supplementary materials


Acta Cryst. (2013). E69, i24    [ doi:10.1107/S1600536813007988 ]

Ba2Sb4GeS10

L. Geng

Abstract top

The title quaternary compound, dibarium tetraantimony germanium decasulfide, Ba2Sb4GeS10, crystallizes in a novel three-dimensional [infinity]3[Sb4GeS10]4- network structure, which is composed of triangular pyramidal SbS3 (site symmetry m..), distorted SbS5 (m..) polyhedra and regular GeS4 (-4..) tetrahedra. The SbS3 and SbS5 units are connected with each other through corner- and edge-sharing, forming a Sb4S10 layer in the ab plane. The GeS4 tetrahedra further bridge two neighbouring Sb4S10 layers, forming a three-dimensional [infinity]3[Sb4GeS10]4- network. The Ba2+ cation (..2) is located between two Sb4S10 layers and is coordinated by ten S atoms with Ba-S bond lengths in the range 3.2505 (9)-3.4121 (2) Å.

Comment top

Sb-based chalcogenides have attracted a lot of attention in recent years due to their rich structures and interesting physical properties, such as nonlinear optics and ion-exchange properties. The stereochemically active 5 s2 lone-pair electrons possess a large electric dipole moment and can influence structures that contain Sb3+ (Choi et al. 2000; Babo et al. 2012). SbS3, SbS4 or SbS5 units in a crystal structure are prone to form one-dimensional Sb—S chains through a corner- or edge-sharing manner (Dorrscheidt et al. 1981; Cordier et al. 1984). GeS4 tetrahedron can be utilized as the second structural unit and introduced into crystal structure to connect Sb—S chains into a two-dimensional layer or three-dimensional framework structure (Feng et al. 2008). In this paper, a new title quaternary sulfide in the Sb—Ge—S system is dexcribed. Ba2Sb4GeS10 represents the first example of a structure synthesized and structurally characterized by single-crystal X-ray diffraction in the quaternary Ba—Sb—Ge—S system (Fig. 1). It crystallizes with one Ge atom on 4b and three S atoms on 8h, 16i and 16i, respectively, in terms of the Wyckoff notation. There are two types of coordination polyhedron of SbS groups, i.e. triangle-pyramidal SbS3 and distorted SbS5 polyhedra. SbS3 and SbS5 polyhedra are connected with each other through corner- and edge-sharing conformations to form Sb4S10 zigzag chains, which are further arranged side by side into the Sb4S10 layer in the ab-plane (Fig. 2). The GeS4 tetrahedra further bridge two neighbouring Sb4S10 layers, forming athree-dimensional 3[Sb4GeS10]-4 network (Fig. 3). The Ba atom is located between two Sb4S10 layers and coordinates with ten S atoms with Ba—S bonding lengths in the range of 3.2505 (9)–3.4121 (2) Å, which are typical values for sulfides (Dorrscheidt et al. 1981; Cordier et al. 1984).

Related literature top

The stereochemically active 5s2 lone-pair electrons possess a large electric dipole moment and can influence structures that contain Sb3+, see: Choi & Kanatzidis (2000); Babo & Albrecht-Schmitt (2012). SbS3, SbS4 or SbS5 units in a crystal structure are prone to form Sb—S chains through corner- or edge-sharing, see: Dorrscheidt & Schafer (1981); Cordier et al. (1984). GeS4 tetrahedra can be utilized as the second structural unit and introduced into crystal structures to connect Sb—S chains into a two-dimensional layer or three-dimensional framework structure (Feng et al. 2008). For related lieterature [on what subject(s)?], see: Deng et al. (2005); Kim et al. (2008); Ribes et al. (1973); Teske (1979); Lekse et al. (2009).

Experimental top

The title compound, Ba2Sb4GeS10, was synthesized through a high temperature solid-state reaction in an evacuated and sealed silica tube. A mixture of BaS (0.5 mmol, 0.0847 g), Sb (1 mmol, 0.1218 g), Ge (0.25 mmol, 0.0182 g),S (2 mmol, 0.0641 g) was loaded in a silica ampoule, sealed under 10 -2 Pa, heated gradually to 1173 K (holding for 10 h) in 60 h, and then cooled to room temperature in 300 h. Rod-shaped crystals of Ba2Sb4GeS10 with a dark red color were obtained. The crystals were stable under air and moisture conditions.

Refinement top

All atoms in Ba2Sb4GeS10 crystal structure were refined anisotropically without disorder. The highest residual peak (0.66 e×Å-3) in the difference electron density map was located at (0.1992, 0.3008, 1/4), 1.09 Å from atom Ba1. The deepest hole (- 0.73 e×Å-3) was located at (0.1670, 0.7496, 0.2499), 0.77 Å from atom Ba1.

Computing details top

Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear (Rigaku, 2007); data reduction: CrystalClear (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Crystal structure of Ba2Sb4GeS10 in GeS4 polyhedral representation viewed along [001]. Green tetrahedra represent the GeS4 unit with yellow sulfur atoms at the corners of each tetrahedron.
[Figure 2] Fig. 2. SbS3 and SbS5 polyhedra are connected with each other through corner- and edge-sharing conformations to form the Sb4S10 zigzag chains, which are further arranged side by side into the Sb4S10 layer in the ab-plane.
[Figure 3] Fig. 3. The novel three-dimensional 3[Sb4GeS10]-4 network viewed along [100] direction. GeS4 tetrahedra act as bridging units for two neighbouring Sb4S10 layers.
Dibarium tetraantimony(III) germanium(IV) decasulfide top
Crystal data top
Ba2Sb4GeS10Dx = 4.395 Mg m3
Mr = 1154.87Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P42/mbcCell parameters from 1877 reflections
Hall symbol: -P 4ac 2abθ = 2.3–27.5°
a = 11.3119 (4) ŵ = 13.40 mm1
c = 13.6384 (9) ÅT = 293 K
V = 1745.16 (14) Å3Rod, dark-red
Z = 40.22 × 0.07 × 0.07 mm
F(000) = 2032
Data collection top
Rigaku SCXMini CCD
diffractometer
1046 independent reflections
Radiation source: fine-focus sealed tube1032 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
CCD_Profile_fitting scansθmax = 27.5°, θmin = 2.6°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2007)
h = 1414
Tmin = 0.530, Tmax = 1.000k = 1411
12411 measured reflectionsl = 1617
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.018 w = 1/[σ2(Fo2) + (0.0214P)2 + 3.2912P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.042(Δ/σ)max < 0.001
S = 1.15Δρmax = 0.66 e Å3
1046 reflectionsΔρmin = 0.74 e Å3
45 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00225 (8)
Crystal data top
Ba2Sb4GeS10Z = 4
Mr = 1154.87Mo Kα radiation
Tetragonal, P42/mbcµ = 13.40 mm1
a = 11.3119 (4) ÅT = 293 K
c = 13.6384 (9) Å0.22 × 0.07 × 0.07 mm
V = 1745.16 (14) Å3
Data collection top
Rigaku SCXMini CCD
diffractometer
1046 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2007)
1032 reflections with I > 2σ(I)
Tmin = 0.530, Tmax = 1.000Rint = 0.030
12411 measured reflectionsθmax = 27.5°
Refinement top
R[F2 > 2σ(F2)] = 0.018Δρmax = 0.66 e Å3
wR(F2) = 0.042Δρmin = 0.74 e Å3
S = 1.15Absolute structure: ?
1046 reflectionsFlack parameter: ?
45 parametersRogers parameter: ?
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ba10.232424 (19)0.732424 (19)0.25000.01704 (10)
Sb10.13578 (3)0.41567 (3)0.00000.01543 (10)
Sb20.46488 (3)0.34169 (3)0.00000.01796 (10)
Ge10.00000.00000.25000.01175 (15)
S10.27060 (10)0.24355 (10)0.00000.0136 (2)
S20.01781 (8)0.15428 (7)0.34843 (6)0.01631 (18)
S30.02261 (7)0.32137 (8)0.13186 (6)0.01777 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ba10.01715 (12)0.01715 (12)0.01683 (15)0.00214 (11)0.00097 (7)0.00097 (7)
Sb10.01518 (17)0.01341 (17)0.01771 (17)0.00143 (11)0.0000.000
Sb20.01151 (17)0.02030 (18)0.02206 (18)0.00225 (12)0.0000.000
Ge10.0126 (2)0.0126 (2)0.0101 (3)0.0000.0000.000
S10.0101 (5)0.0121 (5)0.0184 (6)0.0006 (4)0.0000.000
S20.0201 (4)0.0142 (4)0.0146 (4)0.0020 (3)0.0009 (3)0.0026 (3)
S30.0131 (4)0.0254 (4)0.0147 (4)0.0025 (3)0.0024 (3)0.0028 (3)
Geometric parameters (Å, º) top
Ba1—S2i3.2505 (9)Sb2—S3viii2.6576 (9)
Ba1—S2ii3.2505 (9)Sb2—S2iv2.9352 (9)
Ba1—S3ii3.3596 (9)Sb2—S2ix2.9352 (9)
Ba1—S3i3.3596 (9)Ge1—S22.2110 (8)
Ba1—S3iii3.3599 (8)Ge1—S2x2.2110 (8)
Ba1—S3iv3.3599 (8)Ge1—S2xi2.2110 (8)
Ba1—S2iv3.3849 (9)Ge1—S2xii2.2110 (8)
Ba1—S2iii3.3849 (9)S1—Ba1xiii3.4121 (2)
Ba1—S1ii3.4121 (2)S1—Ba1xiv3.4121 (2)
Ba1—S1v3.4121 (2)S2—Sb2xv2.9352 (9)
Sb1—S3vi2.4517 (9)S2—Ba1xiv3.2505 (9)
Sb1—S32.4517 (9)S2—Ba1iii3.3849 (9)
Sb1—S12.4732 (12)S3—Sb2xvi2.6576 (9)
Sb2—S12.4621 (12)S3—Ba1xiv3.3596 (9)
Sb2—S3vii2.6576 (9)S3—Ba1iii3.3599 (8)
S2i—Ba1—S2ii130.04 (3)S3iv—Ba1—S1v120.60 (3)
S2i—Ba1—S3ii76.46 (2)S2iv—Ba1—S1v68.80 (2)
S2ii—Ba1—S3ii64.06 (2)S2iii—Ba1—S1v111.96 (2)
S2i—Ba1—S3i64.06 (2)S1ii—Ba1—S1v177.82 (4)
S2ii—Ba1—S3i76.46 (2)S3vi—Sb1—S394.37 (4)
S3ii—Ba1—S3i74.69 (3)S3vi—Sb1—S188.82 (3)
S2i—Ba1—S3iii153.52 (2)S3—Sb1—S188.82 (3)
S2ii—Ba1—S3iii74.09 (2)S1—Sb2—S3vii84.63 (3)
S3ii—Ba1—S3iii129.53 (3)S1—Sb2—S3viii84.63 (3)
S3i—Ba1—S3iii122.17 (3)S3vii—Sb2—S3viii85.17 (4)
S2i—Ba1—S3iv74.09 (2)S1—Sb2—S2iv80.46 (3)
S2ii—Ba1—S3iv153.52 (2)S3vii—Sb2—S2iv164.84 (3)
S3ii—Ba1—S3iv122.17 (3)S3viii—Sb2—S2iv90.69 (3)
S3i—Ba1—S3iv129.53 (3)S1—Sb2—S2ix80.46 (3)
S3iii—Ba1—S3iv85.35 (3)S3vii—Sb2—S2ix90.69 (3)
S2i—Ba1—S2iv66.88 (3)S3viii—Sb2—S2ix164.84 (3)
S2ii—Ba1—S2iv131.76 (3)S2iv—Sb2—S2ix89.54 (3)
S3ii—Ba1—S2iv140.05 (2)S2—Ge1—S2x111.63 (2)
S3i—Ba1—S2iv75.40 (2)S2—Ge1—S2xi105.23 (4)
S3iii—Ba1—S2iv89.05 (2)S2x—Ge1—S2xi111.63 (2)
S3iv—Ba1—S2iv62.66 (2)S2—Ge1—S2xii111.63 (2)
S2i—Ba1—S2iii131.76 (3)S2x—Ge1—S2xii105.23 (4)
S2ii—Ba1—S2iii66.88 (3)S2xi—Ge1—S2xii111.63 (2)
S3ii—Ba1—S2iii75.40 (2)Sb2—S1—Sb1101.27 (4)
S3i—Ba1—S2iii140.05 (2)Sb2—S1—Ba1xiii91.466 (19)
S3iii—Ba1—S2iii62.66 (2)Sb1—S1—Ba1xiii91.31 (2)
S3iv—Ba1—S2iii89.05 (2)Sb2—S1—Ba1xiv91.466 (19)
S2iv—Ba1—S2iii142.24 (3)Sb1—S1—Ba1xiv91.31 (2)
S2i—Ba1—S1ii63.42 (2)Ba1xiii—S1—Ba1xiv175.62 (4)
S2ii—Ba1—S1ii115.56 (2)Ge1—S2—Sb2xv96.58 (3)
S3ii—Ba1—S1ii61.18 (2)Ge1—S2—Ba1xiv92.47 (3)
S3i—Ba1—S1ii116.86 (3)Sb2xv—S2—Ba1xiv86.85 (2)
S3iii—Ba1—S1ii120.60 (3)Ge1—S2—Ba1iii88.96 (3)
S3iv—Ba1—S1ii61.24 (2)Sb2xv—S2—Ba1iii154.96 (3)
S2iv—Ba1—S1ii111.96 (2)Ba1xiv—S2—Ba1iii117.39 (2)
S2iii—Ba1—S1ii68.80 (2)Sb1—S3—Sb2xvi86.21 (3)
S2i—Ba1—S1v115.56 (2)Sb1—S3—Ba1xiv92.95 (3)
S2ii—Ba1—S1v63.42 (2)Sb2xvi—S3—Ba1xiv108.63 (3)
S3ii—Ba1—S1v116.86 (3)Sb1—S3—Ba1iii151.51 (4)
S3i—Ba1—S1v61.18 (2)Sb2xvi—S3—Ba1iii89.30 (2)
S3iii—Ba1—S1v61.24 (2)Ba1xiv—S3—Ba1iii115.09 (3)
S3vii—Sb2—S1—Sb1137.18 (2)S3—Sb1—S1—Ba1xiv41.05 (3)
S3viii—Sb2—S1—Sb1137.18 (2)S2x—Ge1—S2—Sb2xv157.74 (2)
S2iv—Sb2—S1—Sb145.572 (18)S2xi—Ge1—S2—Sb2xv36.474 (13)
S2ix—Sb2—S1—Sb145.572 (18)S2xii—Ge1—S2—Sb2xv84.791 (7)
S3vii—Sb2—S1—Ba1xiii45.55 (3)S2x—Ge1—S2—Ba1xiv115.15 (4)
S3viii—Sb2—S1—Ba1xiii131.19 (3)S2xi—Ge1—S2—Ba1xiv123.59 (3)
S2iv—Sb2—S1—Ba1xiii137.20 (3)S2xii—Ge1—S2—Ba1xiv2.32 (3)
S2ix—Sb2—S1—Ba1xiii46.06 (2)S2x—Ge1—S2—Ba1iii2.23 (2)
S3vii—Sb2—S1—Ba1xiv131.19 (3)S2xi—Ge1—S2—Ba1iii119.04 (3)
S3viii—Sb2—S1—Ba1xiv45.55 (3)S2xii—Ge1—S2—Ba1iii119.70 (3)
S2iv—Sb2—S1—Ba1xiv46.06 (2)S3vi—Sb1—S3—Sb2xvi22.13 (4)
S2ix—Sb2—S1—Ba1xiv137.20 (3)S1—Sb1—S3—Sb2xvi66.60 (3)
S3vi—Sb1—S1—Sb2132.80 (2)S3vi—Sb1—S3—Ba1xiv130.615 (18)
S3—Sb1—S1—Sb2132.80 (2)S1—Sb1—S3—Ba1xiv41.89 (3)
S3vi—Sb1—S1—Ba1xiii41.05 (3)S3vi—Sb1—S3—Ba1iii59.38 (9)
S3—Sb1—S1—Ba1xiii135.44 (3)S1—Sb1—S3—Ba1iii148.11 (7)
S3vi—Sb1—S1—Ba1xiv135.44 (3)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) y, x+1, z+1/2; (iii) x, y+1, z; (iv) y+1/2, x+1/2, z+1/2; (v) x+1/2, y+1/2, z; (vi) x, y, z; (vii) x+1/2, y+1/2, z; (viii) x+1/2, y+1/2, z; (ix) y+1/2, x+1/2, z1/2; (x) y, x, z+1/2; (xi) x, y, z; (xii) y, x, z+1/2; (xiii) y+1, x, z1/2; (xiv) y+1, x, z+1/2; (xv) y+1/2, x+1/2, z+1/2; (xvi) x1/2, y+1/2, z.
Acknowledgements top

The author gratefully acknowledges the support of the Natural Science Research Project for Colleges and Universities of Anhui Province (KJ2013B238).

references
References top

Babo, J. M. & Albrecht-Schmitt, T. E. (2012). J. Solid State Chem. 187, 264–268.

Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.

Choi, K. S. & Kanatzidis, M. G. (2000). Inorg. Chem. 39, 5655–5662.

Cordier, G., Schwidetzky, C. & Schäfer, H. (1984). J. Solid State Chem. 54, 84–88.

Deng, B., Chan, G. H., Ellis, D. E., Van Duyne, R. P. & Ibers, J. A. (2005). J. Solid State Chem. 178, 3169–3175.

Dorrscheidt, W. & Schafer, H. (1981). Z. Naturforsch. Teil B, 36, 410–414.

Feng, M. L., Kong, D. N., Xie, Z. L. & Huang, X. Y. (2008). Angew. Chem. Int. Ed. 47, 8623–8626.

Kim, Y., Seo, I. S., Martin, S. W., Baek, J., Halasyamani, P. S., Arumugam, N. & Steinfink, H. (2008). Chem. Mater. 20, 6048–6052.

Lekse, J. W., Moreau, M. A., McNerny, K. L., Yeon, J., Halasyamani, P. S. & Aitken, J. A. (2009). Inorg. Chem. 48, 7516–7518.

Ribes, M., Olivier-Fourcade, J., Philippot, E. & Maurin, M. (1973). J. Solid State Chem. 8, 195–205.

Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Teske, C. L. (1979). Z. Naturforsch. Teil B, 34, 544–547.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.