supplementary materials


hg5302 scheme

Acta Cryst. (2013). E69, o656-o657    [ doi:10.1107/S1600536813008532 ]

2-(2,4-Dichlorophenyl)-N-(1,3-thiazol-2-yl)acetamide

P. S. Nayak, B. Narayana, H. S. Yathirajan, J. P. Jasinski and R. J. Butcher

Abstract top

In the title compound, C11H8Cl2N2OS, the mean plane of the dichlorophenyl ring is twisted by 72.4 (1)° from that of the thiazole ring. In the crystal, molecules are linked via pairs of N-H...N hydrogen bonds with an R22(8) graph-set motif and weak C-H...O interactions, forming inversion dimers which stack along the c-axis direction.

Comment top

N-Substituted 2-arylacetamides are very interesting compounds because of their structural similarity to the lateral chain of natural benzylpenicillin (Mijin et al., 2006, 2008). Amides are also used as ligands due to their excellent coordination abilities (Wu et al., 2008, 2010). Crystal structures of some acetamide derivatives viz., (2,2-diphenyl-N-(1,3-thiazol-2-yl)acetamide, 2-(4-chlorophenyl)-N-(1,3-thiazol-2-yl)acetamide, 2-(naphthalen-1-yl)-N-(1,3-thiazol-2-yl)acetamide, N-(1,3-thiazol-2-yl)-2-(2,4,6-trimethyl phenyl)acetamide, 2-(2-fluorophenyl)-N-(1,3-thiazol-2-yl)acetamide (Fun et al., 2012a,b,c,d,e), 2-(2,6-dichlorophenyl)-N-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro- 1H-pyrazol-4-yl)acetamide, 2-(2,4-Dichlorophenyl)-N-(1,5-dimethyl-3-oxo- 2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)acetamide (Butcher et al., 2013a,b) have been reported. In view of the importance of amides, we report herein the crystal structure of the title compound, C11H8Cl2N2OS, (I).

In (I), the mean plane of the dichlorophenyl ring is twisted by 72.4 (1)° from that of the thiazol ring (Fig. 1). Bond lengths are in normal ranges (Allen et al., 1987) In the crystal, the molecules are linked via pairs of N—H···N hydrogen bonds in a R2,2(8)graph-set motif and weak C—H···O intermolecular interactions forming inversion dimers which stack along the c axis (Fig. 2).

Related literature top

For the structural similarity of N-substituted 2-arylacetamides to the lateral chain of natural benzylpenicillin, see: Mijin & Marinkovic (2006); Mijin et al. (2008). For the coordination abilities of amides, see: Wu et al. (2008, 2010). For related structures, see: Fun et al. (2012a,b,c,d,e); Butcher et al. (2013a,b). For standard bond lengths, see: Allen et al. (1987).

Experimental top

2,4-Dichlorophenylacetic acid (0.240 g, 1 mmol) and 2-aminothiazole (0.1 g, 1 mmol), 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride (1.0 g, 0.01 mol) and were dissolved in dichloromethane (20 mL). The mixture was stirred in presence of triethylamine at 273 K for about 3 h. The contents were poured into 100 ml of ice-cold aqueous hydrochloric acid with stirring, which was extracted thrice with dichloromethane (Fig. 3). The organic layer was washed with saturated NaHCO3 solution and brine solution, dried and concentrated under reduced pressure to give the title compound (I). Single crystals were grown from methanol and acetone mixture (1:1) by the slow evaporation method (M.P.: 493–495 K).

Refinement top

All of the H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.95Å (CH), 0.99Å (CH2) or 0.88Å (NH). Isotropic displacement parameters for these atoms were set to 1.18-1.23 (CH, CH2, NH) times Ueq of the parent atom.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labeling scheme and 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed along the a axis. Dashed lines indicate N—H···N intermolecular hydrogen bonds in an R2,2(8) graph-set motif and weak C—H···O intemolecular interactions forming inversion dimers which stack along the c axis.
[Figure 3] Fig. 3. Reaction scheme.
2-(2,4-Dichlorophenyl)-N-(1,3-thiazol-2-yl)acetamide top
Crystal data top
C11H8Cl2N2OSZ = 2
Mr = 287.15F(000) = 292
Triclinic, P1Dx = 1.590 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.3262 (2) ÅCell parameters from 4451 reflections
b = 10.5083 (4) Åθ = 3.8–37.4°
c = 10.8096 (4) ŵ = 0.70 mm1
α = 83.900 (3)°T = 123 K
β = 86.301 (3)°Prism, colorless
γ = 87.279 (4)°0.35 × 0.25 × 0.12 mm
V = 599.83 (4) Å3
Data collection top
Agilent Xcalibur (Ruby, Gemini)
diffractometer
6006 independent reflections
Radiation source: Enhance (Mo) X-ray Source4329 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 10.5081 pixels mm-1θmax = 37.5°, θmin = 3.8°
ω scansh = 88
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
k = 1717
Tmin = 0.873, Tmax = 1.000l = 1811
10769 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0402P)2]
where P = (Fo2 + 2Fc2)/3
6006 reflections(Δ/σ)max = 0.001
154 parametersΔρmax = 0.65 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
C11H8Cl2N2OSγ = 87.279 (4)°
Mr = 287.15V = 599.83 (4) Å3
Triclinic, P1Z = 2
a = 5.3262 (2) ÅMo Kα radiation
b = 10.5083 (4) ŵ = 0.70 mm1
c = 10.8096 (4) ÅT = 123 K
α = 83.900 (3)°0.35 × 0.25 × 0.12 mm
β = 86.301 (3)°
Data collection top
Agilent Xcalibur (Ruby, Gemini)
diffractometer
6006 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
4329 reflections with I > 2σ(I)
Tmin = 0.873, Tmax = 1.000Rint = 0.033
10769 measured reflectionsθmax = 37.5°
Refinement top
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.112Δρmax = 0.65 e Å3
S = 1.07Δρmin = 0.36 e Å3
6006 reflectionsAbsolute structure: ?
154 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.79895 (7)0.48741 (3)0.89686 (3)0.02461 (8)
Cl20.55890 (9)0.83944 (4)0.52220 (4)0.03766 (11)
S11.04354 (7)0.01947 (3)0.74851 (3)0.02147 (8)
O10.79783 (18)0.25361 (10)0.71093 (9)0.0215 (2)
N10.6082 (2)0.11595 (11)0.86027 (10)0.0186 (2)
H1A0.47590.10390.91260.022*
N20.7798 (2)0.08345 (11)0.93865 (10)0.0192 (2)
C10.4325 (2)0.45348 (12)0.74111 (11)0.0171 (2)
C20.6152 (2)0.53376 (12)0.77059 (11)0.0174 (2)
C30.6586 (3)0.65234 (13)0.70372 (12)0.0206 (3)
H3A0.78760.70450.72420.025*
C40.5064 (3)0.69139 (13)0.60622 (12)0.0217 (3)
C50.3151 (3)0.61785 (14)0.57565 (12)0.0222 (3)
H5A0.20960.64780.51020.027*
C60.2813 (3)0.49878 (13)0.64318 (12)0.0199 (2)
H6A0.15220.44690.62230.024*
C70.3992 (2)0.32251 (13)0.80963 (12)0.0191 (2)
H7A0.24540.28660.78290.023*
H7B0.37450.33060.90010.023*
C80.6212 (2)0.23051 (12)0.78742 (11)0.0166 (2)
C90.7900 (2)0.01826 (12)0.85656 (11)0.0170 (2)
C101.1457 (3)0.12670 (14)0.81987 (13)0.0237 (3)
H10A1.29380.17340.79450.028*
C110.9844 (3)0.16548 (13)0.91734 (13)0.0216 (3)
H11A1.01060.24410.96780.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.02368 (17)0.02474 (17)0.02565 (16)0.00123 (13)0.00852 (12)0.00047 (12)
Cl20.0557 (3)0.02104 (18)0.03370 (19)0.00763 (18)0.00098 (18)0.01074 (15)
S10.02054 (16)0.02107 (16)0.02141 (15)0.00019 (13)0.00441 (12)0.00039 (12)
O10.0212 (5)0.0200 (5)0.0211 (4)0.0003 (4)0.0032 (4)0.0045 (4)
N10.0157 (5)0.0160 (5)0.0220 (5)0.0006 (4)0.0036 (4)0.0045 (4)
N20.0183 (5)0.0156 (5)0.0224 (5)0.0004 (4)0.0010 (4)0.0023 (4)
C10.0153 (5)0.0155 (5)0.0193 (5)0.0004 (4)0.0007 (4)0.0018 (4)
C20.0164 (5)0.0166 (5)0.0189 (5)0.0014 (4)0.0016 (4)0.0002 (4)
C30.0206 (6)0.0169 (6)0.0238 (6)0.0017 (5)0.0011 (5)0.0008 (5)
C40.0277 (7)0.0154 (6)0.0201 (5)0.0007 (5)0.0041 (5)0.0024 (4)
C50.0255 (7)0.0208 (6)0.0191 (5)0.0030 (5)0.0022 (5)0.0023 (5)
C60.0180 (6)0.0197 (6)0.0218 (5)0.0002 (5)0.0026 (4)0.0002 (5)
C70.0169 (6)0.0158 (5)0.0231 (6)0.0005 (5)0.0009 (4)0.0036 (4)
C80.0178 (6)0.0148 (5)0.0170 (5)0.0013 (4)0.0026 (4)0.0012 (4)
C90.0155 (5)0.0165 (5)0.0185 (5)0.0015 (4)0.0003 (4)0.0002 (4)
C100.0206 (6)0.0205 (6)0.0291 (6)0.0041 (5)0.0020 (5)0.0027 (5)
C110.0218 (6)0.0166 (6)0.0256 (6)0.0008 (5)0.0007 (5)0.0002 (5)
Geometric parameters (Å, º) top
Cl1—C21.7445 (12)C2—C31.3939 (17)
Cl2—C41.7412 (13)C3—C41.3866 (19)
S1—C101.7243 (14)C3—H3A0.9500
S1—C91.7272 (13)C4—C51.384 (2)
O1—C81.2274 (15)C5—C61.3933 (18)
N1—C81.3687 (15)C5—H5A0.9500
N1—C91.3794 (17)C6—H6A0.9500
N1—H1A0.8800C7—C81.5148 (19)
N2—C91.3155 (15)C7—H7A0.9900
N2—C111.3799 (18)C7—H7B0.9900
C1—C21.3912 (19)C10—C111.3563 (19)
C1—C61.4009 (17)C10—H10A0.9500
C1—C71.5046 (17)C11—H11A0.9500
C10—S1—C988.73 (6)C5—C6—H6A119.1
C8—N1—C9123.92 (11)C1—C6—H6A119.1
C8—N1—H1A118.0C1—C7—C8113.05 (10)
C9—N1—H1A118.0C1—C7—H7A109.0
C9—N2—C11109.73 (11)C8—C7—H7A109.0
C2—C1—C6117.23 (11)C1—C7—H7B109.0
C2—C1—C7121.89 (11)C8—C7—H7B109.0
C6—C1—C7120.88 (12)H7A—C7—H7B107.8
C1—C2—C3122.75 (12)O1—C8—N1121.81 (12)
C1—C2—Cl1119.76 (9)O1—C8—C7124.30 (11)
C3—C2—Cl1117.49 (10)N1—C8—C7113.88 (10)
C4—C3—C2117.54 (13)N2—C9—N1120.68 (11)
C4—C3—H3A121.2N2—C9—S1115.46 (10)
C2—C3—H3A121.2N1—C9—S1123.86 (9)
C5—C4—C3122.29 (12)C11—C10—S1110.33 (11)
C5—C4—Cl2119.82 (10)C11—C10—H10A124.8
C3—C4—Cl2117.89 (11)S1—C10—H10A124.8
C4—C5—C6118.37 (12)C10—C11—N2115.75 (12)
C4—C5—H5A120.8C10—C11—H11A122.1
C6—C5—H5A120.8N2—C11—H11A122.1
C5—C6—C1121.75 (13)
C6—C1—C2—C32.9 (2)C6—C1—C7—C8112.46 (14)
C7—C1—C2—C3176.27 (13)C9—N1—C8—O11.1 (2)
C6—C1—C2—Cl1176.52 (10)C9—N1—C8—C7179.52 (12)
C7—C1—C2—Cl14.33 (19)C1—C7—C8—O18.1 (2)
C1—C2—C3—C41.7 (2)C1—C7—C8—N1172.59 (11)
Cl1—C2—C3—C4177.67 (11)C11—N2—C9—N1178.62 (12)
C2—C3—C4—C50.9 (2)C11—N2—C9—S10.80 (15)
C2—C3—C4—Cl2179.95 (11)C8—N1—C9—N2172.32 (12)
C3—C4—C5—C62.1 (2)C8—N1—C9—S17.0 (2)
Cl2—C4—C5—C6178.79 (11)C10—S1—C9—N20.69 (11)
C4—C5—C6—C10.9 (2)C10—S1—C9—N1178.71 (13)
C2—C1—C6—C51.5 (2)C9—S1—C10—C110.35 (12)
C7—C1—C6—C5177.65 (13)S1—C10—C11—N20.02 (18)
C2—C1—C7—C866.66 (17)C9—N2—C11—C100.52 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···O1i0.952.503.3253 (15)145
N1—H1A···N2ii0.882.042.9052 (15)168
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···O1i0.952.503.3253 (15)144.7
N1—H1A···N2ii0.882.042.9052 (15)167.9
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+2.
Acknowledgements top

BN thanks the UGC for financial assistance through the BSR one-time grant for the purchase of chemicals. PSN thanks Mangalore University for research facilities and DST–PURSE financial assistance. RJB acknowledges the NSF–MRI program (grant No. CHE-0619278) for funds to purchase the X-ray diffractometer.

references
References top

Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Butcher, R. J., Mahan, A., Nayak, P. S., Narayana, B. & Yathirajan, H. S. (2013a). Acta Cryst. E69, o46–o47.

Butcher, R. J., Mahan, A., Nayak, P. S., Narayana, B. & Yathirajan, H. S. (2013b). Acta Cryst. E69, o39.

Fun, H.-K., Ooi, C. W., Nayak, P. S., Narayana, B. & Sarojini, B. K. (2012a). Acta Cryst. E68, o1312–o1313.

Fun, H.-K., Quah, C. K., Nayak, P. S., Narayana, B. & Sarojini, B. K. (2012b). Acta Cryst. E68, o2679.

Fun, H.-K., Quah, C. K., Nayak, P. S., Narayana, B. & Sarojini, B. K. (2012c). Acta Cryst. E68, o2464.

Fun, H.-K., Quah, C. K., Nayak, P. S., Narayana, B. & Sarojini, B. K. (2012d). Acta Cryst. E68, o2461.

Fun, H.-K., Quah, C. K., Nayak, P. S., Narayana, B. & Sarojini, B. K. (2012e). Acta Cryst. E68, o2565.

Mijin, D. & Marinkovic, A. (2006). Synth. Commun. 36, 193–198.

Mijin, D. Z., Prascevic, M. & Petrovic, S. D. (2008). J. Serb. Chem. Soc. 73, 945–950.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Wu, W.-N., Cheng, F.-X., Yan, L. & Tang, N. (2008). J. Coord. Chem. 61, 2207–2215.

Wu, W.-N., Wang, Y., Zhang, A.-Y., Zhao, R.-Q. & Wang, Q.-F. (2010). Acta Cryst. E66, m288.