Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

(3, $3^{\prime}-\left\{\left(1 E, 1^{\prime} E\right)-1,1^{\prime}\right.$-[Ethane-1,2-diylbis-(azan-1-yl-1-ylidene- κN)]bis(ethan-1-yl1 -ylidene) \}dipyrazine 1 -oxide- κN^{4})bis-(nitrato-кO)nickel(II) monohydrate

Mohammed A. S. Omer ${ }^{\text {a,b }}$ and Jia-Cheng Liu ${ }^{\text {a }}$
${ }^{\text {a }}$ College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China, and ${ }^{\mathbf{b}}$ Department of Chemistry, Faculty of Education, University of Khartoum, Sudan
Correspondence e-mail: jcliu8@nwnu.edu.cn

Received 21 March 2013; accepted 6 April 2013

Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$; R factor $=0.032 ; w R$ factor $=0.070 ;$ data-to-parameter ratio $=12.1$.

In the title complex, $\left[\mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{6} \mathrm{O}_{2}\right)\right] \cdot \mathrm{H}_{2} \mathrm{O}$, the $\mathrm{Ni}^{\text {II }}$ atom, lying on a twofold rotation axis, is coordinated by a tetradentate $3,3^{\prime}-\left\{\left(1 E, 1^{\prime} E\right)-1,1^{\prime}\right.$-[ethane-1,2-diylbis(azan-1-yl1 -ylidene)]bis(ethan-1-yl-1-ylidene)\}dipyrazine 1-oxide ligand and two mutually trans monodentate nitrate anions in a distorted octahedral geometry. The lattice water molecule is located on a twofold rotation axis. The complex molecules are linked by the water molecules through $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds into a chain along [001]. Further $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds lead to the formation of a three-dimensional network.

Related literature

For background to complexes with heterocyclic aromatic N oxide ligands, see: Chupakhin et al. (2011); Karayannis et al. (1973); Nizhnik et al. (2008); Sarma et al. (2010). For related structures, see: Banerjee et al. (2004); Padhi \& Manivannan (2007).

Experimental

Crystal data
$\left[\mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{6} \mathrm{O}_{2}\right)\right] \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=501.05$
Monoclinic, $C 2 / c$
$a=16.993$ (5) A
$b=16.218$ (5) \AA
$c=7.754$ (2) \AA
$\beta=113.427$ (3) ${ }^{\circ}$

Data collection

Bruker APEXII CCD
diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.793, T_{\text {max }}=0.824$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$
$w R\left(F^{2}\right)=0.070$
$S=1.04$
1828 reflections
151 parameters
1 restraint
$V=1960.8(10) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
$\mu=1.06 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
$0.23 \times 0.21 \times 0.19 \mathrm{~mm}$

6930 measured reflections 1828 independent reflections 1515 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.034$

> H atoms treated by a mixture of independent and constrained refinement
> $\Delta \rho_{\max }=0.26$ e \AA^{-3}
> $\Delta \rho_{\min }=-0.23 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA,^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O5-H1 $W \cdots \mathrm{O}^{2}$	$0.78(12)$	$2.46(14)$	$3.086(4)$	$139(14)$
C3-H3 $^{\mathrm{i}} \cdots 2^{\mathrm{ii}}$	0.93	2.58	$3.389(3)$	146
C6-H6A $\cdots \mathrm{O}^{\mathrm{iii}}$	0.96	2.56	$3.453(4)$	156

Symmetry codes: (i) $x+1, y, z$; (ii) $x+\frac{1}{2},-y+\frac{1}{2}, z+\frac{1}{2}$; (iii) $-x+\frac{1}{2}, y+\frac{1}{2},-z+\frac{3}{2}$
Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

We are thankful for support of this study by the National Natural Science Foundation of China (No. 20871099) and the Gansu Provincial Natural Science Foundation of China (No. 0710RJZA113).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2621).

References

Banerjee, S., Gangopadhyay, J., Lu, C.-Z., Chen, J.-T. \& Ghosh, A. (2004). Eur. J. Inorg. Chem. pp. 2533-2541.

Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Chupakhin, O. N., Tretyakov, E. V., Utepova, I. A., Varaksin, M. V., Romanenko, G. V., Bogomyakov, A. S., Veber, S. L. \& Ovcharenko, V. I. (2011). Polyhedron, 30, 647-653

Karayannis, N. M., Pytlewski, L. L. \& Mikulski, C. M. (1973). Coord. Chem. Rev. 11, 93-159.
Nizhnik, Y. P., Szemik-Hojniak, A., Deperasińska, I., Jerzykiewicz, L. B., Korabik, M., Hojniak, M. \& Andreev, V. P. (2008). Inorg. Chem. 47, $2103-$ 2112.

Padhi, S. K. \& Manivannan, V. (2007). Polyhedron, 26, 1619-1624.

metal-organic compounds

Sarma, R., Boudalis, A. K. \& Baruah, J. B. (2010). Inorg. Chim. Acta, 363, 2279-2286

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122

supporting information

(3,3'-\{(1E,1'E)-1,1'-[Ethane-1,2-diylbis(azan-1-yl-1-ylidene- κN)]bis(ethan-1-yl-1ylidene)\}dipyrazine 1-oxide- κN^{4})bis(nitrato- κ O) nickel(II) monohydrate

Mohammed A. S. Omer and Jia-Cheng Liu

S1. Comment

Interest in heterocyclic aromatic N -oxides has flourished because of their practical impact on biological activity (Sarma et al., 2010). Several aromatic N-oxide derivatives capable of forming biologically active metal complexes have been reported (Nizhnik et al., 2008). Indeed, most coordinative studies of N -oxide donors have been carried out using pyridine- N-oxide (Karayannis et al., 1973) or bipyridine- N, N^{\prime}-bisoxide. However, complexes containing ligands with pyrazine single N -oxide site are few (Chupakhin et al., 2011). Herein, we synthesize a new bipyrazine N-oxide Schiff base 3, $3^{\prime}-\left(1 \mathrm{E}, 1^{\prime} \mathrm{E}\right)-1,1^{\prime}$-[ethane-1,2-diylbis(azan-1-yl-1-ylidene)] bis(ethan-1-yl-1-ylidene)dipyrazine-1-oxide (L) and its $\mathrm{Ni}($ II) complex.
In the title complex, the $\mathrm{Ni}^{\mathrm{II}}$ atom, lying on a twofold rotation axis, exhibits a distorted octahedral geometry, defined by four N atoms from the L ligand, occupying the equatorial plane, and two axial O atoms from two monodentate nitrate anions (Fig. 1). The equatorial $\mathrm{Ni}-\mathrm{N}$ distances $[\mathrm{Ni} 1-\mathrm{N} 1=2.0855$ (19) and $\mathrm{Ni} 1-\mathrm{N} 3=2.0183$ (19) \AA] are in a normal range for this class of compounds and also very similar to those of $\mathrm{Ni}-\mathrm{N}$ (pyridine) and $\mathrm{Ni}-\mathrm{N}$ (imine) found in analogue complexes (Banerjee et al., 2004; Padhi \& Manivannan, 2007). Hydrogen bonding plays an important role in the formation of the crystal structure (Table 1). The lattice water molecule is located on a twofold rotation axis and connect two symmetry-related complex molecules through $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, so forming a chain structure along [001] (Fig. 2). C—H $\cdots \mathrm{O}$ hydrogen bonds lead to a three-dimensional network (Fig. 3).

S2. Experimental

Synthesis of 2-acetylpyrazine-N-oxide: 2-Acetylpyrazine ($12.2 \mathrm{~g}, 0.1 \mathrm{~mol}$), glacial acetic acid (75 ml) and 30\% hydrogen peroxide $(14 \mathrm{ml})$ were heated with reflux at $70-80^{\circ} \mathrm{C}$ for 3 h . Additional $30 \% \mathrm{H}_{2} \mathrm{O}_{2}(10 \mathrm{ml})$ was added and the temperature was maintained at $70-80^{\circ} \mathrm{C}$ for a further 10 h . The solvent was removed by rotary evaporation and upon standing brown yellow solid was formed, filtered and dried.

Synthesis of the L ligand : 1,2-Diaminoethane ($0.100 \mathrm{~g}, 1.66 \mathrm{mmol}$) in $5 \mathrm{~cm}^{3}$ methanol was added dropwise to a hot stirred solution of 2-acetylpyrazine-N-oxide ($0.455 \mathrm{~g}, 3.3 \mathrm{mmol}$) in 25 ml of methanol. The mixture was refluxed for 5 h . Brown precipitate was filtered, washed with methanol and air dried (yield: $0.68 \mathrm{~g}, 68.7 \%$).
Synthesis of the title complex: $\mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.290 \mathrm{~g}, 0.1 \mathrm{mmol})$ in $5 \mathrm{~cm}^{3}$ of $\mathrm{CH}_{3} \mathrm{CN}$ was added dropwise to a hot stirred solution of the ligand $L(0.030 \mathrm{~g}, 0.1 \mathrm{mmol})$ in a mixture of $\mathrm{CH}_{3} \mathrm{OH} / \mathrm{CH}_{3} \mathrm{CN}(v / v=2: 1)$ and the mixture was stirred for 30 min . Diethyl ether was slowly diffused into the solution and block brown crystals suitable for X-ray diffraction analysis were collected by filtration within two weeks.

S3. Refinement

C-bound H atoms were positioned geometrically and refined as riding atoms, with $\mathrm{C}-\mathrm{H}=0.93$ (aromatic), $0.97\left(\mathrm{CH}_{2}\right)$ and $0.96\left(\mathrm{CH}_{3}\right) \AA$ and with $U_{\text {iso }}(\mathrm{H})=1.2(1.5$ for methyl $) U_{\mathrm{eq}}(\mathrm{C})$. The water H atom was located on a difference Fourier map and refined isotropically.

Figure 1
The molecular structure of the title complex. Displacement ellipsoids are drawn at the 30% probability level. H atoms and water molecule have been omitted for clarity. [Symmetry code: (i) $-x, y,-z+1 / 2$.]

Figure 2
$\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (dashed lines) between water molecule and two adjacent complex molecules, which lead to a chain along [001]. H atoms not involved in hydrogen bonds are omitted for clarity.

Figure 3
The crystal packing of the title complex, viewed along the c axis. Hydrogen bonds are shown as dashed lines.
(3,3'-\{(1E, $\left.1^{\prime} E\right)-1,1^{\prime}$-[Ethane-1,2-diylbis(azan-1-yl-1-ylidene- κN)]bis(ethan-1-yl-1-ylidene)\}dipyrazine 1-oxideκN^{4})bis(nitrato- κO)nickel(II) monohydrate

Crystal data
$\left[\mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{6} \mathrm{O}_{2}\right)\right] \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=501.05$
Monoclinic, $C 2 / c$
Hall symbol: -C 2yc
$a=16.993$ (5) A
$b=16.218$ (5) \AA
$c=7.754(2) \AA$
$\beta=113.427(3)^{\circ}$
$V=1960.8(10) \AA^{3}$
$Z=4$

Data collection

Bruker APEXII CCD
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.793, T_{\text {max }}=0.824$
$F(000)=1032$
$D_{\mathrm{x}}=1.697 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 2097 reflections
$\theta=2.5-23.4^{\circ}$
$\mu=1.06 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Block, brown
$0.23 \times 0.21 \times 0.19 \mathrm{~mm}$

6930 measured reflections
1828 independent reflections
1515 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.034$
$\theta_{\text {max }}=25.5^{\circ}, \theta_{\text {min }}=2.5^{\circ}$
$h=-20 \rightarrow 20$
$k=-19 \rightarrow 18$
$l=-9 \rightarrow 9$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$
$w R\left(F^{2}\right)=0.070$
$S=1.04$
1828 reflections
151 parameters
1 restraint
Primary atom site location: structure-invariant direct methods

```
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
\(w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0282 P)^{2}+1.9388 P\right]\) where \(P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3\)
\((\Delta / \sigma)_{\text {max }}<0.001\)
\(\Delta \rho_{\max }=0.26\) e \(\AA^{-3}\)
\(\Delta \rho_{\text {min }}=-0.23\) e \(\AA^{-3}\)
```


Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }}^{*} / U_{\mathrm{eq}}$
Ni1	0.0000	$0.22687(3)$	0.2500	$0.02616(14)$
C1	$0.11963(16)$	$0.08324(15)$	$0.4745(4)$	$0.0364(6)$
H1	0.0798	0.0464	0.3947	0.044^{*}
C2	$0.19290(17)$	$0.05229(17)$	$0.6107(4)$	$0.0461(7)$
H2	0.2022	-0.0043	0.6214	0.055^{*}
C3	$0.23627(16)$	$0.18666(15)$	$0.7095(3)$	$0.0352(6)$
H3A	0.2760	0.2238	0.7884	0.042^{*}
C4	$0.16163(14)$	$0.21473(14)$	$0.5717(3)$	$0.0282(5)$
C5	$0.13925(15)$	$0.30501(15)$	$0.5473(3)$	$0.0308(5)$
C6	$0.19245(18)$	$0.36564(17)$	$0.6900(4)$	$0.0528(8)$
H6A	0.1707	0.4202	0.6515	0.079^{*}
H6B	0.2507	0.3625	0.7015	0.079^{*}
H6C	0.1902	0.3533	0.8091	0.079^{*}
C7	$0.03112(17)$	$0.40247(15)$	$0.3526(4)$	$0.0397(6)$
H7A	0.0746	0.4444	0.3731	0.048^{*}
H7B	0.0006	0.4150	0.4319	0.048^{*}
H1W	$0.961(7)$	$0.337(9)$	$0.670(19)$	$0.65(10)^{*}$
N1	$0.10253(12)$	$0.16371(12)$	$0.4506(3)$	$0.0289(5)$
N2	$0.25192(14)$	$0.10433(13)$	$0.7301(3)$	$0.0437(6)$
N3	$0.07187(12)$	$0.32112(11)$	$0.4021(3)$	$0.0302(5)$
N4	$-0.08220(14)$	$0.16354(17)$	$0.4974(3)$	$0.0462(6)$
O1	$0.32056(13)$	$0.07731(13)$	$0.8616(3)$	$0.0739(7)$
O2	$-0.06595(11)$	$0.22970(11)$	$0.4291(2)$	$0.0413(4)$
O3	$-0.11896(19)$	$0.16980(18)$	$0.6043(4)$	$0.0997(10)$

O4	$-0.06439(14)$	$0.09594(13)$	$0.4506(3)$	$0.0603(6)$
O5	1.0000	$0.3575(3)$	0.7500	$0.0993(13)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ni1	$0.0253(2)$	$0.0206(2)$	$0.0280(2)$	0.000	$0.00583(18)$	0.000
C1	$0.0348(14)$	$0.0261(14)$	$0.0407(14)$	$-0.0021(11)$	$0.0071(12)$	$0.0025(11)$
C2	$0.0413(16)$	$0.0265(14)$	$0.0576(18)$	$0.0033(12)$	$0.0059(14)$	$0.0085(13)$
C3	$0.0284(14)$	$0.0325(14)$	$0.0376(14)$	$-0.0053(11)$	$0.0055(11)$	$0.0030(11)$
C4	$0.0262(12)$	$0.0287(13)$	$0.0288(12)$	$-0.0019(10)$	$0.0100(10)$	$0.0012(10)$
C5	$0.0292(14)$	$0.0282(13)$	$0.0336(13)$	$-0.0052(11)$	$0.0110(11)$	$-0.0025(10)$
C6	$0.0490(18)$	$0.0387(17)$	$0.0501(17)$	$-0.0044(14)$	$-0.0021(14)$	$-0.0097(14)$
C7	$0.0454(17)$	$0.0208(13)$	$0.0458(15)$	$0.0011(11)$	$0.0106(13)$	$-0.0029(11)$
N1	$0.0278(11)$	$0.0226(10)$	$0.0336(11)$	$-0.0015(9)$	$0.0092(9)$	$0.0011(9)$
N2	$0.0331(13)$	$0.0363(13)$	$0.0476(13)$	$0.0022(10)$	$0.0011(11)$	$0.0110(10)$
N3	$0.0330(12)$	$0.0218(11)$	$0.0330(11)$	$-0.0011(9)$	$0.0102(10)$	$-0.0021(9)$
N4	$0.0339(13)$	$0.0634(17)$	$0.0408(13)$	$-0.0025(12)$	$0.0144(11)$	$0.0077(12)$
O1	$0.0487(13)$	$0.0509(14)$	$0.0815(16)$	$0.0081(11)$	$-0.0169(12)$	$0.0172(12)$
O2	$0.0453(11)$	$0.0378(10)$	$0.0453(10)$	$0.0033(9)$	$0.0226(9)$	$0.0051(9)$
O3	$0.118(2)$	$0.125(2)$	$0.100(2)$	$0.0031(19)$	$0.090(2)$	$0.0153(17)$
O4	$0.0714(15)$	$0.0405(12)$	$0.0721(15)$	$-0.0098(11)$	$0.0319(12)$	$0.0052(11)$
O5	$0.126(4)$	$0.113(3)$	$0.068(2)$	0.000	$0.047(2)$	0.000

Geometric parameters ($\AA,{ }^{\circ}$)

Ni1-N3	2.0183 (19)	C5-C6	1.488 (3)
Ni1-N1	2.0855 (19)	C6-H6A	0.9600
Ni1-O2	2.1032 (17)	C6-H6B	0.9600
C1-N1	1.334 (3)	C6-H6C	0.9600
C1-C2	1.368 (3)	C7-N3	1.468 (3)
C1-H1	0.9300	C7- C^{i}	1.521 (5)
C2-N2	1.355 (3)	C7-H7A	0.9700
C2-H2	0.9300	C7-H7B	0.9700
$\mathrm{C} 3-\mathrm{N} 2$	1.358 (3)	N2-O1	1.283 (3)
C3-C4	1.371 (3)	N4-O3	1.224 (3)
C3-H3A	0.9300	N4-O4	1.230 (3)
C4-N1	1.351 (3)	N4-O2	1.275 (3)
C4-C5	1.506 (3)	O5-H1W	0.780 (5)
C5-N3	1.274 (3)		
N3-Ni1-N3 ${ }^{\text {i }}$	81.53 (11)	N3-C5-C4	113.8 (2)
N3-Ni1-N1 ${ }^{\text {i }}$	160.01 (8)	C6-C5-C4	120.1 (2)
N3 ${ }^{\text {i }}$-Ni1- ${ }^{\text {1 }}{ }^{\text {i }}$	78.71 (8)	C5-C6-H6A	109.5
N3-Ni1-N1	78.71 (8)	C5-C6-H6B	109.5
N3 ${ }^{\text {- }}$-Ni1- 11	160.01 (8)	H6A-C6-H6B	109.5
N1- ${ }^{\text {i }}$ Ni1- 11	121.17 (11)	C5-C6-H6C	109.5
N3-Ni1-O2 ${ }^{\text {i }}$	90.67 (7)	H6A-C6-H6C	109.5

$\mathrm{N} 3{ }^{\mathrm{i}}-\mathrm{Ni} 1-\mathrm{O} 2^{\text {i }}$	87.44 (7)
N1 ${ }^{\text {i }}$ - $\mathrm{Ni} 1-\mathrm{O} 2^{\text {i }}$	91.42 (7)
$\mathrm{N} 1-\mathrm{Ni} 1-\mathrm{O} 2{ }^{\text {i }}$	89.81 (7)
N3-Ni1-O2	87.44 (7)
N3 ${ }^{\text {i }}$ - $\mathrm{Ni1}-\mathrm{O} 2$	90.67 (7)
N1 ${ }^{\text {i }}$ - $\mathrm{Ni} 1-\mathrm{O} 2$	89.81 (7)
N1-Ni1-O2	91.42 (7)
$\mathrm{O} 2{ }^{\text {i }}-\mathrm{Ni} 1-\mathrm{O} 2$	177.50 (10)
N1-C1-C2	123.2 (2)
N1-C1-H1	118.4
C2-C1-H1	118.4
N2-C2-C1	119.9 (2)
N2-C2-H2	120.1
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	120.1
N2-C3-C4	119.7 (2)
N2-C3-H3A	120.2
C4-C3-H3A	120.2
N1-C4-C3	122.7 (2)
N1-C4-C5	115.32 (19)
C3-C4-C5	122.0 (2)
N3-C5-C6	126.1 (2)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 2$	0.4 (4)
N2-C3-C4-N1	-1.4 (4)
N2-C3-C4-C5	177.5 (2)
N1-C4-C5-N3	-7.4 (3)
C3-C4-C5-N3	173.6 (2)
N1-C4-C5-C6	170.5 (2)
C3-C4-C5-C6	-8.5 (3)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 4$	-1.0 (4)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1-\mathrm{Ni} 1$	176.96 (19)
C3-C4-N1-C1	1.4 (3)
C5-C4-N1-C1	-177.5 (2)
C3-C4-N1-Ni1	-176.86 (18)
C5-C4-N1-Ni1	4.2 (2)
N3-Ni1-N1-C1	-178.5 (2)
N3i-Ni1-N1-C1	-169.8 (2)
N1- ${ }^{\text {i }} 11-\mathrm{N} 1-\mathrm{C} 1$	3.71 (19)
$\mathrm{O} 2 \mathrm{i}-\mathrm{Ni} 1-\mathrm{N} 1-\mathrm{C} 1$	-87.8 (2)
$\mathrm{O} 2-\mathrm{Ni} 1-\mathrm{N} 1-\mathrm{C} 1$	94.4 (2)
N3-Ni1-N1-C4	-0.56 (15)
N3 ${ }^{\text {- }}$ - $\mathrm{Ni} 1-\mathrm{N} 1-\mathrm{C} 4$	8.2 (3)
N1- $\mathrm{Ni} 1-\mathrm{N} 1-\mathrm{C} 4$	-178.30 (17)
$\mathrm{O} 2 \mathrm{i}-\mathrm{Ni} 1-\mathrm{N} 1-\mathrm{C} 4$	90.16 (15)
$\mathrm{O} 2-\mathrm{Ni} 1-\mathrm{N} 1-\mathrm{C} 4$	-87.66 (15)

H6B-C6- H 6 C	109.5
N3-C7-C7 ${ }^{\text {i }}$	109.44 (14)
N3-C7-H7A	109.8
C7- ${ }^{\text {i }} 7-\mathrm{H} 7 \mathrm{~A}$	109.8
N3-C7-H7B	109.8
C7- ${ }^{\text {C7 }}$ - H 7 B	109.8
H7A-C7-H7B	108.2
C1-N1-C4	116.2 (2)
C1-N1-Ni1	130.95 (16)
C4-N1-Ni1	112.79 (15)
O1-N2-C2	121.5 (2)
O1-N2-C3	120.2 (2)
C2-N2-C3	118.3 (2)
C5-N3-C7	125.5 (2)
C5-N3-Ni1	118.92 (16)
C7-N3-Ni1	114.52 (15)
O3-N4-O4	121.7 (3)
$\mathrm{O} 3-\mathrm{N} 4-\mathrm{O} 2$	117.7 (3)
O4-N4-O2	120.6 (2)
N4-O2-Ni1	121.09 (16)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{N} 2-\mathrm{O} 1$	-178.2 (2)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{N} 2-\mathrm{C} 2$	0.8 (4)
C6-C5-N3-C7	-3.4 (4)
C4-C5-N3-C7	174.4 (2)
C6-C5-N3-Ni1	-170.6 (2)
C4-C5-N3-Ni1	7.1 (3)
C7- ${ }^{\text {i }} 7-\mathrm{N} 3-\mathrm{C} 5$	164.2 (3)
C7--C7-N3-Ni1	-28.1 (3)
N3 ${ }^{\text {i }}$ - Ni1-N3-C5	179.1 (2)
N1- ${ }^{\text {i }}$ Ni1-N3-C5	170.39 (19)
N1-Ni1-N3-C5	-3.94 (17)
O2 ${ }^{\text {i }}$ - Ni1- $\mathrm{N} 3-\mathrm{C} 5$	-93.61 (18)
O2-Ni1-N3-C5	88.02 (18)
N3 ${ }^{\text {i }}$-Ni1-N3-C7	10.46 (13)
N1- ${ }^{\text {i }}$ Ni1-N3-C7	1.8 (3)
N1-Ni1-N3-C7	-172.56 (17)
O2 ${ }^{\text {i }}$ - $\mathrm{Ni} 11-\mathrm{N} 3-\mathrm{C} 7$	97.77 (17)
$\mathrm{O} 2-\mathrm{Ni} 1-\mathrm{N} 3-\mathrm{C} 7$	-80.60 (17)
$\mathrm{O} 3-\mathrm{N} 4-\mathrm{O} 2-\mathrm{Ni} 1$	178.3 (2)
$\mathrm{O} 4-\mathrm{N} 4-\mathrm{O} 2-\mathrm{Ni} 1$	-4.6 (3)
N3-Ni1-O2-N4	-134.41 (18)
N3i-Ni1-O2-N4	144.10 (18)
N1 ${ }^{\text {i }}$ - $\mathrm{Ni1}-\mathrm{O} 2-\mathrm{N} 4$	65.39 (18)

supporting information

$\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 2-\mathrm{O} 1$	$178.7(3)$	$\mathrm{N} 1-\mathrm{Ni} 1-\mathrm{O} 2-\mathrm{N} 4$	$-55.78(18)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 2-\mathrm{C} 3$	$-0.3(4)$		

Symmetry code: (i) $-x, y,-z+1 / 2$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 5 — \mathrm{H} 1 W \cdots \mathrm{O} 2^{\text {ii }}$	$0.78(12)$	$2.46(14)$	$3.086(4)$	$139(14)$
$\mathrm{C} 3 — \mathrm{H} 3 A \cdots \mathrm{O} 2^{\text {iii }}$	0.93	2.58	$3.389(3)$	146
$\mathrm{C} 6 — \mathrm{H} 6 A \cdots 1^{\text {iv }}$	0.96	2.56	$3.453(4)$	156

Symmetry codes: (ii) $x+1, y, z$; (iii) $x+1 / 2,-y+1 / 2, z+1 / 2$; (iv) $-x+1 / 2, y+1 / 2,-z+3 / 2$.

