organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(Adamantan-1-yl)-4-methyl-1-({4-[3-(tri­fluoro­meth­yl)phen­yl]piperazin-1-yl}meth­yl)-4,5-di­hydro-1H-1,2,4-triazole-5-thione

aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, bDepartment of Pharmaceutical Chemistry, College of Pharmacy, Salman bin Abdulaziz University, Alkharj 11942, Saudi Arabia, cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and dChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 8 April 2013; accepted 8 April 2013; online 13 April 2013)

In the title compound, C25H32F3N5S, two independent mol­ecules comprise the asymmetric unit and are related across a pseudo-centre of inversion. The piperazine rings have chair conformations with each N-bound substituent occupying an equatorial position so that the dihedral angles between the planes of the triazole and benzene ring are 78.20 (19) and 79.10 (19)° for the two independent mol­ecules, indicating that the mol­ecules have an L-shape. In the crystal, a three-dimensional architecture is stabilized by C—H⋯π inter­actions. The crystal studied was an inversion twin with the fractional contribution of the minor component being 0.27 (9).

Related literature

For the diverse biological activities of adamantane derivatives, see: Al-Deeb et al. (2006[Al-Deeb, O. A., Al-Omar, M. A., El-Brollosy, N. R., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2006). Arzneim. Forsch. Drug. Res. 56, 40-47.]); Al-Omar et al. (2010[Al-Omar, M. A., Al-Abdullah, E. S., Shehata, I. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2010). Molecules, 15, 2526-2550.]). For a related adamantanyl structure, see: El-Emam et al. (2012[El-Emam, A. A., Al-Omar, M. A., Al-Tamimi, A.-M. S., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o1772-o1773.]).

[Scheme 1]

Experimental

Crystal data
  • C25H32F3N5S

  • Mr = 491.62

  • Orthorhombic, P n a 21

  • a = 28.8100 (15) Å

  • b = 6.6052 (4) Å

  • c = 25.7717 (14) Å

  • V = 4904.2 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 295 K

  • 0.40 × 0.30 × 0.20 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.878, Tmax = 1.000

  • 19420 measured reflections

  • 9351 independent reflections

  • 6701 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.151

  • S = 1.03

  • 9351 reflections

  • 616 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.28 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 3730 Friedel pairs

  • Flack parameter: 0.27 (9)

Table 1
Hydrogen-bond geometry (Å, °)

Cg1–Cg4 are the centroids of the N1–N3,C2,C3, C19–C24, N6–N8,C27,C28 and C44–C49 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯Cg2i 0.98 2.95 3.817 (4) 148
C13—H13BCg3ii 0.97 2.86 3.782 (4) 158
C31—H31⋯Cg4iii 0.98 2.94 3.873 (5) 159
C38—H38BCg1iv 0.97 2.97 3.723 (5) 135
C45—H45⋯Cg2v 0.93 2.97 3.708 (5) 137
Symmetry codes: (i) [x+{\script{1\over 2}}, -y-{\script{1\over 2}}, z]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z]; (iii) [-x+1, -y, z-{\script{1\over 2}}]; (iv) [-x+1, -y+1, z-{\script{1\over 2}}]; (v) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), QMol (Gans & Shalloway, 2001[Gans, J. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557-559.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

In connection with the biological activities of adamantane derivatives (Al-Deeb et al., 2006; Al-Omar et al., 2010) and complementary structural studies (El-Emam et al., 2012), the title compound was synthesized and characterized, including by X-ray crystallography.

Two independent molecules comprise the crystallographic asymmetric unit of (I), Fig. 1. The molecules are related across a pseudo centre of inversion. As shown in Fig. 2, the best fit between the molecules occurs when the inverted S2-containing molecule is superimposed upon the S1-containing molecule. Each piperazinyl ring has a chair conformation with the respective N-bound methylene and benzene ring substituents in equatorial positions. With respect to the triazole ring, the piperazinyl ring lies completely to one side with the N2—N3—C14—N4 torsion angle being -58.5 (5)°; for the S2-containing molecule, the equivalent N7—N8—C39—N9 torsion angle is 63.9 (5)°. The dihedral angles between the triazole and benzene rings are 78.20 (19) and 79.10 (19)° for the S1- and S2-containing molecules, respectively, so that overall, each molecule approximates the shape of the letter L.

The crystal packing of (I) is dominated by C—H···π interactions, Table 1, where the triazole and benzene rings of both independent molecules function as the π-systems; the benzene ring of the S1-containing molecule is bifurcated. These interactions result in a three-dimensional architecture, Fig. 3.

Related literature top

For the diverse biological activities of adamantane derivatives, see: Al-Deeb et al. (2006); Al-Omar et al. (2010). For a related adamantanyl structure, see: El-Emam et al. (2012).

Experimental top

A mixture of 5-(adamantan-1-yl)-4-methyl-4H-1,2,4-triazole-3-thiol (499 mg, 2 mmol), 1-(3-trifluoromethylphenyl)piperazine (460 mg, 2 mmol) and 37% formaldehyde solution (1 ml), in ethanol (8 ml), was heated under reflux for 15 min. when a clear solution was obtained. Stirring was continued for 12 h at room temperature and the mixture was allowed to stand overnight. Cold water (5 ml) was slowly added and the mixture was stirred for 20 min. The precipitated crude product were filtered, washed with water, dried, and crystallized from aqueous ethanol to yield 551 mg (56%) of the title compound as colourless crystals. M.pt: 459–461 K. Single crystals suitable for X-ray analysis were obtained by slow evaporation of its CHCl3:EtOH solution (1:1, 5 ml) at room temperature. 1H NMR (CDCl3, 500.13 MHz): δ 1.76–1.84 (m, 6H, adamantane-H), 2.07 (s, 6H, adamantane-H), 2.13 (s, 3H, adamantane-H), 2.98 (s, 4H, piperazine-H), 3.24 (s, 4H, piperazine-H), 3.80 (s, 3H, CH3), 5.19 (s, 2H, CH2), 7.03–7.10 (m, 3H, Ar—H), 7.32–7.35 (m, 1H, Ar—H). 13C NMR (CDCl3, 125.76 MHz): δ 27.82, 35.10, 36.29, 39.02 (adamantane-C), 33.98 (CH3), 48.79, 50.21 (piperazine-C), 69.15 (CH2), 112.33, 115.89, 118.83, 123.21, 125.38, 129.54, 151.38 (Ar—C & CF3), 156.38 (triazole C-5), 169.58 (CS).

Refinement top

The H-atoms were placed in calculated positions [and C—H = 0.93 to 0.98 Å, Uiso(H) = 1.2–1.5Ueq(C)] and were included in the refinement in the riding model approximation. The crystal is an inversion twin with the fractional contribution of the minor component being 0.27 (9).

Structure description top

In connection with the biological activities of adamantane derivatives (Al-Deeb et al., 2006; Al-Omar et al., 2010) and complementary structural studies (El-Emam et al., 2012), the title compound was synthesized and characterized, including by X-ray crystallography.

Two independent molecules comprise the crystallographic asymmetric unit of (I), Fig. 1. The molecules are related across a pseudo centre of inversion. As shown in Fig. 2, the best fit between the molecules occurs when the inverted S2-containing molecule is superimposed upon the S1-containing molecule. Each piperazinyl ring has a chair conformation with the respective N-bound methylene and benzene ring substituents in equatorial positions. With respect to the triazole ring, the piperazinyl ring lies completely to one side with the N2—N3—C14—N4 torsion angle being -58.5 (5)°; for the S2-containing molecule, the equivalent N7—N8—C39—N9 torsion angle is 63.9 (5)°. The dihedral angles between the triazole and benzene rings are 78.20 (19) and 79.10 (19)° for the S1- and S2-containing molecules, respectively, so that overall, each molecule approximates the shape of the letter L.

The crystal packing of (I) is dominated by C—H···π interactions, Table 1, where the triazole and benzene rings of both independent molecules function as the π-systems; the benzene ring of the S1-containing molecule is bifurcated. These interactions result in a three-dimensional architecture, Fig. 3.

For the diverse biological activities of adamantane derivatives, see: Al-Deeb et al. (2006); Al-Omar et al. (2010). For a related adamantanyl structure, see: El-Emam et al. (2012).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), QMol (Gans & Shalloway, 2001) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structures of the two independent molecules comprising the asymmetric unit of (I) showing the atom-labelling scheme and displacement ellipsoids at the 35% probability level.
[Figure 2] Fig. 2. Overlay diagram of the S1- (red image) and inverted S2-containing molecules (blue) where the triazole rings have been superimposed.
[Figure 3] Fig. 3. View of the unit-cell contents in projection down the b axis of (I). The C—H···π contacts are shown as purple dashed lines.
3-(Adamantan-1-yl)-4-methyl-1-({4-[3-(trifluoromethyl)phenyl]piperazin-1-yl}methyl)-4,5-dihydro-1H-1,2,4-triazole-5-thione top
Crystal data top
C25H32F3N5SF(000) = 2080
Mr = 491.62Dx = 1.332 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 4723 reflections
a = 28.8100 (15) Åθ = 2.9–27.5°
b = 6.6052 (4) ŵ = 0.18 mm1
c = 25.7717 (14) ÅT = 295 K
V = 4904.2 (5) Å3Prism, colourless
Z = 80.40 × 0.30 × 0.20 mm
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
9351 independent reflections
Radiation source: SuperNova (Mo) X-ray Source6701 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.038
Detector resolution: 10.4041 pixels mm-1θmax = 27.6°, θmin = 2.9°
ω scanh = 2837
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 86
Tmin = 0.878, Tmax = 1.000l = 2733
19420 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058H-atom parameters constrained
wR(F2) = 0.151 w = 1/[σ2(Fo2) + (0.0676P)2 + 1.2433P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
9351 reflectionsΔρmax = 0.37 e Å3
616 parametersΔρmin = 0.28 e Å3
1 restraintAbsolute structure: Flack (1983), 3730 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.27 (9)
Crystal data top
C25H32F3N5SV = 4904.2 (5) Å3
Mr = 491.62Z = 8
Orthorhombic, Pna21Mo Kα radiation
a = 28.8100 (15) ŵ = 0.18 mm1
b = 6.6052 (4) ÅT = 295 K
c = 25.7717 (14) Å0.40 × 0.30 × 0.20 mm
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
9351 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
6701 reflections with I > 2σ(I)
Tmin = 0.878, Tmax = 1.000Rint = 0.038
19420 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.058H-atom parameters constrained
wR(F2) = 0.151Δρmax = 0.37 e Å3
S = 1.03Δρmin = 0.28 e Å3
9351 reflectionsAbsolute structure: Flack (1983), 3730 Friedel pairs
616 parametersAbsolute structure parameter: 0.27 (9)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.39860 (3)0.38696 (19)0.49983 (5)0.0681 (3)
S20.35800 (4)0.5184 (2)0.32727 (5)0.0706 (3)
F10.0788 (2)0.6059 (8)0.28978 (18)0.183 (2)
F20.13979 (13)0.6066 (9)0.2525 (2)0.198 (3)
F30.09032 (18)0.8017 (6)0.23096 (15)0.1560 (18)
F40.61728 (13)0.4637 (5)0.55280 (15)0.1217 (13)
F50.68603 (11)0.3557 (6)0.55014 (18)0.1333 (15)
F60.64004 (15)0.2316 (6)0.60229 (11)0.1267 (13)
N10.34008 (9)0.4862 (4)0.57964 (11)0.0440 (6)
N20.31554 (10)0.7906 (5)0.55884 (11)0.0501 (7)
N30.34609 (9)0.7187 (5)0.52206 (11)0.0499 (7)
N40.31612 (10)0.8804 (5)0.44287 (12)0.0543 (8)
N50.22650 (10)0.9371 (4)0.40013 (12)0.0488 (7)
N60.41461 (9)0.4168 (4)0.24638 (11)0.0446 (6)
N70.43862 (9)0.1100 (5)0.26586 (11)0.0494 (7)
N80.40902 (10)0.1840 (5)0.30367 (11)0.0519 (7)
N90.44187 (10)0.0441 (5)0.38380 (11)0.0562 (8)
N100.53329 (10)0.0274 (4)0.42481 (11)0.0501 (7)
C10.34866 (14)0.2931 (6)0.60558 (16)0.0596 (10)
H1A0.34050.30430.64160.089*
H1B0.38090.25880.60260.089*
H1C0.33020.18940.58960.089*
C20.31235 (11)0.6474 (5)0.59316 (13)0.0431 (8)
C30.36145 (11)0.5316 (6)0.53342 (13)0.0459 (8)
C40.28123 (10)0.6645 (5)0.64055 (13)0.0398 (7)
C50.30999 (12)0.6808 (7)0.69043 (14)0.0539 (9)
H5A0.33080.79570.68810.065*
H5B0.32860.55950.69470.065*
C60.27774 (15)0.7067 (7)0.73726 (15)0.0646 (11)
H60.29630.71530.76900.078*
C70.24557 (16)0.5274 (7)0.74063 (17)0.0689 (12)
H7A0.22560.54160.77070.083*
H7B0.26360.40450.74480.083*
C80.21631 (14)0.5120 (7)0.69245 (17)0.0632 (11)
H80.19530.39570.69540.076*
C90.24764 (13)0.4852 (6)0.64492 (16)0.0565 (10)
H9A0.22880.47690.61380.068*
H9B0.26510.36020.64810.068*
C100.25241 (14)0.8580 (6)0.63495 (18)0.0643 (11)
H10A0.23370.85040.60370.077*
H10B0.27290.97390.63190.077*
C110.22067 (15)0.8846 (7)0.68255 (19)0.0694 (12)
H110.20261.00930.67870.083*
C120.24965 (16)0.8978 (7)0.7310 (2)0.0770 (14)
H12A0.22960.91590.76100.092*
H12B0.27031.01360.72890.092*
C130.18797 (13)0.7053 (8)0.68558 (19)0.0738 (13)
H13A0.16970.69680.65410.089*
H13B0.16690.72190.71470.089*
C140.35602 (12)0.8363 (7)0.47442 (15)0.0600 (10)
H14A0.37050.96310.48430.072*
H14B0.37820.76140.45360.072*
C150.28730 (13)0.7071 (6)0.43116 (15)0.0571 (9)
H15A0.27000.66800.46190.068*
H15B0.30670.59380.42100.068*
C160.25377 (14)0.7573 (6)0.38749 (15)0.0595 (10)
H16A0.27100.78080.35570.071*
H16B0.23310.64360.38180.071*
C170.25512 (14)1.1091 (6)0.41538 (18)0.0636 (11)
H17A0.23531.22000.42640.076*
H17B0.27331.15460.38590.076*
C180.28749 (15)1.0502 (6)0.45952 (17)0.0609 (10)
H18A0.30711.16420.46870.073*
H18B0.26951.01230.48980.073*
C190.18602 (12)0.9753 (5)0.37124 (13)0.0464 (8)
C200.15911 (13)1.1469 (6)0.38088 (14)0.0595 (10)
H200.16911.24080.40540.071*
C210.11804 (15)1.1798 (8)0.35478 (17)0.0749 (13)
H210.10121.29690.36160.090*
C220.10138 (14)1.0445 (8)0.31911 (16)0.0702 (12)
H220.07351.06760.30190.084*
C230.12715 (12)0.8732 (6)0.30942 (13)0.0507 (9)
C240.16869 (11)0.8385 (6)0.33489 (14)0.0480 (8)
H240.18540.72140.32760.058*
C250.10945 (14)0.7250 (7)0.27190 (18)0.0629 (11)
C260.40500 (15)0.6074 (6)0.21976 (18)0.0656 (11)
H26A0.37280.64130.22380.098*
H26B0.41210.59350.18350.098*
H26C0.42380.71290.23450.098*
C270.44172 (10)0.2542 (5)0.23169 (12)0.0415 (7)
C280.39408 (11)0.3711 (6)0.29321 (14)0.0485 (8)
C290.47076 (10)0.2327 (5)0.18353 (13)0.0403 (7)
C300.44003 (12)0.2164 (6)0.13534 (14)0.0530 (9)
H30A0.42130.33760.13210.064*
H30B0.41930.10150.13890.064*
C310.47015 (15)0.1899 (7)0.08613 (16)0.0680 (11)
H310.44990.18080.05560.082*
C320.50187 (19)0.3665 (7)0.08024 (18)0.0781 (13)
H32A0.48390.49010.07730.094*
H32B0.52020.35140.04890.094*
C330.53413 (16)0.3793 (7)0.1277 (2)0.0769 (14)
H330.55530.49420.12350.092*
C340.50505 (15)0.4101 (6)0.17700 (18)0.0657 (11)
H34A0.48800.53640.17460.079*
H34B0.52530.41730.20700.079*
C350.49929 (15)0.0375 (6)0.18721 (17)0.0618 (10)
H35A0.47860.07720.19110.074*
H35B0.51910.04320.21760.074*
C360.52930 (14)0.0085 (6)0.13848 (18)0.0639 (11)
H360.54720.11730.14150.077*
C370.49783 (17)0.0028 (7)0.09112 (17)0.0698 (12)
H37A0.51650.02260.06020.084*
H37B0.47690.11710.09450.084*
C380.56217 (13)0.1856 (9)0.1320 (2)0.0845 (15)
H38A0.58290.19340.16150.101*
H38B0.58070.16720.10090.101*
C390.40105 (13)0.0682 (8)0.35189 (15)0.0659 (12)
H39A0.37730.13620.37210.079*
H39B0.38930.06490.34280.079*
C400.46762 (14)0.2282 (6)0.39268 (15)0.0582 (10)
H40A0.44630.33590.40190.070*
H40B0.48340.26730.36100.070*
C410.50309 (14)0.2017 (6)0.43576 (16)0.0617 (10)
H41A0.52180.32330.43870.074*
H41B0.48720.18090.46850.074*
C420.50745 (15)0.1556 (6)0.41217 (17)0.0639 (11)
H42A0.49100.20220.44280.077*
H42B0.52890.26100.40180.077*
C430.47310 (14)0.1184 (6)0.36896 (17)0.0616 (10)
H43A0.48950.08190.33740.074*
H43B0.45550.24080.36230.074*
C440.57378 (12)0.0090 (5)0.45413 (13)0.0466 (8)
C450.60424 (14)0.1533 (7)0.44725 (15)0.0598 (10)
H450.59620.25620.42430.072*
C460.64559 (15)0.1659 (7)0.47321 (16)0.0683 (12)
H460.66510.27550.46700.082*
C470.65905 (15)0.0202 (7)0.50823 (17)0.0679 (12)
H470.68700.02980.52610.082*
C480.62912 (12)0.1419 (6)0.51580 (14)0.0524 (9)
C490.58751 (12)0.1560 (6)0.49019 (13)0.0499 (9)
H490.56800.26520.49690.060*
C500.64274 (15)0.2985 (7)0.55468 (18)0.0658 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0566 (5)0.0798 (8)0.0680 (6)0.0067 (6)0.0152 (5)0.0190 (6)
S20.0606 (6)0.0897 (8)0.0616 (6)0.0106 (6)0.0147 (5)0.0182 (6)
F10.228 (5)0.204 (5)0.115 (3)0.144 (5)0.026 (3)0.032 (3)
F20.109 (3)0.234 (5)0.250 (6)0.041 (3)0.063 (3)0.187 (5)
F30.247 (5)0.114 (3)0.107 (3)0.006 (3)0.109 (3)0.011 (2)
F40.136 (3)0.092 (2)0.138 (3)0.040 (2)0.052 (3)0.048 (2)
F50.0796 (19)0.145 (3)0.175 (4)0.029 (2)0.003 (2)0.068 (3)
F60.209 (4)0.124 (3)0.0473 (15)0.019 (3)0.009 (2)0.0154 (17)
N10.0397 (13)0.0436 (14)0.0487 (16)0.0037 (13)0.0001 (13)0.0005 (13)
N20.0447 (14)0.0616 (18)0.0440 (16)0.0042 (15)0.0044 (13)0.0096 (15)
N30.0427 (13)0.067 (2)0.0398 (16)0.0014 (15)0.0041 (13)0.0041 (15)
N40.0451 (15)0.073 (2)0.0451 (17)0.0022 (16)0.0006 (13)0.0089 (16)
N50.0504 (15)0.0474 (15)0.0486 (16)0.0036 (14)0.0003 (14)0.0005 (14)
N60.0432 (13)0.0523 (16)0.0383 (14)0.0028 (14)0.0003 (12)0.0045 (13)
N70.0434 (14)0.0614 (18)0.0433 (15)0.0054 (15)0.0045 (13)0.0061 (15)
N80.0443 (14)0.073 (2)0.0387 (16)0.0004 (16)0.0055 (13)0.0053 (15)
N90.0479 (16)0.078 (2)0.0426 (16)0.0069 (17)0.0067 (14)0.0122 (16)
N100.0546 (15)0.0503 (16)0.0454 (16)0.0092 (15)0.0017 (14)0.0004 (14)
C10.064 (2)0.046 (2)0.068 (3)0.0124 (19)0.013 (2)0.0018 (19)
C20.0393 (15)0.0481 (19)0.0419 (17)0.0028 (16)0.0043 (14)0.0029 (16)
C30.0410 (17)0.056 (2)0.0410 (18)0.0010 (17)0.0038 (14)0.0044 (16)
C40.0366 (14)0.0406 (17)0.0421 (17)0.0006 (15)0.0018 (14)0.0016 (14)
C50.0428 (17)0.067 (2)0.051 (2)0.0029 (18)0.0044 (16)0.0075 (19)
C60.064 (2)0.083 (3)0.046 (2)0.006 (2)0.0008 (19)0.010 (2)
C70.087 (3)0.071 (3)0.049 (2)0.014 (3)0.022 (2)0.011 (2)
C80.060 (2)0.062 (2)0.068 (3)0.016 (2)0.025 (2)0.003 (2)
C90.0508 (19)0.059 (2)0.059 (2)0.0107 (19)0.0053 (18)0.006 (2)
C100.058 (2)0.060 (2)0.075 (3)0.022 (2)0.017 (2)0.019 (2)
C110.066 (2)0.060 (2)0.083 (3)0.029 (2)0.023 (2)0.012 (2)
C120.074 (3)0.067 (3)0.091 (4)0.007 (3)0.031 (3)0.029 (3)
C130.0418 (18)0.109 (4)0.071 (3)0.012 (2)0.012 (2)0.006 (3)
C140.0447 (18)0.087 (3)0.048 (2)0.001 (2)0.0070 (17)0.016 (2)
C150.058 (2)0.069 (2)0.0442 (19)0.016 (2)0.0020 (18)0.0016 (19)
C160.057 (2)0.067 (2)0.055 (2)0.012 (2)0.0048 (18)0.006 (2)
C170.059 (2)0.056 (2)0.077 (3)0.006 (2)0.007 (2)0.011 (2)
C180.063 (2)0.055 (2)0.064 (2)0.002 (2)0.008 (2)0.001 (2)
C190.0498 (18)0.054 (2)0.0357 (17)0.0056 (17)0.0058 (15)0.0063 (16)
C200.062 (2)0.071 (2)0.045 (2)0.018 (2)0.0023 (18)0.0123 (19)
C210.075 (3)0.087 (3)0.063 (3)0.036 (3)0.008 (2)0.010 (2)
C220.061 (2)0.103 (3)0.047 (2)0.027 (3)0.007 (2)0.001 (2)
C230.0509 (18)0.064 (2)0.0378 (17)0.0008 (19)0.0024 (15)0.0036 (17)
C240.0486 (17)0.0510 (19)0.044 (2)0.0026 (17)0.0028 (16)0.0032 (17)
C250.0488 (19)0.075 (3)0.065 (3)0.003 (2)0.005 (2)0.002 (2)
C260.071 (2)0.053 (2)0.072 (3)0.008 (2)0.012 (2)0.003 (2)
C270.0356 (15)0.0478 (18)0.0411 (17)0.0002 (16)0.0042 (14)0.0005 (15)
C280.0376 (16)0.067 (2)0.0410 (18)0.0030 (18)0.0015 (14)0.0073 (18)
C290.0352 (14)0.0461 (17)0.0395 (17)0.0078 (15)0.0025 (14)0.0009 (15)
C300.0486 (17)0.064 (2)0.046 (2)0.0010 (18)0.0008 (16)0.0075 (18)
C310.072 (2)0.088 (3)0.044 (2)0.006 (3)0.002 (2)0.012 (2)
C320.102 (3)0.075 (3)0.057 (3)0.013 (3)0.035 (3)0.010 (2)
C330.070 (3)0.067 (3)0.094 (4)0.032 (2)0.038 (3)0.016 (3)
C340.062 (2)0.065 (3)0.070 (3)0.022 (2)0.016 (2)0.019 (2)
C350.058 (2)0.068 (3)0.059 (2)0.021 (2)0.0180 (19)0.014 (2)
C360.056 (2)0.063 (2)0.073 (3)0.017 (2)0.020 (2)0.003 (2)
C370.080 (3)0.065 (2)0.065 (3)0.003 (2)0.022 (2)0.017 (2)
C380.0426 (19)0.125 (4)0.086 (3)0.006 (3)0.021 (2)0.014 (3)
C390.0468 (19)0.102 (3)0.048 (2)0.005 (2)0.0094 (17)0.021 (2)
C400.061 (2)0.068 (2)0.046 (2)0.021 (2)0.0017 (18)0.004 (2)
C410.060 (2)0.077 (3)0.048 (2)0.026 (2)0.0053 (18)0.012 (2)
C420.065 (2)0.056 (2)0.070 (3)0.003 (2)0.003 (2)0.012 (2)
C430.060 (2)0.065 (2)0.059 (2)0.002 (2)0.0061 (19)0.001 (2)
C440.0502 (19)0.055 (2)0.0349 (16)0.0071 (18)0.0105 (14)0.0031 (15)
C450.065 (2)0.066 (2)0.048 (2)0.020 (2)0.0000 (18)0.0140 (18)
C460.066 (2)0.080 (3)0.059 (2)0.031 (2)0.003 (2)0.013 (2)
C470.060 (2)0.087 (3)0.057 (2)0.022 (2)0.004 (2)0.012 (2)
C480.0524 (18)0.062 (2)0.0427 (19)0.0056 (19)0.0013 (16)0.0028 (17)
C490.0551 (19)0.052 (2)0.0424 (19)0.0124 (18)0.0083 (16)0.0015 (16)
C500.066 (3)0.070 (3)0.061 (3)0.005 (2)0.005 (2)0.010 (2)
Geometric parameters (Å, º) top
S1—C31.676 (4)C16—H16B0.9700
S2—C281.673 (4)C17—C181.522 (6)
F1—C251.270 (6)C17—H17A0.9700
F2—C251.275 (5)C17—H17B0.9700
F3—C251.294 (5)C18—H18A0.9700
F4—C501.316 (5)C18—H18B0.9700
F5—C501.309 (5)C19—C201.395 (5)
F6—C501.307 (6)C19—C241.394 (5)
N1—C31.374 (4)C20—C211.378 (5)
N1—C21.376 (4)C20—H200.9300
N1—C11.461 (5)C21—C221.369 (6)
N2—C21.298 (4)C21—H210.9300
N2—N31.378 (4)C22—C231.376 (6)
N3—C31.345 (5)C22—H220.9300
N3—C141.481 (5)C23—C241.384 (5)
N4—C141.438 (5)C23—C251.468 (6)
N4—C151.446 (5)C24—H240.9300
N4—C181.457 (5)C26—H26A0.9600
N5—C191.407 (4)C26—H26B0.9600
N5—C171.457 (5)C26—H26C0.9600
N5—C161.461 (5)C27—C291.503 (5)
N6—C281.378 (4)C29—C301.529 (5)
N6—C271.381 (4)C29—C351.532 (5)
N6—C261.460 (5)C29—C341.542 (5)
N7—C271.300 (4)C30—C311.547 (5)
N7—N81.384 (4)C30—H30A0.9700
N8—C281.336 (5)C30—H30B0.9700
N8—C391.477 (5)C31—C321.489 (6)
N9—C401.443 (5)C31—C371.508 (6)
N9—C391.444 (5)C31—H310.9800
N9—C431.452 (5)C32—C331.539 (7)
N10—C441.395 (4)C32—H32A0.9700
N10—C421.456 (5)C32—H32B0.9700
N10—C411.471 (5)C33—C381.517 (7)
C1—H1A0.9600C33—C341.535 (6)
C1—H1B0.9600C33—H330.9800
C1—H1C0.9600C34—H34A0.9700
C2—C41.519 (5)C34—H34B0.9700
C4—C101.531 (5)C35—C361.537 (6)
C4—C51.533 (5)C35—H35A0.9700
C4—C91.534 (5)C35—H35B0.9700
C5—C61.533 (5)C36—C381.514 (6)
C5—H5A0.9700C36—C371.522 (6)
C5—H5B0.9700C36—H360.9800
C6—C71.507 (6)C37—H37A0.9700
C6—C121.508 (6)C37—H37B0.9700
C6—H60.9800C38—H38A0.9700
C7—C81.504 (6)C38—H38B0.9700
C7—H7A0.9700C39—H39A0.9700
C7—H7B0.9700C39—H39B0.9700
C8—C131.526 (6)C40—C411.519 (5)
C8—C91.532 (5)C40—H40A0.9700
C8—H80.9800C40—H40B0.9700
C9—H9A0.9700C41—H41A0.9700
C9—H9B0.9700C41—H41B0.9700
C10—C111.540 (6)C42—C431.510 (6)
C10—H10A0.9700C42—H42A0.9700
C10—H10B0.9700C42—H42B0.9700
C11—C121.505 (7)C43—H43A0.9700
C11—C131.516 (6)C43—H43B0.9700
C11—H110.9800C44—C451.397 (5)
C12—H12A0.9700C44—C491.400 (5)
C12—H12B0.9700C45—C461.369 (6)
C13—H13A0.9700C45—H450.9300
C13—H13B0.9700C46—C471.375 (6)
C14—H14A0.9700C46—H460.9300
C14—H14B0.9700C47—C481.388 (6)
C15—C161.520 (5)C47—H470.9300
C15—H15A0.9700C48—C491.372 (5)
C15—H15B0.9700C48—C501.493 (6)
C16—H16A0.9700C49—H490.9300
C3—N1—C2108.1 (3)C23—C22—H22121.0
C3—N1—C1120.8 (3)C22—C23—C24121.1 (4)
C2—N1—C1131.1 (3)C22—C23—C25118.7 (3)
C2—N2—N3105.2 (3)C24—C23—C25120.1 (4)
C3—N3—N2112.1 (3)C23—C24—C19121.4 (3)
C3—N3—C14126.8 (3)C23—C24—H24119.3
N2—N3—C14120.9 (3)C19—C24—H24119.3
C14—N4—C15114.6 (3)F1—C25—F2103.9 (5)
C14—N4—C18116.2 (3)F1—C25—F3104.0 (4)
C15—N4—C18110.2 (3)F2—C25—F3102.2 (5)
C19—N5—C17118.2 (3)F1—C25—C23114.6 (4)
C19—N5—C16118.3 (3)F2—C25—C23115.4 (3)
C17—N5—C16112.9 (3)F3—C25—C23115.1 (4)
C28—N6—C27108.2 (3)N6—C26—H26A109.5
C28—N6—C26121.3 (3)N6—C26—H26B109.5
C27—N6—C26130.5 (3)H26A—C26—H26B109.5
C27—N7—N8105.1 (3)N6—C26—H26C109.5
C28—N8—N7112.5 (3)H26A—C26—H26C109.5
C28—N8—C39126.8 (3)H26B—C26—H26C109.5
N7—N8—C39120.4 (3)N7—C27—N6110.2 (3)
C40—N9—C39114.6 (3)N7—C27—C29121.9 (3)
C40—N9—C43110.3 (3)N6—C27—C29127.9 (3)
C39—N9—C43115.9 (3)N8—C28—N6104.0 (3)
C44—N10—C42118.5 (3)N8—C28—S2129.2 (3)
C44—N10—C41117.3 (3)N6—C28—S2126.8 (3)
C42—N10—C41113.0 (3)C27—C29—C30110.8 (2)
N1—C1—H1A109.5C27—C29—C35109.1 (3)
N1—C1—H1B109.5C30—C29—C35107.5 (3)
H1A—C1—H1B109.5C27—C29—C34112.0 (3)
N1—C1—H1C109.5C30—C29—C34109.6 (3)
H1A—C1—H1C109.5C35—C29—C34107.6 (3)
H1B—C1—H1C109.5C29—C30—C31110.4 (3)
N2—C2—N1110.5 (3)C29—C30—H30A109.6
N2—C2—C4122.4 (3)C31—C30—H30A109.6
N1—C2—C4127.2 (3)C29—C30—H30B109.6
N3—C3—N1104.0 (3)C31—C30—H30B109.6
N3—C3—S1128.4 (3)H30A—C30—H30B108.1
N1—C3—S1127.6 (3)C32—C31—C37110.2 (4)
C2—C4—C10107.9 (3)C32—C31—C30109.8 (3)
C2—C4—C5111.1 (2)C37—C31—C30108.8 (4)
C10—C4—C5108.3 (3)C32—C31—H31109.3
C2—C4—C9112.0 (3)C37—C31—H31109.3
C10—C4—C9108.0 (3)C30—C31—H31109.3
C5—C4—C9109.5 (3)C31—C32—C33109.4 (4)
C4—C5—C6109.9 (3)C31—C32—H32A109.8
C4—C5—H5A109.7C33—C32—H32A109.8
C6—C5—H5A109.7C31—C32—H32B109.8
C4—C5—H5B109.7C33—C32—H32B109.8
C6—C5—H5B109.7H32A—C32—H32B108.2
H5A—C5—H5B108.2C38—C33—C32109.4 (4)
C7—C6—C12109.5 (3)C38—C33—C34110.0 (4)
C7—C6—C5109.3 (3)C32—C33—C34109.6 (3)
C12—C6—C5109.6 (4)C38—C33—H33109.3
C7—C6—H6109.5C32—C33—H33109.3
C12—C6—H6109.5C34—C33—H33109.3
C5—C6—H6109.5C33—C34—C29109.9 (3)
C6—C7—C8110.5 (3)C33—C34—H34A109.7
C6—C7—H7A109.5C29—C34—H34A109.7
C8—C7—H7A109.5C33—C34—H34B109.7
C6—C7—H7B109.5C29—C34—H34B109.7
C8—C7—H7B109.5H34A—C34—H34B108.2
H7A—C7—H7B108.1C29—C35—C36110.9 (3)
C7—C8—C13109.8 (4)C29—C35—H35A109.5
C7—C8—C9109.7 (3)C36—C35—H35A109.5
C13—C8—C9108.6 (4)C29—C35—H35B109.5
C7—C8—H8109.6C36—C35—H35B109.5
C13—C8—H8109.6H35A—C35—H35B108.1
C9—C8—H8109.6C38—C36—C37108.7 (4)
C8—C9—C4110.0 (3)C38—C36—C35110.3 (4)
C8—C9—H9A109.7C37—C36—C35109.0 (3)
C4—C9—H9A109.7C38—C36—H36109.6
C8—C9—H9B109.7C37—C36—H36109.6
C4—C9—H9B109.7C35—C36—H36109.6
H9A—C9—H9B108.2C31—C37—C36110.0 (3)
C4—C10—C11110.0 (3)C31—C37—H37A109.7
C4—C10—H10A109.7C36—C37—H37A109.7
C11—C10—H10A109.7C31—C37—H37B109.7
C4—C10—H10B109.7C36—C37—H37B109.7
C11—C10—H10B109.7H37A—C37—H37B108.2
H10A—C10—H10B108.2C33—C38—C36109.1 (3)
C12—C11—C13110.3 (4)C33—C38—H38A109.9
C12—C11—C10109.8 (3)C36—C38—H38A109.9
C13—C11—C10108.7 (4)C33—C38—H38B109.9
C12—C11—H11109.3C36—C38—H38B109.9
C13—C11—H11109.3H38A—C38—H38B108.3
C10—C11—H11109.3N9—C39—N8114.2 (3)
C11—C12—C6109.7 (3)N9—C39—H39A108.7
C11—C12—H12A109.7N8—C39—H39A108.7
C6—C12—H12A109.7N9—C39—H39B108.7
C11—C12—H12B109.7N8—C39—H39B108.7
C6—C12—H12B109.7H39A—C39—H39B107.6
H12A—C12—H12B108.2N9—C40—C41111.4 (3)
C11—C13—C8109.1 (3)N9—C40—H40A109.4
C11—C13—H13A109.9C41—C40—H40A109.4
C8—C13—H13A109.9N9—C40—H40B109.4
C11—C13—H13B109.9C41—C40—H40B109.4
C8—C13—H13B109.9H40A—C40—H40B108.0
H13A—C13—H13B108.3N10—C41—C40110.4 (3)
N4—C14—N3114.9 (3)N10—C41—H41A109.6
N4—C14—H14A108.6C40—C41—H41A109.6
N3—C14—H14A108.6N10—C41—H41B109.6
N4—C14—H14B108.6C40—C41—H41B109.6
N3—C14—H14B108.6H41A—C41—H41B108.1
H14A—C14—H14B107.5N10—C42—C43111.4 (3)
N4—C15—C16110.3 (3)N10—C42—H42A109.3
N4—C15—H15A109.6C43—C42—H42A109.3
C16—C15—H15A109.6N10—C42—H42B109.3
N4—C15—H15B109.6C43—C42—H42B109.3
C16—C15—H15B109.6H42A—C42—H42B108.0
H15A—C15—H15B108.1N9—C43—C42109.4 (3)
N5—C16—C15110.8 (3)N9—C43—H43A109.8
N5—C16—H16A109.5C42—C43—H43A109.8
C15—C16—H16A109.5N9—C43—H43B109.8
N5—C16—H16B109.5C42—C43—H43B109.8
C15—C16—H16B109.5H43A—C43—H43B108.2
H16A—C16—H16B108.1N10—C44—C45121.5 (3)
N5—C17—C18110.4 (3)N10—C44—C49122.4 (3)
N5—C17—H17A109.6C45—C44—C49116.0 (3)
C18—C17—H17A109.6C46—C45—C44122.1 (4)
N5—C17—H17B109.6C46—C45—H45119.0
C18—C17—H17B109.6C44—C45—H45119.0
H17A—C17—H17B108.1C45—C46—C47121.6 (4)
N4—C18—C17108.9 (3)C45—C46—H46119.2
N4—C18—H18A109.9C47—C46—H46119.2
C17—C18—H18A109.9C46—C47—C48117.2 (4)
N4—C18—H18B109.9C46—C47—H47121.4
C17—C18—H18B109.9C48—C47—H47121.4
H18A—C18—H18B108.3C49—C48—C47121.8 (4)
C20—C19—C24116.6 (3)C49—C48—C50120.4 (4)
C20—C19—N5120.8 (3)C47—C48—C50117.7 (3)
C24—C19—N5122.4 (3)C48—C49—C44121.3 (3)
C21—C20—C19121.2 (4)C48—C49—H49119.4
C21—C20—H20119.4C44—C49—H49119.4
C19—C20—H20119.4F6—C50—F5103.8 (4)
C22—C21—C20121.7 (4)F6—C50—F4106.4 (4)
C22—C21—H21119.1F5—C50—F4106.8 (4)
C20—C21—H21119.1F6—C50—C48112.4 (4)
C21—C22—C23118.0 (4)F5—C50—C48113.0 (4)
C21—C22—H22121.0F4—C50—C48113.8 (4)
C2—N2—N3—C30.4 (4)C22—C23—C25—F340.1 (6)
C2—N2—N3—C14175.8 (3)C24—C23—C25—F3140.8 (4)
C27—N7—N8—C280.1 (4)N8—N7—C27—N60.6 (4)
C27—N7—N8—C39173.7 (3)N8—N7—C27—C29179.5 (3)
N3—N2—C2—N10.3 (4)C28—N6—C27—N71.1 (4)
N3—N2—C2—C4179.2 (3)C26—N6—C27—N7176.5 (4)
C3—N1—C2—N20.8 (4)C28—N6—C27—C29179.9 (3)
C1—N1—C2—N2179.2 (4)C26—N6—C27—C292.3 (6)
C3—N1—C2—C4178.6 (3)N7—N8—C28—N60.8 (4)
C1—N1—C2—C41.3 (6)C39—N8—C28—N6173.8 (3)
N2—N3—C3—N10.9 (4)N7—N8—C28—S2179.6 (3)
C14—N3—C3—N1175.9 (3)C39—N8—C28—S27.4 (5)
N2—N3—C3—S1179.9 (3)C27—N6—C28—N81.1 (3)
C14—N3—C3—S14.9 (5)C26—N6—C28—N8176.8 (3)
C2—N1—C3—N31.0 (3)C27—N6—C28—S2179.9 (3)
C1—N1—C3—N3179.1 (3)C26—N6—C28—S22.0 (5)
C2—N1—C3—S1179.7 (3)N7—C27—C29—C30110.0 (4)
C1—N1—C3—S10.2 (5)N6—C27—C29—C3068.7 (4)
N2—C2—C4—C107.0 (4)N7—C27—C29—C358.2 (4)
N1—C2—C4—C10172.3 (3)N6—C27—C29—C35173.1 (3)
N2—C2—C4—C5111.5 (4)N7—C27—C29—C34127.2 (4)
N1—C2—C4—C569.1 (4)N6—C27—C29—C3454.1 (4)
N2—C2—C4—C9125.7 (4)C27—C29—C30—C31178.8 (3)
N1—C2—C4—C953.6 (4)C35—C29—C30—C3159.7 (4)
C2—C4—C5—C6177.7 (3)C34—C29—C30—C3157.0 (4)
C10—C4—C5—C659.4 (4)C29—C30—C31—C3259.6 (5)
C9—C4—C5—C658.2 (4)C29—C30—C31—C3761.1 (5)
C4—C5—C6—C759.4 (4)C37—C31—C32—C3359.0 (4)
C4—C5—C6—C1260.6 (4)C30—C31—C32—C3360.8 (5)
C12—C6—C7—C859.4 (4)C31—C32—C33—C3859.5 (4)
C5—C6—C7—C860.6 (4)C31—C32—C33—C3461.2 (5)
C6—C7—C8—C1359.0 (4)C38—C33—C34—C2961.4 (5)
C6—C7—C8—C960.3 (4)C32—C33—C34—C2959.0 (5)
C7—C8—C9—C458.6 (4)C27—C29—C34—C33179.3 (3)
C13—C8—C9—C461.4 (4)C30—C29—C34—C3357.2 (4)
C2—C4—C9—C8178.6 (3)C35—C29—C34—C3359.5 (4)
C10—C4—C9—C860.0 (4)C27—C29—C35—C36179.6 (3)
C5—C4—C9—C857.7 (4)C30—C29—C35—C3659.3 (4)
C2—C4—C10—C11179.1 (3)C34—C29—C35—C3658.7 (4)
C5—C4—C10—C1158.8 (4)C29—C35—C36—C3859.5 (5)
C9—C4—C10—C1159.7 (4)C29—C35—C36—C3759.8 (5)
C4—C10—C11—C1259.7 (5)C32—C31—C37—C3660.1 (4)
C4—C10—C11—C1361.1 (4)C30—C31—C37—C3660.4 (4)
C13—C11—C12—C659.9 (4)C38—C36—C37—C3160.3 (4)
C10—C11—C12—C659.9 (5)C35—C36—C37—C3159.9 (4)
C7—C6—C12—C1159.4 (5)C32—C33—C38—C3660.4 (5)
C5—C6—C12—C1160.5 (4)C34—C33—C38—C3660.1 (5)
C12—C11—C13—C858.9 (5)C37—C36—C38—C3360.7 (5)
C10—C11—C13—C861.6 (5)C35—C36—C38—C3358.8 (5)
C7—C8—C13—C1158.1 (5)C40—N9—C39—N848.1 (5)
C9—C8—C13—C1161.9 (5)C43—N9—C39—N882.0 (5)
C15—N4—C14—N350.2 (5)C28—N8—C39—N9108.7 (4)
C18—N4—C14—N380.4 (5)N7—N8—C39—N963.9 (5)
C3—N3—C14—N4116.2 (4)C39—N9—C40—C41167.1 (3)
N2—N3—C14—N458.5 (5)C43—N9—C40—C4160.1 (4)
C14—N4—C15—C16165.8 (3)C44—N10—C41—C40166.1 (3)
C18—N4—C15—C1660.7 (4)C42—N10—C41—C4050.6 (4)
C19—N5—C16—C15163.7 (3)N9—C40—C41—N1054.0 (4)
C17—N5—C16—C1552.3 (4)C44—N10—C42—C43164.2 (3)
N4—C15—C16—N554.9 (4)C41—N10—C42—C4353.0 (4)
C19—N5—C17—C18161.9 (3)C40—N9—C43—C4260.8 (4)
C16—N5—C17—C1854.0 (4)C39—N9—C43—C42167.0 (3)
C14—N4—C18—C17165.5 (3)N10—C42—C43—N957.1 (4)
C15—N4—C18—C1761.9 (4)C42—N10—C44—C4537.6 (5)
N5—C17—C18—N457.8 (4)C41—N10—C44—C45178.8 (4)
C17—N5—C19—C2036.5 (5)C42—N10—C44—C49145.6 (4)
C16—N5—C19—C20178.7 (3)C41—N10—C44—C494.4 (5)
C17—N5—C19—C24148.7 (4)N10—C44—C45—C46175.4 (4)
C16—N5—C19—C246.6 (5)C49—C44—C45—C461.6 (6)
C24—C19—C20—C211.3 (6)C44—C45—C46—C471.1 (7)
N5—C19—C20—C21176.3 (4)C45—C46—C47—C480.7 (7)
C19—C20—C21—C221.3 (7)C46—C47—C48—C490.9 (6)
C20—C21—C22—C230.6 (7)C46—C47—C48—C50178.5 (4)
C21—C22—C23—C240.0 (6)C47—C48—C49—C441.5 (6)
C21—C22—C23—C25179.1 (4)C50—C48—C49—C44179.1 (4)
C22—C23—C24—C190.1 (5)N10—C44—C49—C48175.2 (3)
C25—C23—C24—C19179.1 (4)C45—C44—C49—C481.8 (5)
C20—C19—C24—C230.7 (5)C49—C48—C50—F6106.8 (5)
N5—C19—C24—C23175.7 (3)C47—C48—C50—F670.8 (5)
C22—C23—C25—F180.4 (6)C49—C48—C50—F5136.2 (4)
C24—C23—C25—F198.6 (5)C47—C48—C50—F546.2 (6)
C22—C23—C25—F2158.9 (5)C49—C48—C50—F414.2 (6)
C24—C23—C25—F222.0 (7)C47—C48—C50—F4168.2 (4)
Hydrogen-bond geometry (Å, º) top
Cg1–Cg4 are the centroids of the N1–N3,C2,C3, C19–C24, N6–N8,C27,C28 and C44–C49 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C6—H6···Cg2i0.982.953.817 (4)148
C13—H13B···Cg3ii0.972.863.782 (4)158
C31—H31···Cg4iii0.982.943.873 (5)159
C38—H38B···Cg1iv0.972.973.723 (5)135
C45—H45···Cg2v0.932.973.708 (5)137
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x+1/2, y+1/2, z; (iii) x+1, y, z1/2; (iv) x+1, y+1, z1/2; (v) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC25H32F3N5S
Mr491.62
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)295
a, b, c (Å)28.8100 (15), 6.6052 (4), 25.7717 (14)
V3)4904.2 (5)
Z8
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.40 × 0.30 × 0.20
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.878, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
19420, 9351, 6701
Rint0.038
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.151, 1.03
No. of reflections9351
No. of parameters616
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.28
Absolute structureFlack (1983), 3730 Friedel pairs
Absolute structure parameter0.27 (9)

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), QMol (Gans & Shalloway, 2001) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1–Cg4 are the centroids of the N1–N3,C2,C3, C19–C24, N6–N8,C27,C28 and C44–C49 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C6—H6···Cg2i0.982.953.817 (4)148
C13—H13B···Cg3ii0.972.863.782 (4)158
C31—H31···Cg4iii0.982.943.873 (5)159
C38—H38B···Cg1iv0.972.973.723 (5)135
C45—H45···Cg2v0.932.973.708 (5)137
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x+1/2, y+1/2, z; (iii) x+1, y, z1/2; (iv) x+1, y+1, z1/2; (v) x+1/2, y+1/2, z+1/2.
 

Footnotes

Additional correspondence author, e-mail: elemam5@hotmail.com.

Acknowledgements

The financial support of the Deanship of Scientific Research and the Research Center of the College of Pharmacy, King Saud University, is greatly appreciated. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR-MOHE/SC/03).

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAl-Deeb, O. A., Al-Omar, M. A., El-Brollosy, N. R., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2006). Arzneim. Forsch. Drug. Res. 56, 40–47.  CAS Google Scholar
First citationAl-Omar, M. A., Al-Abdullah, E. S., Shehata, I. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2010). Molecules, 15, 2526–2550.  Web of Science CAS PubMed Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationEl-Emam, A. A., Al-Omar, M. A., Al-Tamimi, A.-M. S., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o1772–o1773.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGans, J. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557–559.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds