inorganic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Ba₂Sb₄GeS₁₀

Lei Geng

Department of Physics and Electronic Information, Huaibei Normal University, Huaibei, Anhui 235000, People's Republic of China Correspondence e-mail: Igeng.cn@gmail.com

Received 8 March 2013; accepted 22 March 2013

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (Sb–S) = 0.001 Å; R factor = 0.018; wR factor = 0.042; data-to-parameter ratio = 23.2.

The title quaternary compound, dibarium tetraantimony germanium decasulfide, Ba₂Sb₄GeS₁₀, crystallizes in a novel three-dimensional $_{\infty}^{3}$ [Sb₄GeS₁₀]⁴⁻ network structure, which is composed of triangular pyramidal SbS₃ (site symmetry *m.*.), distorted SbS₅ (*m.*.) polyhedra and regular GeS₄ ($\overline{4}$..) tetrahedra. The SbS₃ and SbS₅ units are connected with each other through corner- and edge-sharing, forming a Sb₄S₁₀ layer in the *ab* plane. The GeS₄ tetrahedra further bridge two neighbouring Sb₄S₁₀ layers, forming a three-dimensional $_{\infty}^{3}$ [Sb₄GeS₁₀]⁴⁻ network. The Ba²⁺ cation (..2) is located between two Sb₄S₁₀ layers and is coordinated by ten S atoms with Ba-S bond lengths in the range 3.2505 (9)–3.4121 (2) Å.

Related literature

The stereochemically active $5s^2$ lone-pair electrons possess a large electric dipole moment and can influence structures that contain Sb³⁺, see: Choi & Kanatzidis (2000); Babo & Albrecht-Schmitt (2012). SbS₃, SbS₄ or SbS₅ units in a crystal structure are prone to form Sb–S chains through corner- or edge-sharing, see: Dorrscheidt & Schäfer (1981); Cordier *et al.* (1984). GeS₄ tetrahedra can be utilized as the second structural unit and introduced into crystal structures to connect Sb–S chains into a two-dimensional layer or three-dimensional framework structure (Feng *et al.*, 2008). For crystal structures and optical properties, see: Deng *et al.* (2005); Kim *et al.* (2008); Ribes *et al.* (1973); Teske (1979); Lekse *et al.* (2009).

Experimental

Crystal data Ba₂Sb₄GeS₁₀

 $M_r = 1154.87$

Tetragonal, $P4_2/mbc$ a = 11.3119 (4) Å c = 13.6384 (9) Å V = 1745.16 (14) Å³ Z = 4

Data collection

1046 reflections

Rigaku SCXMini CCD diffractometer Absorption correction: multi-scan (*CrystalClear*; Rigaku, 2007) $T_{\rm min} = 0.530, T_{\rm max} = 1.000$

Refinement $R[F^2 > 2\sigma(F^2)] = 0.018$ $wR(F^2) = 0.042$ S = 1.15 Mo $K\alpha$ radiation $\mu = 13.40 \text{ mm}^{-1}$ T = 293 K $0.22 \times 0.07 \times 0.07 \text{ mm}$

12411 measured reflections 1046 independent reflections 1032 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.030$

45 parameters $\Delta \rho_{\text{max}} = 0.66 \text{ e } \text{ Å}^{-3}$ $\Delta \rho_{\text{min}} = -0.74 \text{ e } \text{ Å}^{-3}$

Data collection: *CrystalClear* (Rigaku, 2007); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg, 2005); software used to prepare material for publication: *publCIF* (Westrip, 2010).

The author gratefully acknowledges the support of the Natural Science Research Project for Colleges and Universities of Anhui Province (KJ2013B238).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JJ2163).

References

Babo, J. M. & Albrecht-Schmitt, T. E. (2012). J. Solid State Chem. 187, 264–268.

Brandenburg, K. (2005). *DIAMOND*. Crystal Impact GbR, Bonn, Germany Choi, K. S. & Kanatzidis, M. G. (2000). *Inorg. Chem.* **39**, 5655–5662.

- Cordier, G., Schwidetzky, C. & Schäfer, H. (1984). J. Solid State Chem. 54, 84– 88.
- Deng, B., Chan, G. H., Ellis, D. E., Van Duyne, R. P. & Ibers, J. A. (2005). J. Solid State Chem. 178, 3169–3175.

Dorrscheidt, W. & Schäfer, H. (1981). Z. Naturforsch. Teil B, 36, 410-414.

Feng, M. L., Kong, D. N., Xie, Z. L. & Huang, X. Y. (2008). Angew. Chem. Int. Ed. 47, 8623–8626.

Kim, Y., Seo, I. S., Martin, S. W., Baek, J., Halasyamani, P. S., Arumugam, N. & Steinfink, H. (2008). *Chem. Mater.* 20, 6048–6052.

Lekse, J. W., Moreau, M. A., McNerny, K. L., Yeon, J., Halasyamani, P. S. & Aitken, J. A. (2009). *Inorg. Chem.* 48, 7516–7518.

Ribes, M., Olivier-Fourcade, J., Philippot, E. & Maurin, M. (1973). J. Solid State Chem. 8, 195–205.

Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Teske, C. L. (1979). Z. Naturforsch. Teil B, 34, 544-547.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2013). E69, i24 [https://doi.org/10.1107/S1600536813007988]

$Ba_2Sb_4GeS_{10}$

Lei Geng

S1. Comment

Sb-based chalcogenides have attracted a lot of attention in recent years due to their rich structures and interesting physical properties, such as nonlinear optics and ion-exchange properties. The stereochemically active 5 s^2 lone-pair electrons possess a large electric dipole moment and can influence structures that contain Sb³⁺ (Choi et al. 2000; Babo et al. 2012). SbS₃, SbS₄ or SbS₅ units in a crystal structure are prone to form one-dimensional Sb—S chains through a corner- or edge-sharing manner (Dorrscheidt et al. 1981; Cordier et al. 1984). GeS₄ tetrahedron can be utilized as the second structural unit and introduced into crystal structure to connect Sb-S chains into a two-dimensional layer or threedimensional framework structure (Feng et al. 2008). In this paper, a new title quaternary sulfide in the Sb-Ge-S system is dexcribed. $Ba_2Sb_4GeS_{10}$ represents the first example of a structure synthesized and structurally characterized by single-crystal X-ray diffraction in the quaternary Ba—Sb—Ge—S system (Fig. 1). It crystallizes with one Ge atom on 4b and three S atoms on 8h, 16i and 16i, respectively, in terms of the Wyckoff notation. There are two types of coordination polyhedron of SbS groups, *i.e.* triangle-pyramidal SbS₃ and distorted SbS₅ polyhedra. SbS₃ and SbS₅ polyhedra are connected with each other through corner- and edge-sharing conformations to form Sb_4S_{10} zigzag chains, which are further arranged side by side into the Sb_4S_{10} layer in the *ab*-plane (Fig. 2). The GeS₄ tetrahedra further bridge two neighbouring Sb₄S₁₀ layers, forming athree-dimensional ∞^3 [Sb₄GeS₁₀]⁻⁴ network (Fig. 3). The Ba atom is located between two Sb_4S_{10} layers and coordinates with ten S atoms with Ba—S bonding lengths in the range of 3.2505 (9)–3.4121 (2) Å, which are typical values for sulfides (Dorrscheidt et al. 1981; Cordier et al. 1984).

S2. Experimental

The title compound, $Ba_2Sb_4GeS_{10}$, was synthesized through a high temperature solid-state reaction in an evacuated and sealed silica tube. A mixture of BaS (0.5 mmol, 0.0847 g), Sb (1 mmol, 0.1218 g), Ge (0.25 mmol, 0.0182 g), S (2 mmol, 0.0641 g) was loaded in a silica ampoule, sealed under 10⁻² Pa, heated gradually to 1173 K (holding for 10 h) in 60 h, and then cooled to room temperature in 300 h. Rod-shaped crystals of $Ba_2Sb_4GeS_{10}$ with a dark red color were obtained. The crystals were stable under air and moisture conditions.

S3. Refinement

All atoms in $Ba_2Sb_4GeS_{10}$ crystal structure were refined anisotropically without disorder. The highest residual peak (0.66 $e \times Å^{-3}$) in the difference electron density map was located at (0.1992, 0.3008, 1/4), 1.09 Å from atom Ba1. The deepest hole (- 0.73 $e \times Å^{-3}$) was located at (0.1670, 0.7496, 0.2499), 0.77 Å from atom Ba1.

Crystal structure of $Ba_2Sb_4GeS_{10}$ in GeS_4 polyhedral representation viewed along [001]. Green tetrahedra represent the GeS_4 unit with yellow sulfur atoms at the corners of each tetrahedron.

Figure 2

 SbS_3 and SbS_5 polyhedra are connected with each other through corner- and edge-sharing conformations to form the Sb_4S_{10} zigzag chains, which are further arranged side by side into the Sb_4S_{10} layer in the *ab*-plane.

Figure 3

The novel three-dimensional ∞^3 [Sb₄GeS₁₀]⁻⁴ network viewed along [100] direction. GeS₄ tetrahedra act as bridging units for two neighbouring Sb₄S₁₀ layers.

Dibarium tetraantimony(III) germanium(IV) decasulfide

Crystal data

Ba ₂ Sb ₄ GeS ₁₀ $M_r = 1154.87$ Tetragonal, $P4_2/mbc$ Hall symbol: -P 4ac 2ab a = 11.3119 (4) Å c = 13.6384 (9) Å V = 1745.16 (14) Å ³ Z = 4 F(000) = 2032	$D_x = 4.395 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1877 reflections $\theta = 2.3-27.5^{\circ}$ $\mu = 13.40 \text{ mm}^{-1}$ T = 293 K Rod, dark-red $0.22 \times 0.07 \times 0.07 \text{ mm}$
Data collection Rigaku SCXMini CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator CCD_Profile_fitting scans Absorption correction: multi-scan (CrystalClear; Rigaku, 2007) $T_{min} = 0.530, T_{max} = 1.000$	12411 measured reflections 1046 independent reflections 1032 reflections with $I > 2\sigma(I)$ $R_{int} = 0.030$ $\theta_{max} = 27.5^{\circ}, \ \theta_{min} = 2.6^{\circ}$ $h = -14 \rightarrow 14$ $k = -14 \rightarrow 11$ $l = -16 \rightarrow 17$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.018$	$w = 1/[\sigma^2(F_o^2) + (0.0214P)^2 + 3.2912P]$
$wR(F^2) = 0.042$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.15	$(\Delta/\sigma)_{\rm max} < 0.001$
1046 reflections	$\Delta \rho_{\rm max} = 0.66 \text{ e } \text{\AA}^{-3}$
45 parameters	$\Delta \rho_{\rm min} = -0.74 \text{ e } \text{\AA}^{-3}$
0 restraints	Extinction correction: SHELXL97 (Sheldrick,
Primary atom site location: structure-invariant	2008), Fc [*] =kFc[1+0.001xFc ² λ^{3} /sin(2 θ)] ^{-1/4}
direct methods	Extinction coefficient: 0.00225 (8)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Ba1	0.232424 (19)	0.732424 (19)	0.2500	0.01704 (10)	
Sb1	0.13578 (3)	0.41567 (3)	0.0000	0.01543 (10)	
Sb2	0.46488 (3)	0.34169 (3)	0.0000	0.01796 (10)	
Ge1	0.0000	0.0000	0.2500	0.01175 (15)	
S1	0.27060 (10)	0.24355 (10)	0.0000	0.0136 (2)	
S2	0.01781 (8)	0.15428 (7)	0.34843 (6)	0.01631 (18)	
S3	0.02261 (7)	0.32137 (8)	0.13186 (6)	0.01777 (19)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ba1	0.01715 (12)	0.01715 (12)	0.01683 (15)	0.00214 (11)	-0.00097 (7)	0.00097 (7)
Sb1	0.01518 (17)	0.01341 (17)	0.01771 (17)	0.00143 (11)	0.000	0.000
Sb2	0.01151 (17)	0.02030 (18)	0.02206 (18)	-0.00225 (12)	0.000	0.000
Gel	0.0126 (2)	0.0126 (2)	0.0101 (3)	0.000	0.000	0.000
S 1	0.0101 (5)	0.0121 (5)	0.0184 (6)	-0.0006 (4)	0.000	0.000
S2	0.0201 (4)	0.0142 (4)	0.0146 (4)	-0.0020 (3)	-0.0009 (3)	-0.0026 (3)
S3	0.0131 (4)	0.0254 (4)	0.0147 (4)	-0.0025 (3)	0.0024 (3)	-0.0028 (3)

Geometric parameters (Å, °)

Ba1—S2 ⁱ	3.2505 (9)	Sb2—S3 ^{viii}	2.6576 (9)
Ba1—S2 ⁱⁱ	3.2505 (9)	Sb2—S2 ^{iv}	2.9352 (9)
Ba1—S3 ⁱⁱ	3.3596 (9)	Sb2—S2 ^{ix}	2.9352 (9)
Ba1—S3 ⁱ	3.3596 (9)	Ge1—S2	2.2110 (8)

supporting information

Ba1—S3 ⁱⁱⁱ	3.3599 (8)	Ge1—S2 ^x	2.2110 (8)
Ba1—S3 ^{iv}	3.3599 (8)	Ge1—S2 ^{xi}	2.2110 (8)
Ba1—S2 ^{iv}	3.3849 (9)	Ge1—S2 ^{xii}	2.2110 (8)
Ba1—S2 ⁱⁱⁱ	3.3849 (9)	S1—Ba1 ^{xiii}	3.4121 (2)
Ba1—S1 ⁱⁱ	3.4121 (2)	S1—Ba1 ^{xiv}	3.4121 (2)
Ba1—S1 ^v	3.4121 (2)	S2—Sb2 ^{xv}	2.9352 (9)
Sb1—S3 ^{vi}	2.4517 (9)	S2—Ba1 ^{xiv}	3.2505 (9)
Sb1—S3	2,4517 (9)	$S_2 = Ba1^{iii}$	3 3849 (9)
Sb1—S1	2.4732 (12)	S3—Sb2 ^{xvi}	2.6576 (9)
Sb2—S1	2 4621 (12)	$S3 - Ba1^{xiv}$	3 3596 (9)
Sb2—S1 Sb2—S3 ^{vii}	2.6576 (9)	S3—Ba1 ⁱⁱⁱ	3 3599 (8)
562 55	2.0370())	55 Dai	5.5577 (8)
S2 ⁱ —Ba1—S2 ⁱⁱ	130.04 (3)	S3 ^{iv} —Ba1—S1 ^v	120.60 (3)
S2 ⁱ —Ba1—S3 ⁱⁱ	76.46 (2)	S2 ^{iv} —Ba1—S1 ^v	68.80(2)
S2 ⁱⁱ —Ba1—S3 ⁱⁱ	64.06 (2)	S2 ⁱⁱⁱ —Ba1—S1 ^v	111.96 (2)
S2 ⁱ —Ba1—S3 ⁱ	64.06 (2)	S1 ⁱⁱ —Ba1—S1 ^v	177.82 (4)
S2 ⁱⁱ —Ba1—S3 ⁱ	76.46 (2)	S3 ^{vi} —Sb1—S3	94.37 (4)
S3 ⁱⁱ —Ba1—S3 ⁱ	74.69 (3)	S3 ^{vi} —Sb1—S1	88.82 (3)
S2 ⁱ —Ba1—S3 ⁱⁱⁱ	153.52 (2)	S3—Sb1—S1	88.82 (3)
S2 ⁱⁱ —Ba1—S3 ⁱⁱⁱ	74.09 (2)	S1—Sb2—S3 ^{vii}	84.63 (3)
S3 ⁱⁱ —Ba1—S3 ⁱⁱⁱ	129.53 (3)	S1—Sb2—S3 ^{viii}	84.63 (3)
S3 ⁱ —Ba1—S3 ⁱⁱⁱ	122.17 (3)	S3 ^{vii} —Sb2—S3 ^{viii}	85.17 (4)
S2 ⁱ —Ba1—S3 ^{iv}	74.09 (2)	S1—Sb2—S2 ^{iv}	80.46 (3)
S2 ⁱⁱ —Ba1—S3 ^{iv}	153.52 (2)	S3 ^{vii} —Sb2—S2 ^{iv}	164.84 (3)
S3 ⁱⁱ —Ba1—S3 ^{iv}	122.17 (3)	S3 ^{viii} —Sb2—S2 ^{iv}	90.69 (3)
S3 ⁱ —Ba1—S3 ^{iv}	129.53 (3)	S1—Sb2—S2 ^{ix}	80.46 (3)
S3 ⁱⁱⁱ —Ba1—S3 ^{iv}	85.35 (3)	S3 ^{vii} —Sb2—S2 ^{ix}	90.69 (3)
$S2^{i}$ —Ba1—S2 ^{iv}	66.88 (3)	S3 ^{viii} —Sb2—S2 ^{ix}	164.84 (3)
S2 ⁱⁱ —Ba1—S2 ^{iv}	131.76 (3)	S2 ^{iv} —Sb2—S2 ^{ix}	89.54 (3)
$S3^{ii}$ —Ba1— $S2^{iv}$	140.05 (2)	$S2$ —Ge1— $S2^{x}$	111.63(2)
$S3^{i}$ Bal $S2^{iv}$	75 40 (2)	S^2 —Ge1— S^{2xi}	105 23 (4)
$S3^{iii}$ Ba1 $S2^{iv}$	89.05 (2)	$S2^{x}$ Ge1 $S2^{xi}$	111.63 (2)
$S3^{iv}$ Bal $S2^{iv}$	62 66 (2)	S2 - Ge1 - S2	111.03(2) 111.63(2)
S2 ⁱ —Ba1—S2 ⁱⁱⁱ	131.76(3)	$S2^{x}$ Ge1 $S2^{xii}$	105 23 (4)
$S2^{ii}$ Bal $S2^{iii}$	66 88 (3)	$S2^{xi}$ Ge1 $S2^{xii}$	111 63 (2)
$S2^{ii}$ Bal $S2^{iii}$	75 40 (2)	s_2 s_1 s_2 s_3 s_4 s_2 s_2 s_3 s_4 s_4 s_4 s_4 s_4 s_5 s_4	101.03(2)
$S3^{i}$ Bal $S2^{iii}$	140.05(2)	Sb2 $S1$ $Sb1Sb2 S1 Ba1^{xiii}$	91 466 (19)
S3 ⁱⁱⁱ —Ba1—S2 ⁱⁱⁱ	62 66 (2)	Sb2 S1 Ba1 Sb1-S1-Ba1 ^{xiii}	91 31 (2)
$S3^{iv}$ Bal $S2^{iii}$	89.05 (2)	$Sb2 = S1 = Ba1^{xiv}$	91 466 (19)
S^{2iv} Bal S^{2iii}	$142\ 24\ (3)$	$Sb1 = S1 = Ba1^{xiv}$	91 31 (2)
$S2^{i}$ Ba1 $S2^{i}$	63 42 (2)	$Ba1^{xii}$ $S1$ $Ba1^{xiv}$	175.62(4)
$S2^{ii}$ Ba1 $S1^{ii}$	115 56 (2)	$Ge1 = S2 = Sb2^{xv}$	96 58 (3)
$S2^{ii} Ba1 S1^{ii}$	61 18 (2)	$Ge1 - S2 - Be1^{xiv}$	92.30(3)
S_{i} B_{a1} S_{i}	116 86 (3)	$S_1 - S_2 - Ba_1$ Sh $2^{xv} - S_2 - Ba_1^{xiv}$	22.77 (3) 86.85 (2)
$S_{3ii} = Ba_1 = S_1$	120.60 (3)	Ge1 = S2 = Ba1	88 96 (2)
$S_{3iv} = B_{21} = S_{1ii}$	120.00(3) 61 24 (2)	$S_1 - S_2 - Ba_1$ Sh $2^{xv} - S_2 - Ba_1^{iii}$	154 96 (3)
S^{iv} Bal S^{ii}	111.24(2)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	117 30 (3)
$S^{2iii} = B_0 1 + S^{1ii}$	(2)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26 21 (2)
54 —Da1—31	00.00 (2)	501-55-502	00.21(3)

supporting information

$S2^{i}$ —Ba1—S1 ^v	115.56 (2)	$Sb1 - S3 - Ba1^{xiv}$	92.95 (3)
$S2^{ii}$ —Ba1—S1 ^v	63.42 (2)	$Sb2^{xvi} - S3 - Ba1^{xiv}$	108.63 (3)
$S3^{ii}$ —Ba1—S1 ^v	116.86 (3)	$Sb1 - S3 - Ba1^{iii}$	151.51 (4)
$S3^{i}$ —Ba1—S1 ^v	61.18 (2)	$Sb2^{xvi} - S3 - Ba1^{iii}$	89.30 (2)
$S3^{iii}$ —Ba1—S1 ^v	61.24 (2)	$Ba1^{xiv} - S3 - Ba1^{iii}$	115.09 (3)
S3 - Ba1 - S1 $S3^{vii} - Sb2 - S1 - Sb1$ $S3^{vii} - Sb2 - S1 - Sb1$ $S2^{iv} - Sb2 - S1 - Sb1$ $S2^{iv} - Sb2 - S1 - Ba1^{xiii}$ $S3^{vii} - Sb2 - S1 - Ba1^{xiii}$ $S2^{iv} - Sb2 - S1 - Ba1^{xiii}$ $S2^{iv} - Sb2 - S1 - Ba1^{xiii}$ $S3^{vii} - Sb2 - S1 - Ba1^{xiv}$ $S3^{vii} - Sb2 - S1 - Ba1^{xiv}$ $S2^{iv} - Sb2 - S1 - Ba1^{xiv}$ $S3^{vi} - Sb1 - S1 - Sb2$ $S3 - Sb1 - S1 - Ba1^{xiii}$	$\begin{array}{c} -137.18 \ (2) \\ 137.18 \ (2) \\ 45.572 \ (18) \\ -45.572 \ (18) \\ -45.55 \ (3) \\ -131.19 \ (3) \\ 137.20 \ (3) \\ 46.06 \ (2) \\ 131.19 \ (3) \\ 45.55 \ (3) \\ -46.06 \ (2) \\ -137.20 \ (3) \\ 132.80 \ (2) \\ -132.80 \ (2) \\ 41.05 \ (3) \\ 135.44 \ (3) \end{array}$	$\begin{array}{l} S3 \\ S3 \\ S2^{x} \\ Ge1 \\ S2^{x} \\ Ge1 \\ S2^{xii} \\ S1^{xii} \\ $	$\begin{array}{c} -41.05 \ (3) \\ 157.74 \ (2) \\ 36.474 \ (13) \\ -84.791 \ (7) \\ -115.15 \ (4) \\ 123.59 \ (3) \\ 2.32 \ (3) \\ 2.23 \ (2) \\ -119.04 \ (3) \\ 119.70 \ (3) \\ 22.13 \ (4) \\ -66.60 \ (3) \\ 130.615 \ (18) \\ 41.89 \ (3) \\ -59.38 \ (9) \\ -148.11 \ (7) \end{array}$

Symmetry codes: (i) -*x*+1/2, *y*+1/2, *z*; (ii) *y*, -*x*+1, -*z*+1/2; (iii) -*x*, -*y*+1, *z*; (iv) -*y*+1/2, -*x*+1/2, -*z*+1/2; (v) -*x*+1/2, *y*+1/2, -*z*; (vi) *x*, *y*, -*z*; (vii) *x*+1/2, -*y*+1/2, -*z*; (vii) *x*+1/2, -*y*+1/2, *z*; (ix) -*y*+1/2, -*x*+1/2; (x) -*y*, *x*, -*z*+1/2; (x) -*y*, *x*, -*z*+1/2; (xii) *y*, -*x*, -*z*+1/2; (xiii) -*y*+1, *x*, *z*-1/2; (xiv) -*y*+1, *x*, -*z*+1/2; (xv) -*y*+1/2, -*x*+1/2, -*x*+1/2; (xv) -*y*+1/2, *z*.