supplementary materials


hg5305 scheme

Acta Cryst. (2013). E69, o683    [ doi:10.1107/S1600536813009033 ]

5-(Adamantan-1-yl)-N-methyl-1,3,4-thiadiazol-2-amine

A.-M. S. Al-Tamimi, A. M. Alafeefy, A. A. El-Emam, S. W. Ng and E. R. T. Tiekink

Abstract top

In the title compound, C13H19N3S, the methylamine substituent is coplanar with the thiadiazole ring to which it is attached [C-N-C-S torsion angle = 175.9 (2)°] and the amine H atom is syn to the thiadiazole S atom. Supramolecular chains along [101], sustained by N-H...N hydrogen bonding, feature in the crystal packing.

Comment top

Derivatives of adamantane have long been known for their diverse biological activities including anti-viral activity against influenza (Togo et al., 1968) and HIV viruses (El-Emam et al., 2004). Moreover, 1,3,4-thiadiazole derivatives were reported to exhibit marked anti-trypanosomal (Carvalho et al., 2008) and anti-microbial activities (Foroumadi et al., 1999). In continuation of our interest in the chemical and pharmacological properties of adamantane derivatives, and as part of on-going structural studies of these (El-Emam et al., 2012; Almutairi et al., 2012), we report herein the X-ray crystallographic data of the title compound, (I).

In (I), Fig. 1, the five-membered ring is planar (r.m.s. deviation = 0.009 Å) and the methylamine substituent is co-planar: the C13—N3—C2—S1 torsion angle is 175.9 (2)°. The amine-H atom is syn to the thiadiazole-S1 atom. N—H···N hydrogen bonds feature in the crystal packing, leading to supramolecular chains along [1 0 1], Fig. 2 and Table 1. Chains pack with no specific intermolecular interactions between them. Globally, the crystal structure comprises alternating layers of hydrophilic and hydrophobic regions, Fig. 3.

Related literature top

For the biological activity of 1,3,4-thiadiazol-2-amine derivatives, see: Carvalho et al. (2008); Foroumadi et al. (1999), and of adamantane derivatives, see: Togo et al. (1968); El-Emam et al. (2004). For related structures, see: El-Emam et al. (2012); Almutairi et al. (2012). For the synthesis of the title compound, see: El-Emam & Lehmann (1994).

Experimental top

The title compound was prepared by dehydrative cyclization of 1-(1-adamantylcarbonyl)-4-methylthiosemicarbazide using sulfuric acid at room temperature for 24 h as previously described (El-Emam & Lehmann, 1994). Single crystals were obtained by slow evaporation from its CHCl3:EtOH solution at room temperature; M.pt: 441–443 K.

Refinement top

The C-bound H-atoms were placed in calculated positions [C—H = 0.96 to 0.98 Å, Uiso(H) = 1.2 or 1.5Ueq(C)] and were included in the refinement in the riding model approximation. The N-bound H-atom was refined with N—H = 0.88±0.01 Å.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 35% probability level.
[Figure 2] Fig. 2. A view of the supramolecular chain in (I) sustained by N—H···N hydrogen bonds shown as orange dashed lines.
[Figure 3] Fig. 3. A view in projection down the b axis of the unit-cell contents for (I).
5-(Adamantan-1-yl)-N-methyl-1,3,4-thiadiazol-2-amine top
Crystal data top
C13H19N3SF(000) = 536
Mr = 249.37Dx = 1.261 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1515 reflections
a = 10.4394 (12) Åθ = 3.1–27.5°
b = 13.0910 (13) ŵ = 0.23 mm1
c = 10.8871 (15) ÅT = 295 K
β = 118.008 (16)°Prism, colourless
V = 1313.6 (3) Å30.30 × 0.20 × 0.10 mm
Z = 4
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
3027 independent reflections
Radiation source: SuperNova (Mo) X-ray Source1975 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.039
Detector resolution: 10.4041 pixels mm-1θmax = 27.6°, θmin = 3.1°
ω scanh = 1313
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 1617
Tmin = 0.887, Tmax = 1.000l = 1314
6791 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0539P)2 + 0.1967P]
where P = (Fo2 + 2Fc2)/3
3027 reflections(Δ/σ)max < 0.001
159 parametersΔρmax = 0.24 e Å3
1 restraintΔρmin = 0.22 e Å3
Crystal data top
C13H19N3SV = 1313.6 (3) Å3
Mr = 249.37Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.4394 (12) ŵ = 0.23 mm1
b = 13.0910 (13) ÅT = 295 K
c = 10.8871 (15) Å0.30 × 0.20 × 0.10 mm
β = 118.008 (16)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
3027 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
1975 reflections with I > 2σ(I)
Tmin = 0.887, Tmax = 1.000Rint = 0.039
6791 measured reflectionsθmax = 27.6°
Refinement top
R[F2 > 2σ(F2)] = 0.054H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.144Δρmax = 0.24 e Å3
S = 1.04Δρmin = 0.22 e Å3
3027 reflectionsAbsolute structure: ?
159 parametersFlack parameter: ?
1 restraintRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.21237 (6)0.64435 (5)0.41269 (6)0.0480 (2)
N10.45652 (19)0.66351 (15)0.62872 (19)0.0446 (5)
N20.43886 (18)0.75355 (15)0.55520 (19)0.0455 (5)
N30.2711 (2)0.83210 (16)0.3481 (2)0.0514 (5)
H30.1801 (12)0.8326 (19)0.2850 (19)0.047 (7)*
C10.3500 (2)0.60016 (19)0.5713 (2)0.0398 (5)
C20.3152 (2)0.75433 (18)0.4397 (2)0.0404 (5)
C30.3392 (2)0.49988 (18)0.6325 (2)0.0398 (5)
C40.4805 (3)0.4770 (2)0.7646 (3)0.0614 (7)
H4A0.50160.53210.83080.074*
H4B0.55980.47250.74200.074*
C50.4676 (3)0.3761 (2)0.8298 (3)0.0698 (9)
H50.55800.36270.91500.084*
C60.3426 (3)0.3824 (3)0.8635 (3)0.0744 (9)
H6A0.33590.31900.90620.089*
H6B0.36000.43730.92920.089*
C70.2019 (3)0.4013 (2)0.7331 (3)0.0614 (7)
H70.12210.40470.75640.074*
C80.2149 (3)0.5035 (2)0.6717 (3)0.0566 (7)
H8A0.23370.55750.73910.068*
H8B0.12420.51880.58960.068*
C90.3080 (3)0.4115 (2)0.5300 (3)0.0605 (7)
H9A0.38480.40730.50400.073*
H9B0.21750.42420.44650.073*
C100.2977 (3)0.3098 (2)0.5956 (3)0.0682 (8)
H100.27920.25400.52940.082*
C110.1735 (3)0.3176 (2)0.6301 (3)0.0675 (8)
H11A0.08400.33140.54590.081*
H11B0.16250.25330.66830.081*
C120.4399 (3)0.2912 (3)0.7263 (4)0.0807 (10)
H12A0.43580.22620.76710.097*
H12B0.51870.28820.70280.097*
C130.3567 (3)0.9237 (2)0.3810 (3)0.0619 (7)
H13A0.31600.96930.30280.093*
H13B0.45440.90680.40200.093*
H13C0.35700.95620.46020.093*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0374 (3)0.0496 (4)0.0422 (4)0.0049 (3)0.0063 (3)0.0015 (3)
N10.0365 (9)0.0478 (12)0.0403 (11)0.0009 (9)0.0105 (8)0.0020 (9)
N20.0361 (9)0.0460 (12)0.0435 (11)0.0023 (9)0.0096 (8)0.0033 (10)
N30.0380 (10)0.0503 (13)0.0490 (13)0.0012 (10)0.0063 (9)0.0077 (11)
C10.0314 (10)0.0487 (14)0.0366 (12)0.0015 (10)0.0138 (9)0.0020 (11)
C20.0327 (10)0.0455 (14)0.0396 (12)0.0020 (10)0.0142 (9)0.0001 (11)
C30.0366 (11)0.0435 (13)0.0388 (12)0.0010 (10)0.0171 (9)0.0007 (11)
C40.0435 (13)0.0650 (18)0.0611 (17)0.0039 (13)0.0125 (12)0.0184 (14)
C50.0500 (14)0.070 (2)0.0689 (19)0.0026 (15)0.0110 (14)0.0242 (17)
C60.089 (2)0.081 (2)0.0559 (18)0.0179 (18)0.0364 (17)0.0018 (16)
C70.0560 (15)0.073 (2)0.0647 (18)0.0040 (14)0.0364 (14)0.0026 (15)
C80.0556 (14)0.0574 (17)0.0643 (17)0.0008 (13)0.0344 (13)0.0009 (14)
C90.0785 (18)0.0535 (16)0.0597 (17)0.0018 (14)0.0408 (15)0.0035 (14)
C100.095 (2)0.0474 (16)0.070 (2)0.0086 (16)0.0448 (18)0.0112 (15)
C110.0611 (16)0.0589 (18)0.075 (2)0.0128 (15)0.0254 (15)0.0020 (16)
C120.081 (2)0.066 (2)0.115 (3)0.0235 (18)0.062 (2)0.034 (2)
C130.0534 (14)0.0537 (17)0.0642 (18)0.0072 (13)0.0157 (13)0.0063 (14)
Geometric parameters (Å, º) top
S1—C21.737 (2)C6—H6B0.9700
S1—C11.747 (2)C7—C111.495 (4)
N1—C11.289 (3)C7—C81.530 (4)
N1—N21.388 (3)C7—H70.9800
N2—C21.313 (3)C8—H8A0.9700
N3—C21.346 (3)C8—H8B0.9700
N3—C131.437 (3)C9—C101.538 (4)
N3—H30.872 (9)C9—H9A0.9700
C1—C31.500 (3)C9—H9B0.9700
C3—C41.530 (3)C10—C111.513 (4)
C3—C91.532 (3)C10—C121.518 (4)
C3—C81.545 (3)C10—H100.9800
C4—C51.535 (4)C11—H11A0.9700
C4—H4A0.9700C11—H11B0.9700
C4—H4B0.9700C12—H12A0.9700
C5—C121.511 (4)C12—H12B0.9700
C5—C61.514 (4)C13—H13A0.9600
C5—H50.9800C13—H13B0.9600
C6—C71.509 (4)C13—H13C0.9600
C6—H6A0.9700
C2—S1—C187.21 (11)C11—C7—H7109.5
C1—N1—N2114.59 (18)C6—C7—H7109.5
C2—N2—N1111.34 (18)C8—C7—H7109.5
C2—N3—C13119.4 (2)C7—C8—C3110.6 (2)
C2—N3—H3117.1 (16)C7—C8—H8A109.5
C13—N3—H3120.7 (16)C3—C8—H8A109.5
N1—C1—C3125.1 (2)C7—C8—H8B109.5
N1—C1—S1112.82 (18)C3—C8—H8B109.5
C3—C1—S1122.04 (16)H8A—C8—H8B108.1
N2—C2—N3123.8 (2)C3—C9—C10110.7 (2)
N2—C2—S1114.02 (17)C3—C9—H9A109.5
N3—C2—S1122.18 (16)C10—C9—H9A109.5
C1—C3—C4110.38 (18)C3—C9—H9B109.5
C1—C3—C9111.84 (19)C10—C9—H9B109.5
C4—C3—C9108.5 (2)H9A—C9—H9B108.1
C1—C3—C8110.08 (19)C11—C10—C12110.7 (2)
C4—C3—C8108.1 (2)C11—C10—C9108.1 (2)
C9—C3—C8107.8 (2)C12—C10—C9108.9 (2)
C3—C4—C5110.3 (2)C11—C10—H10109.7
C3—C4—H4A109.6C12—C10—H10109.7
C5—C4—H4A109.6C9—C10—H10109.7
C3—C4—H4B109.6C7—C11—C10110.1 (2)
C5—C4—H4B109.6C7—C11—H11A109.6
H4A—C4—H4B108.1C10—C11—H11A109.6
C12—C5—C6109.6 (2)C7—C11—H11B109.6
C12—C5—C4108.4 (3)C10—C11—H11B109.6
C6—C5—C4109.8 (3)H11A—C11—H11B108.1
C12—C5—H5109.7C5—C12—C10109.9 (2)
C6—C5—H5109.7C5—C12—H12A109.7
C4—C5—H5109.7C10—C12—H12A109.7
C7—C6—C5110.5 (2)C5—C12—H12B109.7
C7—C6—H6A109.6C10—C12—H12B109.7
C5—C6—H6A109.6H12A—C12—H12B108.2
C7—C6—H6B109.6N3—C13—H13A109.5
C5—C6—H6B109.6N3—C13—H13B109.5
H6A—C6—H6B108.1H13A—C13—H13B109.5
C11—C7—C6110.4 (3)N3—C13—H13C109.5
C11—C7—C8109.9 (2)H13A—C13—H13C109.5
C6—C7—C8108.0 (2)H13B—C13—H13C109.5
C1—N1—N2—C20.7 (3)C12—C5—C6—C758.7 (3)
N2—N1—C1—C3177.1 (2)C4—C5—C6—C760.3 (3)
N2—N1—C1—S11.3 (2)C5—C6—C7—C1158.9 (3)
C2—S1—C1—N11.21 (18)C5—C6—C7—C861.2 (3)
C2—S1—C1—C3177.24 (19)C11—C7—C8—C359.0 (3)
N1—N2—C2—N3179.5 (2)C6—C7—C8—C361.4 (3)
N1—N2—C2—S10.3 (2)C1—C3—C8—C7179.5 (2)
C13—N3—C2—N25.0 (4)C4—C3—C8—C759.9 (3)
C13—N3—C2—S1175.9 (2)C9—C3—C8—C757.3 (3)
C1—S1—C2—N20.84 (18)C1—C3—C9—C10179.9 (2)
C1—S1—C2—N3180.0 (2)C4—C3—C9—C1057.9 (3)
N1—C1—C3—C46.8 (3)C8—C3—C9—C1058.9 (3)
S1—C1—C3—C4174.97 (17)C3—C9—C10—C1161.2 (3)
N1—C1—C3—C9127.7 (2)C3—C9—C10—C1259.1 (3)
S1—C1—C3—C954.0 (3)C6—C7—C11—C1058.0 (3)
N1—C1—C3—C8112.5 (2)C8—C7—C11—C1060.9 (3)
S1—C1—C3—C865.8 (2)C12—C10—C11—C757.7 (3)
C1—C3—C4—C5178.1 (2)C9—C10—C11—C761.5 (3)
C9—C3—C4—C559.0 (3)C6—C5—C12—C1057.9 (3)
C8—C3—C4—C557.7 (3)C4—C5—C12—C1061.9 (3)
C3—C4—C5—C1261.2 (3)C11—C10—C12—C557.8 (3)
C3—C4—C5—C658.5 (3)C9—C10—C12—C561.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···N1i0.87 (1)2.15 (1)3.021 (3)179 (2)
Symmetry code: (i) x1/2, y+3/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···N1i0.872 (9)2.149 (10)3.021 (3)179 (2)
Symmetry code: (i) x1/2, y+3/2, z1/2.
Acknowledgements top

The financial support of the Deanship of Scientific Research, Salman bin Abdulaziz University, Alkharj, Saudi Arabia, is greatly appreciated. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/03).

references
References top

Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.

Almutairi, M. S., Al-Shehri, M. M., El-Emam, A. A., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o656.

Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.

Carvalho, S. A., Lopes, F. A. S., Salomão, K., Romeiro, N. C., Wardell, S. M. S. V., de Castro, S. L., da Silva, E. F. & Fraga, C. A. M. (2008). Bioorg. Med. Chem. 16, 413–421.

El-Emam, A. A., Al-Deeb, O. A., Al-Omar, M. A. & Lehmann, J. (2004). Bioorg. Med. Chem. 12, 5107–5113.

El-Emam, A. A., Kadi, A. A., El-Brollosy, N. R., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o795.

El-Emam, A. A. & Lehmann, J. (1994). Monatsh. Chem. 125, 587–591.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Foroumadi, A., Daneshtalab, M. & Shafiee, A. (1999). Arzneim.-Forsch. Drug. Res. 49, 1035–1038.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Togo, Y., Hornick, R. B. & Dawkins, A. T. (1968). J. Am. Med. Assoc. 203, 1089–1094.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.