[Journal logo]

Volume 69 
Part 5 
Pages o624-o625  
May 2013  

Received 23 February 2013
Accepted 23 March 2013
Online 5 April 2013

Key indicators
Single-crystal X-ray study
T = 100 K
Mean [sigma](C-C) = 0.004 Å
R = 0.058
wR = 0.121
Data-to-parameter ratio = 15.0
Details
Open access

2-[(5'-Chloro-1,1':3',1''-terphenyl-4'-yl)imino]acenaphthylen-1(2H)-one

aKey Laboratory of Eco-Environment-Related Polymer Materials of the Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
Correspondence e-mail: clinton_du@126.com

The title compound, C30H18ClNO, is a product of the condensation reaction of acenaphthylene-1,2-dione and 5'-chloro-1,1':3',1''-terphenyl-4'-amine. The acenaphthylene fragment and two terminal phenyl rings are rotated relative to the central benzene ring by 72.2 (3), 43.2 (3) and 41.2 (3)°, respectively. This molecular conformation is supported by weak C-H...[pi] interactions. In the crystal, molecules form centrosymmetric dimers by the stacking interactions between two neighboring acenaphthylene fragments, with an interplanar distance of 3.365 (3) Å. The dimers are bound to each other by weak C-H...N and C-H...[pi] interactions, forming a three-dimensional framework.

Related literature

For background to applications of Schiff bases, see: Lozier et al. (1975[Lozier, R., Bogomolni, R. A. & Stoeckenius, W. (1975). Biophys. J. 15, 955-962.]); Kargar et al. (2009[Kargar, H., Jamshidvand, A., Fun, H.-K. & Kia, R. (2009). Acta Cryst. E65, m403-m404.]); Yeap et al. (2009[Yeap, C. S., Kia, R., Kargar, H. & Fun, H.-K. (2009). Acta Cryst. E65, m570-m571.]). For related structures, see: Higuchi et al. (2001[Higuchi, M., Shiki, S., Ariga, K. & Yamamoto, K. (2001). J. Am. Chem. Soc. 123, 4414-4420.]); Manseong et al. (2006[Manseong, J., Chul, J. H. & Sang, Y. K. (2006). Macromol. Res. 3, 306-311.]); Vitor et al. (2008[Vitor, R., Teresa, A., Gabriel, A., Berta, C. & Carlos, L. (2008). Inorg. Chem. 47, 7734-7744.]).

[Scheme 1]

Experimental

Crystal data
  • C30H18ClNO

  • Mr = 443.90

  • Monoclinic, P 21 /n

  • a = 12.4929 (6) Å

  • b = 10.8699 (7) Å

  • c = 16.0758 (8) Å

  • [beta] = 91.864 (5)°

  • V = 2181.9 (2) Å3

  • Z = 4

  • Mo K[alpha] radiation

  • [mu] = 0.20 mm-1

  • T = 100 K

  • 0.32 × 0.28 × 0.25 mm

Data collection
  • Agilent SuperNova (Dual, Cu at zero, Eos) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.866, Tmax = 1.000

  • 8827 measured reflections

  • 4461 independent reflections

  • 3151 reflections with I > 2[sigma](I)

  • Rint = 0.041

Refinement
  • R[F2 > 2[sigma](F2)] = 0.058

  • wR(F2) = 0.121

  • S = 1.09

  • 4461 reflections

  • 298 parameters

  • H-atom parameters constrained

  • [Delta][rho]max = 0.50 e Å-3

  • [Delta][rho]min = -0.28 e Å-3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C25-C30 and C19-C24 rings, respectively.

D-H...A D-H H...A D...A D-H...A
C24-H24...N2i 0.93 2.59 3.338 (3) 138
C4-H4...Cg1ii 0.93 2.74 3.551 (3) 147
C6-H6...Cg2iii 0.93 2.92 3.647 (3) 136
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) -x+1, -y+1, -z+1.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KQ2002 ).


Acknowledgements

We gratefully acknowledge the Natural Science Foundation of China (20702042, 21262028), the Program for Changjiang Scholars and Innovative Research Teams in Universities of the Ministry of Education of China (IRT1177), the Natural Science Foundation of Gansu Province (1208RJZA140) and the NWNU Young Teachers Reseach Improving Program (NWNU-LKQN-10-11) for financial support.

References

Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.  [ISI] [CrossRef] [ChemPort] [details]
Higuchi, M., Shiki, S., Ariga, K. & Yamamoto, K. (2001). J. Am. Chem. Soc. 123, 4414-4420.  [ISI] [CrossRef] [PubMed] [ChemPort]
Kargar, H., Jamshidvand, A., Fun, H.-K. & Kia, R. (2009). Acta Cryst. E65, m403-m404.  [CSD] [CrossRef] [ChemPort] [details]
Lozier, R., Bogomolni, R. A. & Stoeckenius, W. (1975). Biophys. J. 15, 955-962.  [CrossRef] [PubMed] [ChemPort]
Manseong, J., Chul, J. H. & Sang, Y. K. (2006). Macromol. Res. 3, 306-311.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [ChemPort] [details]
Vitor, R., Teresa, A., Gabriel, A., Berta, C. & Carlos, L. (2008). Inorg. Chem. 47, 7734-7744.  [ISI] [PubMed]
Yeap, C. S., Kia, R., Kargar, H. & Fun, H.-K. (2009). Acta Cryst. E65, m570-m571.  [CSD] [CrossRef] [ChemPort] [details]


Acta Cryst (2013). E69, o624-o625   [ doi:10.1107/S1600536813008015 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.