Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

$\mathrm{Ba}_{2} \mathrm{Sb}_{\mathbf{4}} \mathrm{GeS}_{10}$

Lei Geng

Department of Physics and Electronic Information, Huaibei Normal University, Huaibei, Anhui 235000, People's Republic of China
Correspondence e-mail: Igeng.cn@gmail.com

Received 8 March 2013; accepted 22 March 2013

Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{Sb}-\mathrm{S})=0.001 \AA$; R factor $=0.018 ; w R$ factor $=0.042 ;$ data-to-parameter ratio $=23.2$.

The title quaternary compound, dibarium tetraantimony germanium decasulfide, $\mathrm{Ba}_{2} \mathrm{Sb}_{4} \mathrm{GeS}_{10}$, crystallizes in a novel three-dimensional ${ }_{\infty}^{3}\left[\mathrm{Sb}_{4} \mathrm{GeS}_{10}\right]^{4-}$ network structure, which is composed of triangular pyramidal SbS_{3} (site symmetry m..), distorted SbS_{5} ($\left.m ..\right)$ polyhedra and regular $\mathrm{GeS}_{4}(\overline{4} .$.$) tetra-$ hedra. The SbS_{3} and SbS_{5} units are connected with each other through corner- and edge-sharing, forming a $\mathrm{Sb}_{4} \mathrm{~S}_{10}$ layer in the $a b$ plane. The GeS_{4} tetrahedra further bridge two neighbouring $\mathrm{Sb}_{4} \mathrm{~S}_{10}$ layers, forming a three-dimensional ${ }_{\infty}^{3}\left[\mathrm{Sb}_{4} \mathrm{GeS}_{10}\right]^{4-}$ network. The Ba^{2+} cation (.2) is located between two $\mathrm{Sb}_{4} \mathrm{~S}_{10}$ layers and is coordinated by ten S atoms with $\mathrm{Ba}-\mathrm{S}$ bond lengths in the range 3.2505 (9)-3.4121 (2) \AA.

Related literature

The stereochemically active $5 s^{2}$ lone-pair electrons possess a large electric dipole moment and can influence structures that contain Sb^{3+}, see: Choi \& Kanatzidis (2000); Babo \& Albrecht-Schmitt (2012). $\mathrm{SbS}_{3}, \mathrm{SbS}_{4}$ or SbS_{5} units in a crystal structure are prone to form $\mathrm{Sb}-\mathrm{S}$ chains through corner- or edge-sharing, see: Dorrscheidt \& Schäfer (1981); Cordier et al. (1984). GeS_{4} tetrahedra can be utilized as the second structural unit and introduced into crystal structures to connect $\mathrm{Sb}-\mathrm{S}$ chains into a two-dimensional layer or three-dimensional framework structure (Feng et al., 2008). For crystal structures and optical properties, see: Deng et al. (2005); Kim et al. (2008); Ribes et al. (1973); Teske (1979); Lekse et al. (2009).

Experimental

Crystal data
$\mathrm{Ba}_{2} \mathrm{Sb}_{4} \mathrm{GeS}_{10}$

$$
M_{r}=1154.87
$$

Tetragonal, $P 4_{2} / m b c$
$a=11.3119$ (4) \AA
$c=13.6384$ (9) \AA
$V=1745.16(14) \AA^{3}$
$Z=4$
Data collection
Rigaku SCXMini CCD
diffractometer
Absorption correction: multi-scan (CrystalClear; Rigaku, 2007)
$T_{\text {min }}=0.530, T_{\text {max }}=1.000$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.018$
$w R\left(F^{2}\right)=0.042$
$S=1.15$
1046 reflections

Mo $K \alpha$ radiation
$\mu=13.40 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
$0.22 \times 0.07 \times 0.07 \mathrm{~mm}$

12411 measured reflections 1046 independent reflections 1032 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.030$

Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: publCIF (Westrip, 2010).

The author gratefully acknowledges the support of the Natural Science Research Project for Colleges and Universities of Anhui Province (KJ2013B238).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JJ2163).

References

Babo, J. M. \& Albrecht-Schmitt, T. E. (2012). J. Solid State Chem. 187, 264 268.

Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany Choi, K. S. \& Kanatzidis, M. G. (2000). Inorg. Chem. 39, 5655-5662.
Cordier, G., Schwidetzky, C. \& Schäfer, H. (1984). J. Solid State Chem. 54, 8488.

Deng, B., Chan, G. H., Ellis, D. E., Van Duyne, R. P. \& Ibers, J. A. (2005). J. Solid State Chem. 178, 3169-3175.
Dorrscheidt, W. \& Schäfer, H. (1981). Z. Naturforsch. Teil B, 36, 410-414.
Feng, M. L., Kong, D. N., Xie, Z. L. \& Huang, X. Y. (2008). Angew. Chem. Int. Ed. 47, 8623-8626.
Kim, Y., Seo, I. S., Martin, S. W., Baek, J., Halasyamani, P. S., Arumugam, N. \& Steinfink, H. (2008). Chem. Mater. 20, 6048-6052.
Lekse, J. W., Moreau, M. A., McNerny, K. L., Yeon, J., Halasyamani, P. S. \& Aitken, J. A. (2009). Inorg. Chem. 48, 7516-7518.
Ribes, M., Olivier-Fourcade, J., Philippot, E. \& Maurin, M. (1973). J. Solid State Chem. 8, 195-205.
Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Teske, C. L. (1979). Z. Naturforsch. Teil B, 34, 544-547.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2013). E69, i24 [https://doi.org/10.1107/S1600536813007988]
$\mathrm{Ba}_{2} \mathrm{Sb}_{4} \mathrm{GeS}_{10}$

Lei Geng

S1. Comment

Sb -based chalcogenides have attracted a lot of attention in recent years due to their rich structures and interesting physical properties, such as nonlinear optics and ion-exchange properties. The stereochemically active $5 \mathrm{~s}^{2}$ lone-pair electrons possess a large electric dipole moment and can influence structures that contain Sb^{3+} (Choi et al. 2000; Babo et al. 2012). $\mathrm{SbS}_{3}, \mathrm{SbS}_{4}$ or SbS_{5} units in a crystal structure are prone to form one-dimensional $\mathrm{Sb}-\mathrm{S}$ chains through a corner- or edge-sharing manner (Dorrscheidt et al. 1981; Cordier et al. 1984). GeS 4_{4} tetrahedron can be utilized as the second structural unit and introduced into crystal structure to connect $\mathrm{Sb}-\mathrm{S}$ chains into a two-dimensional layer or threedimensional framework structure (Feng et al. 2008). In this paper, a new title quaternary sulfide in the $\mathrm{Sb}-\mathrm{Ge}-\mathrm{S}$ system is dexcribed. $\mathrm{Ba}_{2} \mathrm{Sb}_{4} \mathrm{GeS}_{10}$ represents the first example of a structure synthesized and structurally characterized by single-crystal X-ray diffraction in the quaternary $\mathrm{Ba}-\mathrm{Sb}-\mathrm{Ge}-\mathrm{S}$ system (Fig. 1). It crystallizes with one Ge atom on $4 b$ and three S atoms on $8 h, 16 i$ and $16 i$, respectively, in terms of the Wyckoff notation. There are two types of coordination polyhedron of SbS groups, i.e. triangle-pyramidal SbS_{3} and distorted SbS_{5} polyhedra. SbS_{3} and SbS_{5} polyhedra are connected with each other through corner- and edge-sharing conformations to form $\mathrm{Sb}_{4} \mathrm{~S}_{10}$ zigzag chains, which are further arranged side by side into the $\mathrm{Sb}_{4} \mathrm{~S}_{10}$ layer in the $a b$-plane (Fig. 2). The GeS_{4} tetrahedra further bridge two neighbouring $\mathrm{Sb}_{4} \mathrm{~S}_{10}$ layers, forming athree-dimensional $\infty^{3}\left[\mathrm{Sb}_{4} \mathrm{GeS}_{10}\right]^{-4}$ network (Fig. 3). The Ba atom is located between two $\mathrm{Sb}_{4} \mathrm{~S}_{10}$ layers and coordinates with ten S atoms with $\mathrm{Ba}-\mathrm{S}$ bonding lengths in the range of 3.2505 (9)-3.4121 (2) \AA, which are typical values for sulfides (Dorrscheidt et al. 1981; Cordier et al. 1984).

S2. Experimental

The title compound, $\mathrm{Ba}_{2} \mathrm{Sb}_{4} \mathrm{GeS}_{10}$, was synthesized through a high temperature solid-state reaction in an evacuated and sealed silica tube. A mixture of $\mathrm{BaS}(0.5 \mathrm{mmol}, 0.0847 \mathrm{~g}), \mathrm{Sb}(1 \mathrm{mmol}, 0.1218 \mathrm{~g}), \mathrm{Ge}(0.25 \mathrm{mmol}, 0.0182 \mathrm{~g}), \mathrm{S}(2 \mathrm{mmol}$, 0.0641 g) was loaded in a silica ampoule, sealed under $10^{-2} \mathrm{~Pa}$, heated gradually to 1173 K (holding for 10 h) in 60 h , and then cooled to room temperature in 300 h . Rod-shaped crystals of $\mathrm{Ba}_{2} \mathrm{Sb}_{4} \mathrm{GeS}_{10}$ with a dark red color were obtained. The crystals were stable under air and moisture conditions.

S3. Refinement

All atoms in $\mathrm{Ba}_{2} \mathrm{Sb}_{4} \mathrm{GeS}_{10}$ crystal structure were refined anisotropically without disorder. The highest residual peak (0.66 $\mathrm{e} \times \AA^{-3}$) in the difference electron density map was located at $(0.1992,0.3008,1 / 4), 1.09 \AA$ from atom Ba 1 . The deepest hole $\left(-0.73 \mathrm{e} \times \AA^{-3}\right)$ was located at $(0.1670,0.7496,0.2499), 0.77 \AA$ from atom Ba1.

Figure 1
Crystal structure of $\mathrm{Ba}_{2} \mathrm{Sb}_{4} \mathrm{GeS}_{10}$ in GeS_{4} polyhedral representation viewed along [001]. Green tetrahedra represent the GeS_{4} unit with yellow sulfur atoms at the corners of each tetrahedron.

Figure 2
SbS_{3} and SbS_{5} polyhedra are connected with each other through corner- and edge-sharing conformations to form the $\mathrm{Sb}_{4} \mathrm{~S}_{10}$ zigzag chains, which are further arranged side by side into the $\mathrm{Sb}_{4} \mathrm{~S}_{10}$ layer in the $a b$-plane.

Figure 3
The novel three-dimensional $\infty^{3}\left[\mathrm{Sb}_{4} \mathrm{GeS}_{10}\right]^{-4}$ network viewed along [100] direction. GeS_{4} tetrahedra act as bridging units for two neighbouring $\mathrm{Sb}_{4} \mathrm{~S}_{10}$ layers.

Dibarium tetraantimony(III) germanium(IV) decasulfide

Crystal data

$\mathrm{Ba}_{2} \mathrm{Sb}_{4} \mathrm{GeS}_{10}$
$M_{r}=1154.87$
Tetragonal, $P 4_{2} / m b c$
Hall symbol: -P 4ac 2ab
$a=11.3119$ (4) \AA
$c=13.6384(9) \AA$
$V=1745.16(14) \AA^{3}$
$Z=4$
$F(000)=2032$

Data collection

Rigaku SCXMini CCD diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
CCD_Profile_fitting scans
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2007)
$D_{\mathrm{x}}=4.395 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1877 reflections
$\theta=2.3-27.5^{\circ}$
$\mu=13.40 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Rod, dark-red
$0.22 \times 0.07 \times 0.07 \mathrm{~mm}$
$T_{\min }=0.530, T_{\max }=1.000$
12411 measured reflections
1046 independent reflections
1032 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.030$
$\theta_{\text {max }}=27.5^{\circ}, \theta_{\text {min }}=2.6^{\circ}$
$h=-14 \rightarrow 14$
$k=-14 \rightarrow 11$
$l=-16 \rightarrow 17$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.018$
$w R\left(F^{2}\right)=0.042$
$S=1.15$
1046 reflections
45 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier
map
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0214 P)^{2}+3.2912 P\right]$
where $P=\left(F_{0}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.66$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.74 \mathrm{e} \AA^{-3}$
Extinction correction: SHELXL97 (Sheldrick, 2008), $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$

Extinction coefficient: 0.00225 (8)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Ba 1	$0.232424(19)$	$0.732424(19)$	0.2500	$0.01704(10)$
Sb 1	$0.13578(3)$	$0.41567(3)$	0.0000	$0.01543(10)$
Sb 2	$0.46488(3)$	$0.34169(3)$	0.0000	$0.01796(10)$
Ge 1	0.0000	0.0000	0.2500	$0.01175(15)$
S 1	$0.27060(10)$	$0.24355(10)$	0.0000	$0.0136(2)$
S 2	$0.01781(8)$	$0.15428(7)$	$0.34843(6)$	$0.01631(18)$
S 3	$0.02261(7)$	$0.32137(8)$	$0.13186(6)$	$0.01777(19)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ba1	$0.01715(12)$	$0.01715(12)$	$0.01683(15)$	$0.00214(11)$	$-0.00097(7)$	$0.00097(7)$
Sb1	$0.01518(17)$	$0.01341(17)$	$0.01771(17)$	$0.00143(11)$	0.000	0.000
Sb2	$0.01151(17)$	$0.02030(18)$	$0.02206(18)$	$-0.00225(12)$	0.000	0.000
Ge1	$0.0126(2)$	$0.0126(2)$	$0.0101(3)$	0.000	0.000	0.000
S1	$0.0101(5)$	$0.0121(5)$	$0.0184(6)$	$-0.0006(4)$	0.000	0.000
S2	$0.0201(4)$	$0.0142(4)$	$0.0146(4)$	$-0.0020(3)$	$-0.0009(3)$	$-0.0026(3)$
S3	$0.0131(4)$	$0.0254(4)$	$0.0147(4)$	$-0.0025(3)$	$0.0024(3)$	$-0.0028(3)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{Ba} 1 — \mathrm{~S}^{2}$	$3.2505(9)$	$\mathrm{Sb} 2 — \mathrm{~S} 3^{\text {viii }}$	$2.6576(9)$
$\mathrm{Ba} 1 — \mathrm{~S}^{2 i}$	$3.2505(9)$	$\mathrm{Sb} 2 — \mathrm{~S} 2^{\mathrm{iv}}$	$2.9352(9)$
$\mathrm{Ba} 1 — \mathrm{S3}^{\mathrm{ii}}$	$3.3596(9)$	$\mathrm{Sb} 2 — \mathrm{~S} 2^{\mathrm{ix}}$	$2.9352(9)$
$\mathrm{Ba} 1 — \mathrm{~S}^{\mathrm{i}}$	$3.3596(9)$	$\mathrm{Ge} 1 — \mathrm{~S} 2$	$2.2110(8)$

Ba1-S3iii	3.3599 (8)
$\mathrm{Ba} 1-\mathrm{S3}{ }^{\text {iv }}$	3.3599 (8)
Bal-S2 ${ }^{\text {iv }}$	3.3849 (9)
Ba 1 -S2 ${ }^{\text {iii }}$	3.3849 (9)
$\mathrm{Ba} 1-\mathrm{S} 1^{\text {ii }}$	3.4121 (2)
$\mathrm{Ba} 1-\mathrm{S} 1^{v}$	3.4121 (2)
Sb1-S3 ${ }^{\text {vi }}$	2.4517 (9)
Sb1-S3	2.4517 (9)
Sb1-S1	2.4732 (12)
Sb2-S1	2.4621 (12)
Sb2-S3 ${ }^{\text {vii }}$	2.6576 (9)
S2 $2^{\text {i }}$ - $\mathrm{Ba} 1-\mathrm{S} 2^{\text {ii }}$	130.04 (3)
S2 ${ }^{\text {i }}$ - $\mathrm{Ba} 1-\mathrm{S} 3^{\text {ii }}$	76.46 (2)
S2i-Bal-S3ii	64.06 (2)
S2 ${ }^{\text {i }}$ - $\mathrm{Ba} 1-\mathrm{S} 3^{\text {i }}$	64.06 (2)
	76.46 (2)
S3ii- ${ }^{\text {i }}$ 1- $\mathrm{S}^{3}{ }^{\text {i }}$	74.69 (3)
S2 ${ }^{\text {i }}$ - $\mathrm{Ba} 1-\mathrm{S} 3$ iii	153.52 (2)
S2 $2^{\text {ii- }}$ - ${ }^{\text {a }} 1-\mathrm{S} 3{ }^{\text {iii }}$	74.09 (2)
S3ii-Ba1-S3iii	129.53 (3)
S3 ${ }^{\text {i }}$ - $\mathrm{Ba} 1-\mathrm{S} 3{ }^{\text {iii }}$	122.17 (3)
$\mathrm{S} 2{ }^{\text {i }}$ - $\mathrm{Ba} 1-\mathrm{S} 3^{\text {iv }}$	74.09 (2)
S2 $2^{\text {ii- }}$ - $\mathrm{Ba} 1-\mathrm{S3}^{\text {iv }}$	153.52 (2)
S3i--Bal-S3 ${ }^{\text {iv }}$	122.17 (3)
S3 ${ }^{\text {i }}$ - $\mathrm{Ba} 1-\mathrm{S3}{ }^{\text {iv }}$	129.53 (3)
S3iii-Ba1-S3 ${ }^{\text {iv }}$	85.35 (3)
S2 ${ }^{\text {i }}$ - $\mathrm{Ba} 1-\mathrm{S2}^{\text {iv }}$	66.88 (3)
S2i-Bal-S2 ${ }^{\text {iv }}$	131.76 (3)
S3ii- ${ }^{\text {io }} 1-\mathrm{S}^{\text {iv }}$	140.05 (2)
S3i-Bal-S2 ${ }^{\text {iv }}$	75.40 (2)
S3 $3^{\text {iii- }}$ - $\mathrm{Ba} 1-\mathrm{S} 2^{\text {iv }}$	89.05 (2)
S3 ${ }^{\text {iv }}$ - $\mathrm{Ba} 1-\mathrm{S} 2^{\text {iv }}$	62.66 (2)
S2 ${ }^{\text {i }}$ - $\mathrm{Ba} 1-\mathrm{S} 2{ }^{\text {iii }}$	131.76 (3)
S2 $2^{\text {ii }}$ - Ba1-S2 ${ }^{\text {iii }}$	66.88 (3)
S3ii-Ba1-S2 $2^{\text {iii }}$	75.40 (2)
S3i-Ba1-S2 ${ }^{\text {iii }}$	140.05 (2)
S3 ${ }^{\text {iii- }}$ - $\mathrm{Ba} 1-\mathrm{S} 2^{\text {iii }}$	62.66 (2)
S3iv-Bal-S2 $2^{\text {iii }}$	89.05 (2)
S2 $2^{\text {iv }}$ - $\mathrm{Ba} 1-\mathrm{S} 2{ }^{\text {iii }}$	142.24 (3)
S2i-Bal-S1i	63.42 (2)
S2ii-Bal-S1i	115.56 (2)
S3ii-Bal-S1 ${ }^{\text {ii }}$	61.18 (2)
S3 ${ }^{\text {i- }}$ - ${ }^{\text {a }}$ - $\mathrm{Sl}^{\text {ii }}$	116.86 (3)
S3iii-Bal-S1ii	120.60 (3)
$\mathrm{S3}^{\text {iv}}$ - $\mathrm{Ba} 1-\mathrm{S} 1^{\text {ii }}$	61.24 (2)
S2 ${ }^{\text {iv }}$ - $\mathrm{Ba} 1-\mathrm{S} 1^{\text {ii }}$	111.96 (2)
S2 ${ }^{\text {iii }}$-Bal-S1 ${ }^{\text {ii }}$	68.80 (2)

Ge1-S2 ${ }^{\text {x }}$	2.2110 (8)
Ge1-S2 ${ }^{\text {xi }}$	2.2110 (8)
Ge1-S2 ${ }^{\text {xii }}$	2.2110 (8)
S 1 - $\mathrm{Ba}^{\text {xiiii }}$	3.4121 (2)
$\mathrm{S} 1-\mathrm{Ba} 1^{\text {xiv }}$	3.4121 (2)
$\mathrm{S} 2-\mathrm{Sb} 2^{\text {xv }}$	2.9352 (9)
S2-Ba1 ${ }^{\text {xiv }}$	3.2505 (9)
$\mathrm{S} 2-\mathrm{Ba} 1^{\text {iii }}$	3.3849 (9)
S3-Sb2 ${ }^{\text {xi }}$	2.6576 (9)
S3-Ba1 ${ }^{\text {xiv }}$	3.3596 (9)
$\mathrm{S} 3-\mathrm{Ba} 1^{\text {iii }}$	3.3599 (8)
S3 ${ }^{\text {iv }}$ - $\mathrm{Ba} 1-\mathrm{S} 1^{v}$	120.60 (3)
S2 $2^{\text {iv }}-\mathrm{Ba} 1-\mathrm{Sl}^{\text {v }}$	68.80 (2)
S2iii- ${ }^{\text {ina1- }}$ S1 ${ }^{v}$	111.96 (2)
S1i-Bal-S1 ${ }^{\text {v }}$	177.82 (4)
S3 ${ }^{\text {vi- }}$ Sb1-S3	94.37 (4)
S3 ${ }^{\text {vi- }}$-Sb1-S1	88.82 (3)
S3-Sb1-S1	88.82 (3)
S1-Sb2-S3 ${ }^{\text {vii }}$	84.63 (3)
S1-Sb2-S3 ${ }^{\text {viii }}$	84.63 (3)
S3 ${ }^{\text {vii }}$-Sb2-S3 ${ }^{\text {viii }}$	85.17 (4)
S1-Sb2-S2 ${ }^{\text {iv }}$	80.46 (3)
S3 ${ }^{\text {vii }}$-Sb2-S2 ${ }^{\text {iv }}$	164.84 (3)
S3 $3^{\text {viii }}$ - $\mathrm{Sb} 2-\mathrm{S} 2^{\text {iv }}$	90.69 (3)
$\mathrm{S} 1-\mathrm{Sb} 2-\mathrm{S} 2^{\text {ix }}$	80.46 (3)
S3 ${ }^{\text {vii- }}$ Sb2-S2 ${ }^{\text {ix }}$	90.69 (3)
S3 $3^{\text {viii }}$ - $\mathrm{Sb} 2-\mathrm{S} 2^{\text {ix }}$	164.84 (3)
S2 ${ }^{\text {iv }}-\mathrm{Sb} 2-\mathrm{S} 22^{\text {ix }}$	89.54 (3)
S2-Gel-S2 ${ }^{\text {x }}$	111.63 (2)
$\mathrm{S} 2-\mathrm{Ge} 1-\mathrm{S} 2^{\mathrm{xi}}$	105.23 (4)
S2 ${ }^{\text {x }}$ - $\mathrm{Ge} 1-\mathrm{S} 2^{\text {xi }}$	111.63 (2)
S2-Ge1-S2 ${ }^{\text {xii }}$	111.63 (2)
S2 ${ }^{\text {x }}$-Gel-S2 ${ }^{\text {xii }}$	105.23 (4)
S2 ${ }^{\text {xi }}$ - $\mathrm{Ge} 1-\mathrm{S} 2^{\text {xii }}$	111.63 (2)
$\mathrm{Sb} 2-\mathrm{S} 1-\mathrm{Sb} 1$	101.27 (4)
Sb2-S1-Ba1 ${ }^{\text {xiii }}$	91.466 (19)
Sb1-S1-Ba1 ${ }^{\text {xiii }}$	91.31 (2)
$\mathrm{Sb} 2-\mathrm{S} 1-\mathrm{Ba} 1^{\text {xiv }}$	91.466 (19)
$\mathrm{Sb} 1-\mathrm{S} 1-\mathrm{Ba} 1^{\text {xiv }}$	91.31 (2)
$\mathrm{Ba} 1^{\text {xiii- }}$ S1- $\mathrm{Ba}^{\text {xiv }}$	175.62 (4)
Ge1-S2-Sb2 ${ }^{\text {xv }}$	96.58 (3)
Ge1-S2-Ba1 ${ }^{\text {xiv }}$	92.47 (3)
Sb2 ${ }^{\text {xv }}-\mathrm{S} 2-\mathrm{Ba1}{ }^{\text {xiv }}$	86.85 (2)
Ge1-S2-Baliii	88.96 (3)
$\mathrm{Sb}^{2 \mathrm{xv}}-\mathrm{S} 2-\mathrm{Ba} 1^{\text {iii }}$	154.96 (3)
Ba ${ }^{\text {xiv }}$-S2-Ba $1^{\text {iii }}$	117.39 (2)
Sb1-S3-Sb2 ${ }^{\text {xxi }}$	86.21 (3)

S2 ${ }^{\text {i }}$ - $\mathrm{Ba} 1-\mathrm{S} 1^{\text {v }}$	115.56 (2)	Sb1-S3-Ba ${ }^{\text {xiv }}$	92.95 (3)
$\mathrm{S} 2{ }^{\text {ii }}$ - $\mathrm{Ba} 1-\mathrm{S} 1^{v}$	63.42 (2)	Sb2 ${ }^{\text {xvi }}$-S3- ${ }^{\text {Ba }}{ }^{\text {xiv }}$	108.63 (3)
S3ii- ${ }^{\text {ii }}$ - ${ }^{\text {- }}{ }^{\text {r }}$	116.86 (3)	$\mathrm{Sb} 1-\mathrm{S} 3-\mathrm{Ba} 1^{\text {iii }}$	151.51 (4)
S3 ${ }^{\text {i }}$ - $\mathrm{Ba} 1-\mathrm{S} 1^{v}$	61.18 (2)	$\mathrm{Sb} 2^{\mathrm{xvi}}-\mathrm{S} 3-\mathrm{Ba} 1^{\text {iii }}$	89.30 (2)
S3iii- ${ }^{\text {iii }} 1-\mathrm{S} 1^{v}$	61.24 (2)	$\mathrm{Ba} 1^{\text {xiv }}-\mathrm{S} 3-\mathrm{Ba} 1^{\text {iii }}$	115.09 (3)
S3 ${ }^{\text {vii }} \mathrm{Sb} 2-\mathrm{S} 1-\mathrm{Sb} 1$	-137.18 (2)	S3-Sb1-S1-Ba1 ${ }^{\text {xiv }}$	-41.05 (3)
S3 ${ }^{\text {viii- }} \mathrm{Sb} 2-\mathrm{S} 1-\mathrm{Sb} 1$	137.18 (2)	$\mathrm{S} 2^{\mathrm{x}}-\mathrm{Ge} 1-\mathrm{S} 2-\mathrm{Sb} 2^{\mathrm{xv}}$	157.74 (2)
S2 ${ }^{\text {iv }}-\mathrm{Sb} 2-\mathrm{S} 1-\mathrm{Sb} 1$	45.572 (18)	$\mathrm{S} 2{ }^{\text {xi }}-\mathrm{Ge} 1-\mathrm{S} 2-\mathrm{Sb} 2^{\mathrm{xv}}$	36.474 (13)
S2 ${ }^{\text {ix }}$ - $\mathrm{Sb} 2-\mathrm{S} 1-\mathrm{Sb} 1$	-45.572 (18)	S2 ${ }^{\text {xii }}$ - $\mathrm{Ge} 1-\mathrm{S} 2-\mathrm{Sb} 2^{\text {xv }}$	-84.791 (7)
$\mathrm{S} 3{ }^{\text {vii }}$ - $\mathrm{Sb} 2-\mathrm{S} 1-\mathrm{Ba} 1^{\text {xiii }}$	-45.55 (3)	$\mathrm{S} 2{ }^{\mathrm{x}}-\mathrm{Ge} 1-\mathrm{S} 2-\mathrm{Ba} 1^{\text {xiv }}$	-115.15 (4)
S3 ${ }^{\text {viii }}$ - $\mathrm{Sb} 2-\mathrm{S} 1-\mathrm{Ba} 1^{\text {xiii }}$	-131.19 (3)	$\mathrm{S} 2{ }^{\mathrm{xi}}$ - $\mathrm{Ge} 1-\mathrm{S} 2-\mathrm{Ba} 1^{\text {xiv }}$	123.59 (3)
$\mathrm{S} 2{ }^{\text {iv }}-\mathrm{Sb} 2-\mathrm{S} 1-\mathrm{Ba} 1^{\text {xiii }}$	137.20 (3)	$\mathrm{S} 2{ }^{\text {xii }}-\mathrm{Ge} 1-\mathrm{S} 2-\mathrm{Ba} 1^{\text {xiv }}$	2.32 (3)
$\mathrm{S} 2{ }^{\text {ix }}$ - $\mathrm{Sb} 2-\mathrm{S} 1-\mathrm{Ba} 1^{\text {xiii }}$	46.06 (2)	$\mathrm{S} 2{ }^{\mathrm{x}}-\mathrm{Ge} 1-\mathrm{S} 2-\mathrm{Ba} 1^{\text {iii }}$	2.23 (2)
$\mathrm{S} 3{ }^{\text {vii }}$ - $\mathrm{Sb} 2-\mathrm{S} 1-\mathrm{Ba} 1^{\text {xiv }}$	131.19 (3)	$\mathrm{S} 2{ }^{\text {xi }}-\mathrm{Ge} 1-\mathrm{S} 2-\mathrm{Ba} 1^{\text {iii }}$	-119.04 (3)
S3 ${ }^{\text {viii }}$-Sb2-S1-Ba1 ${ }^{\text {xiv }}$	45.55 (3)	$\mathrm{S} 2{ }^{\text {xii }}-\mathrm{Ge} 1-\mathrm{S} 2-\mathrm{Ba} 1{ }^{\text {iii }}$	119.70 (3)
$\mathrm{S} 2{ }^{\text {iv }}$ - $\mathrm{Sb} 2-\mathrm{S} 1-\mathrm{Ba} 1^{\text {xiv }}$	-46.06 (2)	S3 ${ }^{\text {vii }}$ - $\mathrm{Sb} 1-\mathrm{S} 3-\mathrm{Sb} 2^{\text {xvi }}$	22.13 (4)
$\mathrm{S} 2{ }^{\text {ix }}$ - $\mathrm{Sb} 2-\mathrm{S} 1-\mathrm{Ba} 1^{\text {xiv }}$	-137.20 (3)	$\mathrm{S} 1-\mathrm{Sb} 1-\mathrm{S} 3-\mathrm{Sb} 2^{\text {xvi }}$	-66.60 (3)
S3 ${ }^{\text {vii }} \mathrm{Sb} 1-\mathrm{S} 1-\mathrm{Sb} 2$	132.80 (2)	S3 ${ }^{\text {vi }}-\mathrm{Sb} 1-\mathrm{S} 3-\mathrm{Ba} 1^{\text {xiv }}$	130.615 (18)
$\mathrm{S} 3-\mathrm{Sb} 1-\mathrm{S} 1-\mathrm{Sb} 2$	-132.80 (2)	$\mathrm{S} 1-\mathrm{Sb} 1-\mathrm{S} 3-\mathrm{Ba} 1^{\text {xiv }}$	41.89 (3)
S3 ${ }^{\text {vi}}-\mathrm{Sb} 1-\mathrm{S} 1-\mathrm{Ba} 1^{\text {xiii }}$	41.05 (3)	S3 ${ }^{\text {vi}}$ - $\mathrm{Sb} 1-\mathrm{S} 3-\mathrm{Ba} 1^{\text {iii }}$	-59.38 (9)
$\mathrm{S} 3-\mathrm{Sb} 1-\mathrm{S} 1-\mathrm{Ba} 1^{\text {xiii }}$	135.44 (3)	$\mathrm{S} 1-\mathrm{Sb} 1-\mathrm{S} 3-\mathrm{Ba} 1^{1 i \mathrm{ii}}$	-148.11 (7)

Symmetry codes: (i) $-x+1 / 2, y+1 / 2, z$; (ii) $y,-x+1,-z+1 / 2$; (iii) $-x,-y+1, z$; (iv) $-y+1 / 2,-x+1 / 2,-z+1 / 2$; (v) $-x+1 / 2, y+1 / 2,-z$; (vi) $x, y,-z$; (vii) $x+1 / 2$, $-y+1 / 2,-z$; (viii) $x+1 / 2,-y+1 / 2, z$; (ix) $-y+1 / 2,-x+1 / 2, z-1 / 2$; (x) $-y, x,-z+1 / 2$; (xi) $-x,-y, z$; (xii) $y,-x,-z+1 / 2$; (xiii) $-y+1, x, z-1 / 2$; (xiv) $-y+1, x$, $-z+1 / 2$; (xv) $-y+1 / 2,-x+1 / 2, z+1 / 2$; (xvi) $x-1 / 2,-y+1 / 2, z$.

