organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 3-(4-chloro­benzo­yl)-1-(4-chloro­benz­yl)-4-(4-chloro­phen­yl)-2,2-dioxo-3,4,6,7,8,8a-hexa­hydro-1H-pyrrolo­[2,1-c][1,4]thia­zine-1-carboxyl­ate

aDepartment of Physics, Sri Subramanya College of Engineering & Technology, Palani 624 615, India, bDepartment of Physics, University College of Engineering, Nagercoil, Anna University, Tirunelveli Region, Nagercoil 629 004, India, cDepartment of Physics, Kalasalingam University, Krishnan Koil 626 190, India, and dDepartment of Organic Chemistry, Madurai Kamaraj University, Madurai 625 021, India
*Correspondence e-mail: athi81s@yahoo.co.in

(Received 31 March 2013; accepted 3 April 2013; online 13 April 2013)

In the title compound, C30H28Cl3NO5S, the pyrrolidine ring adopts an envelope conformation (with the N atom as the flap) and the thia­zine ring is in a distorted chair conformation. The mol­ecular structure shows three intra­molecular C—H⋯O inter­actions leading to self-associated ring S(6) and two S(7) motifs. In the crystal, the molecules are linked by C—H⋯O and C—H⋯Cl inter­actions. Two R22(10) and one R22(16) centrosymmetrically related ring motifs are observed in the unit cell and they are connected through C(6) and C(11) chain motifs extending along the b and c axes, respectively.

Related literature

For the biological and pharmacological properties of thia­zine, pyrrolidine and pyrrolo­thia­zine compounds, see: Armenise et al. (1991[Armenise, D., Trapani, G., Arrivo, V. & Morlacchi, F. (1991). Il Farmaco, 46, 1023-1032.], 1998[Armenise, D., Trapani, G., Stasi, F. & Morlacchi, F. (1998). Arch. Pharm. 331, 54-58.]); Hemming & Patel (2004[Hemming, K. & Patel, N. (2004). Tetrahedron Lett. 45, 7553-7556.]); Koketsu et al. (2002[Koketsu, M., Tanaka, K., Takenaka, Y., Kwong, C. D. & Ishihara, H. (2002). Eur. J. Pharm. Sci. 15, 307-310.]); Kueh et al. (2003[Kueh, A. J., Marriott, P. J., Wynne, P. M. & Vine, J. H. (2003). J. Chromatogr. A, 1000, 109-124.]); Moriyama et al. (2004[Moriyama, H., Tsukida, T., Inoue, Y., Yokota, K., Yoshino, K., Kondo, H., Miura, N. & Nishimura, S. (2004). J. Med. Chem. 47, 1930-1938.]). For ring puckering analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For hydrogen-bonding inter­actions, see: Desiraju & Steiner (1999[Desiraju, G. R. & Steiner, T. (1999). In The Weak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford University Press Inc.]). For ring and chain motifs,see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]).

[Scheme 1]

Experimental

Crystal data
  • C30H28Cl3NO5S

  • Mr = 620.94

  • Monoclinic, P 21 /c

  • a = 14.0476 (8) Å

  • b = 17.1365 (9) Å

  • c = 13.8230 (8) Å

  • β = 115.893 (1)°

  • V = 2993.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.42 mm−1

  • T = 293 K

  • 0.25 × 0.21 × 0.19 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • 28492 measured reflections

  • 5280 independent reflections

  • 4593 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.144

  • S = 1.04

  • 5280 reflections

  • 362 parameters

  • H-atom parameters constrained

  • Δρmax = 0.62 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6B⋯O41 0.97 2.38 3.051 (3) 126
C37—H37⋯O2 0.93 2.53 3.213 (3) 131
C50—H50⋯O41 0.93 2.58 3.282 (4) 132
C6—H6A⋯O3i 0.97 2.70 3.582 (3) 151
C5—H5⋯O1i 0.98 2.51 3.320 (3) 140
C8—H8B⋯Cl3ii 0.97 2.86 3.678 (3) 143
C36—H36⋯O3iii 0.93 2.65 3.557 (3) 166
C42—H42B⋯O42iv 0.97 2.61 3.478 (5) 148
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) -x+1, -y+1, -z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL/PC (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL/PC; molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL/PC.

Supporting information


Comment top

Thiazines occupy a unique place in medicinal chemistry since they show diverse biological properties such as antifungal, anti-inflammatory, anti-HIV, anti-psoriatic, sedative, neuroleptic, antitussive and anti-tubercular (Moriyama et al., 2004; Koketsu et al., 2002). In addition, compounds with a pyrrolidine sub-structure exhibit anti-tumour, analgesic, antidepressant, antihistaminic, anti-asthmatic and anti-Parkinson activities (Hemming & Patel, 2004; Kueh et al., 2003). The pyrrolothiazine scaffold also shows anti-inflammatory, anti-fungal and anti-microbial activities (Armenise et al., 1998; Armenise et al., 1991).

The configuration and conformation of the title compound, (I) and the atom numbering scheme are shown in the ORTEP drawing (Fig. 1). The packing diagram of the title compound is shown in Fig. 2. The five-membered pyrrolidine ring is in envelope conformation [θ2 = 0.413 (2) Å, φ2 = 153 (1)°] and the six-membered thazine ring adopts a slightly distorted chair conformation [θ2 = 0.101 (2) Å, φ2 = 101 (1)° and θ3 = 0.661 (2) %A; Cremer & Pople, 1975]. The dihedral angle between the phenyl rings are observed to be 54.3 (1)°. The planes of the carboxylate groups are oriented with a dihedral angle of 22.3 (4)°.

The molecular structure conformation of the title compound features two intramolecular C—H···O interactions (Desiraju & Steiner, 1999). These intramolecular interactions are making self-associated ring S(6) and S(7) motifs (Table 1). Further, the crystal packing is stabilized through intermolecular C—H···O and C—H···Cl interactions. There are three centrosymmetric dimers are observed in the crystal, viz., two ring R22(10) motifs and one R22(16) motif (Etter et al., 1990), formed through C5—H5···O1i, C42—H42···O42i and C6—H6A···O3iv interactions respectively. The C—H···Cl interactions connect the molecules along b-axis of unit cell and making a zigzag chain C(11) motif. Another chain C(6) motif is observed through C36—H36···O3iii interaction, which is running along c-axis (For symmetry codes: see Table 1). Thus, the centrosymmetrically related dimers are tailored through these two chain motifs and the packing is stabilized.

Related literature top

For the biological and pharmacological importance of thiazine, pyrrolidine and pyrrolothiazine compounds, see: Armenise et al. (1991, 1998); Hemming & Patel (2004); Koketsu et al. (2002); Kueh et al. (2003); Moriyama et al. (2004). For ring puckering analysis, see: Cremer & Pople (1975). For hydrogen-bonding interactions, see: Desiraju & Steiner (1999). For ring and chain motifs,see: Etter et al. (1990).

Experimental top

A mixture of ethyl 2-[2-(4-chlorophenyl)-2-oxoethyl]sulfonylacetate (1.6 mmol), p-chloro benzaldehyde (3.2 mmol) and pyrrolidine (1.6 mmol) was dissolved in ethanol (10 ml), heated until the solution turned yellow and stirred at room temperature for 2–5 days. After completion of the reaction, the crude product was purified using flash column chromatography on silica gel (230–400 mesh) with petroleum ether and ethyl acetate mixture (95:5 v/v) as an eluent and subsequently it was recrystallized from ethanol.

Refinement top

All the H atoms were positioned geometrically and refined by the riding model approximation with d(C—H) = 0.93 - 0.98 Å and Uiso(H) = 1.2-1.5Ueq(C).

Structure description top

Thiazines occupy a unique place in medicinal chemistry since they show diverse biological properties such as antifungal, anti-inflammatory, anti-HIV, anti-psoriatic, sedative, neuroleptic, antitussive and anti-tubercular (Moriyama et al., 2004; Koketsu et al., 2002). In addition, compounds with a pyrrolidine sub-structure exhibit anti-tumour, analgesic, antidepressant, antihistaminic, anti-asthmatic and anti-Parkinson activities (Hemming & Patel, 2004; Kueh et al., 2003). The pyrrolothiazine scaffold also shows anti-inflammatory, anti-fungal and anti-microbial activities (Armenise et al., 1998; Armenise et al., 1991).

The configuration and conformation of the title compound, (I) and the atom numbering scheme are shown in the ORTEP drawing (Fig. 1). The packing diagram of the title compound is shown in Fig. 2. The five-membered pyrrolidine ring is in envelope conformation [θ2 = 0.413 (2) Å, φ2 = 153 (1)°] and the six-membered thazine ring adopts a slightly distorted chair conformation [θ2 = 0.101 (2) Å, φ2 = 101 (1)° and θ3 = 0.661 (2) %A; Cremer & Pople, 1975]. The dihedral angle between the phenyl rings are observed to be 54.3 (1)°. The planes of the carboxylate groups are oriented with a dihedral angle of 22.3 (4)°.

The molecular structure conformation of the title compound features two intramolecular C—H···O interactions (Desiraju & Steiner, 1999). These intramolecular interactions are making self-associated ring S(6) and S(7) motifs (Table 1). Further, the crystal packing is stabilized through intermolecular C—H···O and C—H···Cl interactions. There are three centrosymmetric dimers are observed in the crystal, viz., two ring R22(10) motifs and one R22(16) motif (Etter et al., 1990), formed through C5—H5···O1i, C42—H42···O42i and C6—H6A···O3iv interactions respectively. The C—H···Cl interactions connect the molecules along b-axis of unit cell and making a zigzag chain C(11) motif. Another chain C(6) motif is observed through C36—H36···O3iii interaction, which is running along c-axis (For symmetry codes: see Table 1). Thus, the centrosymmetrically related dimers are tailored through these two chain motifs and the packing is stabilized.

For the biological and pharmacological importance of thiazine, pyrrolidine and pyrrolothiazine compounds, see: Armenise et al. (1991, 1998); Hemming & Patel (2004); Koketsu et al. (2002); Kueh et al. (2003); Moriyama et al. (2004). For ring puckering analysis, see: Cremer & Pople (1975). For hydrogen-bonding interactions, see: Desiraju & Steiner (1999). For ring and chain motifs,see: Etter et al. (1990).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL/PC (Sheldrick, 2008); program(s) used to refine structure: SHELXTL/PC (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL/PC (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom numbering scheme and 50% probability displacement ellipsoids. H-bonds are shown as dashed lines.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed down the a-axis. H-bonds are shown as dashed lines.
Ethyl 3-(4-chlorobenzoyl)-1-(4-chlorobenzyl)-4-(4-chlorophenyl)-2,2-dioxo-3,4,6,7,8,8a-hexahydro-1H-pyrrolo[2,1-c][1,4]thiazine-1-carboxylate top
Crystal data top
C30H28Cl3NO5SF(000) = 1288
Mr = 620.94Dx = 1.378 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2846 reflections
a = 14.0476 (8) Åθ = 2.1–23.6°
b = 17.1365 (9) ŵ = 0.42 mm1
c = 13.8230 (8) ÅT = 293 K
β = 115.893 (1)°Block, colourless
V = 2993.5 (3) Å30.25 × 0.21 × 0.19 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4593 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.022
Graphite monochromatorθmax = 25.0°, θmin = 2.0°
ω scansh = 1616
28492 measured reflectionsk = 2020
5280 independent reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0788P)2 + 1.5863P]
where P = (Fo2 + 2Fc2)/3
5280 reflections(Δ/σ)max < 0.001
362 parametersΔρmax = 0.62 e Å3
0 restraintsΔρmin = 0.47 e Å3
Crystal data top
C30H28Cl3NO5SV = 2993.5 (3) Å3
Mr = 620.94Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.0476 (8) ŵ = 0.42 mm1
b = 17.1365 (9) ÅT = 293 K
c = 13.8230 (8) Å0.25 × 0.21 × 0.19 mm
β = 115.893 (1)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4593 reflections with I > 2σ(I)
28492 measured reflectionsRint = 0.022
5280 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.144H-atom parameters constrained
S = 1.04Δρmax = 0.62 e Å3
5280 reflectionsΔρmin = 0.47 e Å3
362 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C20.30396 (17)0.51264 (12)0.30011 (17)0.0434 (5)
H20.32620.50690.37750.052*
C30.32692 (17)0.43589 (12)0.25525 (18)0.0421 (5)
H30.29360.43860.17650.051*
C40.52037 (17)0.51148 (13)0.28742 (17)0.0462 (5)
C50.47658 (18)0.57139 (13)0.34189 (18)0.0464 (5)
H50.49310.55260.41450.056*
C60.5171 (2)0.65580 (14)0.3507 (2)0.0581 (6)
H6A0.56230.66920.42500.070*
H6B0.55670.66260.30880.070*
C70.4188 (3)0.70537 (18)0.3067 (4)0.0956 (12)
H7A0.42880.75200.34990.115*
H7B0.40010.72060.23310.115*
C80.3344 (2)0.65402 (14)0.3125 (2)0.0639 (7)
H8A0.33900.65280.38450.077*
H8B0.26420.67090.26230.077*
C210.18549 (17)0.52703 (12)0.24388 (18)0.0451 (5)
C220.13824 (19)0.55639 (15)0.1399 (2)0.0539 (6)
H220.17980.56660.10430.065*
C230.0312 (2)0.57072 (16)0.0883 (2)0.0597 (6)
H230.00060.59140.01920.072*
C240.02958 (19)0.55391 (16)0.1408 (2)0.0596 (6)
C250.0141 (2)0.52410 (16)0.2430 (2)0.0626 (7)
H250.02830.51250.27730.075*
C260.12222 (19)0.51156 (15)0.2946 (2)0.0546 (6)
H260.15260.49240.36460.066*
C310.27926 (17)0.36683 (12)0.29028 (18)0.0441 (5)
C320.22590 (18)0.30213 (13)0.21383 (18)0.0470 (5)
C330.1529 (2)0.25797 (17)0.2318 (2)0.0703 (8)
H330.13600.27140.28770.084*
C340.1049 (3)0.19463 (18)0.1685 (3)0.0780 (9)
H340.05510.16560.18050.094*
C350.1315 (2)0.17463 (15)0.0871 (2)0.0607 (6)
C360.2019 (2)0.21813 (16)0.0660 (2)0.0589 (6)
H360.21840.20440.00990.071*
C370.24830 (19)0.28249 (14)0.12862 (19)0.0521 (5)
H370.29500.31300.11370.062*
C410.47985 (19)0.53106 (14)0.16841 (19)0.0514 (5)
C420.5045 (3)0.6192 (2)0.0487 (2)0.0892 (10)
H42A0.43570.64400.02310.107*
H42B0.50070.57800.00100.107*
C430.5867 (4)0.6772 (3)0.0586 (4)0.1303 (18)
H43A0.57810.72330.09340.195*
H43B0.57970.69040.01170.195*
H43C0.65560.65540.10050.195*
C440.64259 (18)0.50781 (16)0.3518 (2)0.0579 (6)
H44A0.67070.55810.34490.069*
H44B0.65890.50120.42710.069*
C450.7021 (2)0.44590 (17)0.3230 (3)0.0659 (7)
C460.7454 (2)0.3830 (2)0.3891 (3)0.0887 (10)
H460.73300.37690.44950.106*
C470.8069 (3)0.3284 (2)0.3689 (5)0.1182 (16)
H470.83550.28630.41500.142*
C480.8248 (3)0.3370 (3)0.2819 (5)0.1174 (18)
C490.7820 (3)0.3981 (3)0.2116 (5)0.1128 (15)
H490.79370.40290.15070.135*
C500.7208 (3)0.4527 (2)0.2339 (3)0.0890 (10)
H500.69200.49460.18740.107*
N10.36103 (15)0.57763 (10)0.28163 (15)0.0454 (4)
S10.46708 (4)0.41746 (3)0.30207 (5)0.04713 (18)
Cl10.16584 (6)0.56953 (6)0.07504 (8)0.0933 (3)
Cl20.07475 (7)0.09158 (5)0.01151 (8)0.0880 (3)
Cl30.90614 (12)0.27103 (8)0.2570 (2)0.1971 (10)
O10.51209 (14)0.40207 (10)0.41537 (14)0.0607 (4)
O20.47986 (14)0.35984 (11)0.23381 (16)0.0647 (5)
O30.28270 (14)0.36726 (10)0.37925 (13)0.0571 (4)
O410.53708 (16)0.58805 (11)0.15630 (14)0.0672 (5)
O420.40585 (15)0.50130 (12)0.09663 (14)0.0698 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0436 (11)0.0422 (11)0.0471 (11)0.0010 (9)0.0222 (9)0.0014 (9)
C30.0413 (11)0.0399 (11)0.0474 (11)0.0022 (9)0.0215 (9)0.0018 (9)
C40.0414 (11)0.0481 (12)0.0507 (12)0.0082 (9)0.0216 (10)0.0057 (9)
C50.0440 (12)0.0467 (12)0.0465 (12)0.0054 (9)0.0179 (9)0.0058 (9)
C60.0556 (14)0.0497 (13)0.0667 (15)0.0133 (11)0.0247 (12)0.0127 (11)
C70.0680 (19)0.0485 (16)0.148 (3)0.0096 (14)0.027 (2)0.0009 (18)
C80.0571 (15)0.0415 (12)0.0856 (18)0.0015 (11)0.0243 (13)0.0055 (12)
C210.0455 (11)0.0393 (11)0.0518 (12)0.0002 (9)0.0225 (10)0.0037 (9)
C220.0509 (13)0.0583 (14)0.0554 (13)0.0026 (11)0.0259 (11)0.0010 (11)
C230.0565 (15)0.0637 (15)0.0526 (14)0.0005 (12)0.0181 (11)0.0019 (11)
C240.0437 (13)0.0611 (15)0.0692 (16)0.0050 (11)0.0202 (12)0.0023 (12)
C250.0525 (14)0.0666 (16)0.0780 (17)0.0067 (12)0.0372 (13)0.0091 (13)
C260.0524 (13)0.0561 (14)0.0605 (14)0.0065 (11)0.0296 (11)0.0077 (11)
C310.0434 (11)0.0423 (11)0.0506 (12)0.0030 (9)0.0241 (9)0.0027 (9)
C320.0462 (12)0.0414 (11)0.0558 (13)0.0014 (9)0.0245 (10)0.0004 (9)
C330.0788 (19)0.0686 (17)0.0830 (18)0.0229 (15)0.0534 (16)0.0172 (14)
C340.080 (2)0.0710 (18)0.099 (2)0.0318 (16)0.0541 (18)0.0211 (16)
C350.0526 (14)0.0492 (13)0.0745 (16)0.0042 (11)0.0224 (12)0.0125 (12)
C360.0558 (14)0.0625 (15)0.0603 (14)0.0016 (12)0.0272 (12)0.0124 (12)
C370.0509 (13)0.0534 (13)0.0568 (13)0.0055 (10)0.0281 (11)0.0031 (11)
C410.0499 (13)0.0566 (13)0.0526 (13)0.0084 (11)0.0269 (11)0.0071 (11)
C420.117 (3)0.092 (2)0.0600 (17)0.030 (2)0.0404 (18)0.0024 (16)
C430.130 (4)0.126 (4)0.130 (4)0.023 (3)0.052 (3)0.046 (3)
C440.0408 (12)0.0670 (16)0.0617 (14)0.0076 (11)0.0186 (11)0.0077 (12)
C450.0390 (12)0.0688 (17)0.0889 (19)0.0104 (12)0.0270 (13)0.0145 (14)
C460.0550 (17)0.085 (2)0.119 (3)0.0066 (16)0.0307 (17)0.004 (2)
C470.064 (2)0.080 (3)0.207 (5)0.0059 (18)0.055 (3)0.001 (3)
C480.064 (2)0.074 (2)0.235 (6)0.0205 (18)0.084 (3)0.046 (3)
C490.098 (3)0.104 (3)0.180 (5)0.026 (2)0.101 (3)0.043 (3)
C500.075 (2)0.090 (2)0.126 (3)0.0059 (17)0.066 (2)0.014 (2)
N10.0441 (10)0.0391 (9)0.0520 (10)0.0027 (7)0.0200 (8)0.0019 (8)
S10.0422 (3)0.0435 (3)0.0578 (4)0.0003 (2)0.0238 (3)0.0024 (2)
Cl10.0474 (4)0.1287 (8)0.0944 (6)0.0176 (4)0.0223 (4)0.0155 (5)
Cl20.0776 (5)0.0677 (5)0.1101 (7)0.0189 (4)0.0330 (5)0.0361 (4)
Cl30.1240 (10)0.1021 (9)0.429 (3)0.0200 (7)0.1794 (16)0.0818 (13)
O10.0545 (10)0.0600 (10)0.0626 (10)0.0061 (8)0.0209 (8)0.0127 (8)
O20.0539 (10)0.0556 (10)0.0929 (13)0.0025 (8)0.0398 (9)0.0198 (9)
O30.0714 (11)0.0530 (9)0.0562 (10)0.0058 (8)0.0363 (9)0.0006 (7)
O410.0766 (12)0.0707 (12)0.0566 (10)0.0256 (10)0.0314 (9)0.0020 (8)
O420.0675 (11)0.0886 (14)0.0498 (9)0.0284 (10)0.0224 (9)0.0113 (9)
Geometric parameters (Å, º) top
C2—N11.459 (3)C32—C331.382 (3)
C2—C211.518 (3)C32—C371.387 (3)
C2—C31.547 (3)C33—C341.372 (4)
C2—H20.9800C33—H330.9300
C3—C311.538 (3)C34—C351.375 (4)
C3—S11.812 (2)C34—H340.9300
C3—H30.9800C35—C361.368 (4)
C4—C411.525 (3)C35—Cl21.739 (3)
C4—C51.551 (3)C36—C371.378 (3)
C4—C441.552 (3)C36—H360.9300
C4—S11.825 (2)C37—H370.9300
C5—N11.469 (3)C41—O421.193 (3)
C5—C61.540 (3)C41—O411.321 (3)
C5—H50.9800C42—O411.453 (3)
C6—C71.505 (4)C42—C431.483 (5)
C6—H6A0.9700C42—H42A0.9700
C6—H6B0.9700C42—H42B0.9700
C7—C81.505 (4)C43—H43A0.9600
C7—H7A0.9700C43—H43B0.9600
C7—H7B0.9700C43—H43C0.9600
C8—N11.475 (3)C44—C451.508 (4)
C8—H8A0.9700C44—H44A0.9700
C8—H8B0.9700C44—H44B0.9700
C21—C261.377 (3)C45—C461.372 (5)
C21—C221.388 (3)C45—C501.372 (5)
C22—C231.376 (4)C46—C471.383 (5)
C22—H220.9300C46—H460.9300
C23—C241.370 (4)C47—C481.340 (7)
C23—H230.9300C47—H470.9300
C24—C251.370 (4)C48—C491.375 (7)
C24—Cl11.744 (2)C48—Cl31.745 (4)
C25—C261.384 (3)C49—C501.393 (5)
C25—H250.9300C49—H490.9300
C26—H260.9300C50—H500.9300
C31—O31.209 (3)S1—O21.4302 (18)
C31—C321.489 (3)S1—O11.4343 (18)
N1—C2—C21110.48 (18)C37—C32—C31123.6 (2)
N1—C2—C3110.62 (17)C34—C33—C32120.9 (3)
C21—C2—C3107.86 (17)C34—C33—H33119.5
N1—C2—H2109.3C32—C33—H33119.5
C21—C2—H2109.3C33—C34—C35119.1 (3)
C3—C2—H2109.3C33—C34—H34120.5
C31—C3—C2109.41 (17)C35—C34—H34120.5
C31—C3—S1107.94 (14)C36—C35—C34121.3 (2)
C2—C3—S1112.91 (14)C36—C35—Cl2120.2 (2)
C31—C3—H3108.8C34—C35—Cl2118.6 (2)
C2—C3—H3108.8C35—C36—C37119.3 (2)
S1—C3—H3108.8C35—C36—H36120.3
C41—C4—C5109.74 (19)C37—C36—H36120.3
C41—C4—C44115.21 (19)C36—C37—C32120.5 (2)
C5—C4—C44108.81 (18)C36—C37—H37119.7
C41—C4—S1109.64 (15)C32—C37—H37119.7
C5—C4—S1105.17 (14)O42—C41—O41124.6 (2)
C44—C4—S1107.77 (17)O42—C41—C4125.6 (2)
N1—C5—C6104.79 (18)O41—C41—C4109.77 (19)
N1—C5—C4110.32 (17)O41—C42—C43105.5 (3)
C6—C5—C4116.68 (19)O41—C42—H42A110.6
N1—C5—H5108.3C43—C42—H42A110.6
C6—C5—H5108.3O41—C42—H42B110.6
C4—C5—H5108.3C43—C42—H42B110.6
C7—C6—C5104.8 (2)H42A—C42—H42B108.8
C7—C6—H6A110.8C42—C43—H43A109.5
C5—C6—H6A110.8C42—C43—H43B109.5
C7—C6—H6B110.8H43A—C43—H43B109.5
C5—C6—H6B110.8C42—C43—H43C109.5
H6A—C6—H6B108.9H43A—C43—H43C109.5
C8—C7—C6104.7 (2)H43B—C43—H43C109.5
C8—C7—H7A110.8C45—C44—C4118.6 (2)
C6—C7—H7A110.8C45—C44—H44A107.7
C8—C7—H7B110.8C4—C44—H44A107.7
C6—C7—H7B110.8C45—C44—H44B107.7
H7A—C7—H7B108.9C4—C44—H44B107.7
N1—C8—C7101.5 (2)H44A—C44—H44B107.1
N1—C8—H8A111.5C46—C45—C50117.5 (3)
C7—C8—H8A111.5C46—C45—C44120.8 (3)
N1—C8—H8B111.5C50—C45—C44121.5 (3)
C7—C8—H8B111.5C45—C46—C47122.1 (4)
H8A—C8—H8B109.3C45—C46—H46118.9
C26—C21—C22118.3 (2)C47—C46—H46118.9
C26—C21—C2121.0 (2)C48—C47—C46119.0 (4)
C22—C21—C2120.7 (2)C48—C47—H47120.5
C23—C22—C21121.4 (2)C46—C47—H47120.5
C23—C22—H22119.3C47—C48—C49121.5 (4)
C21—C22—H22119.3C47—C48—Cl3120.0 (5)
C24—C23—C22118.7 (2)C49—C48—Cl3118.5 (5)
C24—C23—H23120.6C48—C49—C50118.5 (4)
C22—C23—H23120.6C48—C49—H49120.7
C23—C24—C25121.5 (2)C50—C49—H49120.7
C23—C24—Cl1119.2 (2)C45—C50—C49121.3 (4)
C25—C24—Cl1119.4 (2)C45—C50—H50119.4
C24—C25—C26119.1 (2)C49—C50—H50119.4
C24—C25—H25120.5C2—N1—C5113.62 (17)
C26—C25—H25120.5C2—N1—C8113.53 (18)
C21—C26—C25121.0 (2)C5—N1—C8104.91 (17)
C21—C26—H26119.5O2—S1—O1118.10 (12)
C25—C26—H26119.5O2—S1—C3108.33 (10)
O3—C31—C32120.7 (2)O1—S1—C3108.31 (10)
O3—C31—C3119.06 (19)O2—S1—C4111.14 (11)
C32—C31—C3120.19 (19)O1—S1—C4106.08 (11)
C33—C32—C37118.8 (2)C3—S1—C4103.94 (10)
C33—C32—C31117.6 (2)C41—O41—C42117.7 (2)
N1—C2—C3—C31171.76 (17)S1—C4—C41—O4217.2 (3)
C21—C2—C3—C3167.3 (2)C5—C4—C41—O4180.3 (2)
N1—C2—C3—S151.5 (2)C44—C4—C41—O4142.9 (3)
C21—C2—C3—S1172.46 (14)S1—C4—C41—O41164.69 (17)
C41—C4—C5—N151.9 (2)C41—C4—C44—C4564.2 (3)
C44—C4—C5—N1178.80 (18)C5—C4—C44—C45172.1 (2)
S1—C4—C5—N166.0 (2)S1—C4—C44—C4558.5 (3)
C41—C4—C5—C667.5 (2)C4—C44—C45—C46107.4 (3)
C44—C4—C5—C659.4 (3)C4—C44—C45—C5076.8 (3)
S1—C4—C5—C6174.66 (17)C50—C45—C46—C470.8 (5)
N1—C5—C6—C77.3 (3)C44—C45—C46—C47175.1 (3)
C4—C5—C6—C7129.7 (3)C45—C46—C47—C480.1 (6)
C5—C6—C7—C819.4 (3)C46—C47—C48—C491.0 (6)
C6—C7—C8—N138.9 (3)C46—C47—C48—Cl3177.6 (3)
N1—C2—C21—C26136.5 (2)C47—C48—C49—C501.4 (6)
C3—C2—C21—C26102.5 (2)Cl3—C48—C49—C50177.3 (3)
N1—C2—C21—C2243.3 (3)C46—C45—C50—C490.4 (5)
C3—C2—C21—C2277.7 (2)C44—C45—C50—C49175.5 (3)
C26—C21—C22—C230.7 (4)C48—C49—C50—C450.7 (6)
C2—C21—C22—C23179.1 (2)C21—C2—N1—C5174.57 (17)
C21—C22—C23—C241.3 (4)C3—C2—N1—C566.1 (2)
C22—C23—C24—C250.6 (4)C21—C2—N1—C854.8 (2)
C22—C23—C24—Cl1178.4 (2)C3—C2—N1—C8174.15 (19)
C23—C24—C25—C260.7 (4)C6—C5—N1—C2156.72 (19)
Cl1—C24—C25—C26179.8 (2)C4—C5—N1—C276.9 (2)
C22—C21—C26—C250.7 (4)C6—C5—N1—C832.1 (2)
C2—C21—C26—C25179.5 (2)C4—C5—N1—C8158.5 (2)
C24—C25—C26—C211.4 (4)C7—C8—N1—C2168.8 (2)
C2—C3—C31—O337.8 (3)C7—C8—N1—C544.2 (3)
S1—C3—C31—O385.4 (2)C31—C3—S1—O275.70 (17)
C2—C3—C31—C32139.7 (2)C2—C3—S1—O2163.24 (16)
S1—C3—C31—C3297.0 (2)C31—C3—S1—O153.52 (17)
O3—C31—C32—C3320.7 (3)C2—C3—S1—O167.55 (17)
C3—C31—C32—C33156.8 (2)C31—C3—S1—C4166.03 (14)
O3—C31—C32—C37157.0 (2)C2—C3—S1—C444.96 (17)
C3—C31—C32—C3725.5 (3)C41—C4—S1—O248.18 (19)
C37—C32—C33—C341.5 (4)C5—C4—S1—O2166.11 (15)
C31—C32—C33—C34176.3 (3)C44—C4—S1—O277.93 (18)
C32—C33—C34—C350.9 (5)C41—C4—S1—O1177.75 (15)
C33—C34—C35—C362.2 (5)C5—C4—S1—O164.32 (16)
C33—C34—C35—Cl2177.0 (3)C44—C4—S1—O151.64 (17)
C34—C35—C36—C371.0 (4)C41—C4—S1—C368.15 (17)
Cl2—C35—C36—C37178.2 (2)C5—C4—S1—C349.78 (16)
C35—C36—C37—C321.5 (4)C44—C4—S1—C3165.74 (15)
C33—C32—C37—C362.7 (4)O42—C41—O41—C423.1 (4)
C31—C32—C37—C36174.9 (2)C4—C41—O41—C42175.0 (3)
C5—C4—C41—O4297.8 (3)C43—C42—O41—C41175.9 (3)
C44—C4—C41—O42139.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6B···O410.972.383.051 (3)126
C37—H37···O20.932.533.213 (3)131
C50—H50···O410.932.583.282 (4)132
C6—H6A···O3i0.972.703.582 (3)151
C5—H5···O1i0.982.513.320 (3)140
C8—H8B···Cl3ii0.972.863.678 (3)143
C36—H36···O3iii0.932.653.557 (3)166
C42—H42B···O42iv0.972.613.478 (5)148
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1/2, z+1/2; (iii) x, y+1/2, z1/2; (iv) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC30H28Cl3NO5S
Mr620.94
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)14.0476 (8), 17.1365 (9), 13.8230 (8)
β (°) 115.893 (1)
V3)2993.5 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.42
Crystal size (mm)0.25 × 0.21 × 0.19
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
28492, 5280, 4593
Rint0.022
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.144, 1.04
No. of reflections5280
No. of parameters362
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.62, 0.47

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXTL/PC (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6B···O410.972.383.051 (3)126.2
C37—H37···O20.932.533.213 (3)130.9
C50—H50···O410.932.583.282 (4)132.4
C6—H6A···O3i0.972.703.582 (3)150.9
C5—H5···O1i0.982.513.320 (3)140.1
C8—H8B···Cl3ii0.972.863.678 (3)142.6
C36—H36···O3iii0.932.653.557 (3)165.5
C42—H42B···O42iv0.972.613.478 (5)148.4
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1/2, z+1/2; (iii) x, y+1/2, z1/2; (iv) x+1, y+1, z.
 

Acknowledgements

AC and SAB sincerely thank the Vice-Chancellor and Management of Kalasalingam University, Anand Nagar, Krishnan Koil, for their support and encouragement.

References

First citationArmenise, D., Trapani, G., Arrivo, V. & Morlacchi, F. (1991). Il Farmaco, 46, 1023–1032.  PubMed CAS Web of Science Google Scholar
First citationArmenise, D., Trapani, G., Stasi, F. & Morlacchi, F. (1998). Arch. Pharm. 331, 54–58.  CrossRef CAS Google Scholar
First citationBruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). In The Weak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford University Press Inc.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHemming, K. & Patel, N. (2004). Tetrahedron Lett. 45, 7553–7556.  Web of Science CrossRef CAS Google Scholar
First citationKoketsu, M., Tanaka, K., Takenaka, Y., Kwong, C. D. & Ishihara, H. (2002). Eur. J. Pharm. Sci. 15, 307–310.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKueh, A. J., Marriott, P. J., Wynne, P. M. & Vine, J. H. (2003). J. Chromatogr. A, 1000, 109–124.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMoriyama, H., Tsukida, T., Inoue, Y., Yokota, K., Yoshino, K., Kondo, H., Miura, N. & Nishimura, S. (2004). J. Med. Chem. 47, 1930–1938.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds