.

Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Kamble, R. R., Biradar, D. B., Meti, G. Y., Taj, T., Gireesh, T., Khazi, I. M., Vaidynathan, S. T., Mohandoss, R., Sridhar, B. & Parthasarathi, V. (2011). J. Chem. Sci. 123, 393–401.

Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 291–294. Copenhagen: Munksgaard.

Li, W., Xu, Z., Sun, P., Jiang, X. & Fang, M. (2011). Org. Lett. 13, 1286–1289.

Rao, S. N. & Babu, K. S. (2011). Org. Commun. 4, 105–111.

Reddy, K. S., Srinivasan, N., Reddy, C. R., Kolla, N., Anjaneyulu, Y., Venkatraman, S., Bhattacharya, A. & Mathad, V. T. (2007). Org. Process Res. Dev. 11, 81–85.

Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Tomori, H., Fox, J. M. & Buchwald, S. L. (2000). J. Org. Chem. 65, 5334–5341.

Wang, P., Zheng, G., Wang, Y., Wang, X., Li, Y. & Xiang, W. (2010). Tetrahedron, 66, 5402–5406.

Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.

Zhang, H., Yang, B., Zheng, Y., Yang, G., Ye, L., Ma, Y., Chen, X., Cheng, G. & Liu, S. (2004). J. Phys. Chem. 108, 9571–9573.

Zhang, C. X., Zheng, G. J., Bi, F. Q. & Li, Y. L. (2008). Chin. Chem. Lett. 19, 759–761.