supplementary materials


lh5599 scheme

Acta Cryst. (2013). E69, m241    [ doi:10.1107/S1600536813008283 ]

Dichloridobis{2-[(1H-1,2,4-triazol-1-yl)methyl]-1H-benzimidazole-[kappa]N3}zinc(II)

W.-P. Zhang, J.-L. Zhang, B.-L. Hao and H.-X. Yang

Abstract top

In the title complex, [ZnCl2(C10H9N5)2], the ZnII ion is coordinated by two N atoms from two 2-[(1H-1,2,4-triazol-1-yl)methyl]-1H-benzimidazole (tmb) ligands and by two chloride ligands in a slightly distorted tetrahedral geometry. In the tmb ligands, the benzimidazole rings systems are essentially planar, with maximum deviations from the mean plane of 0.021 (3) and 0.030 (3) Å, and form dihedral angles of 73.2 (2) and 83.5 (2)° with the triazole rings. In the crystal, N-H...N hydrogen bonds link complex molecules into chains along [010]. In addition, weak C-H...Cl and C-H...N hydrogen bonds complete a three-dimensional network. Two weak intramolecular C-H...Cl hydrogen bonds are also observed.

Comment top

In recent years we have focused our attention on the design and synthesis of complexes based on the 2-[(1H-1,2,4-triazol-1-yl)methyl]-1H-benzimidazole (tmb) ligand since it possesses various coordination modes and can act as both a hydrogen bond acceptor and donor due to the amino group of benzimidazole ring and N atoms of benzimidazole and imidazole rings (Jin et al., 2012; Wang et al., 2012). In order to enrich the categories and numbers of complexes with this ligand, we have selected tmb as the ligand to self-assemble with ZnCl2. The crystal structure of the title complex is reported herein.

As shown in Figure 1, two 2-((1H-1,2,4-triazol-1-yl)methyl)-1H-benzimidazole ligands and two Cl ligands coordinate to the ZnII ion resulting in a slightly distorted tetrahedral geometry. In the tmb ligands, the benzimidazole rings systems are essentially planar with maximum deviations for an atom of 0.021 (3) for N1 and 0.030 (3) Å for N7. In the tmb ligands, the mean planes of the benzimidazole rings systems form dihedral angles of 73.2 (2) [C4-C10/N1/N2 and C1/C2/N3-N5] and 83.5 (2)° [C14-C20/N6/N7 and C11/C12/N8-N10] with the triazole rings. In the crystal, N—H···N hydrogen bonds link complex molecules into one-dimensional chains along [010]. In addition, weak C—H···Cl and C—H···N hydrogen bonds complete a three-dimensional network. Two weak intramolecular C—H···Cl hydrogen bonds are also observed.

Related literature top

For background to complexes based on the 2-[(1H-1,2,4-triazol-1-yl)methyl]-1H-benzimidazole (tmb) ligand, see: Jin et al. (2012); Wang et al. (2012).

Experimental top

A mixture of ZnCl2 (0.1 mmol), 2-[(1H-1,2,4-triazol-1-yl)methyl]-1H-benzimidazole (tmb; 0.1 mmol), and water (10 ml) was placed in a 25 ml Teflon-lined stainless steel vessel and heated at 373 K for 72 h, then cooled to room temperature. Colourless crystals were obtained from the filtrate and dried in air.

Refinement top

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (aromatic) Å and 0.97 (CH2) Å, N-H = 0.86 Å. All H atoms were refined with Uiso(H) = 1.2 Ueq(C,N).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2004); cell refinement: CrystalClear (Rigaku/MSC, 2004); data reduction: CrystalClear (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. View of the title complex showing 30% probability displacement ellipsolids.
Dichloridobis{2-[(1H-1,2,4-triazol-1-yl)methyl]-1H-benzimidazole-κN3}zinc(II) top
Crystal data top
[ZnCl2(C10H9N5)2]F(000) = 1088
Mr = 534.73Dx = 1.552 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.571 (2) ÅCell parameters from 4370 reflections
b = 14.109 (3) Åθ = 2.1–27.9°
c = 16.357 (6) ŵ = 1.34 mm1
β = 121.03 (2)°T = 293 K
V = 2288.2 (10) Å3Prism, colourless
Z = 40.18 × 0.17 × 0.08 mm
Data collection top
Rigaku Saturn
diffractometer
4234 independent reflections
Radiation source: fine-focus sealed tube3396 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
Detector resolution: 28.5714 pixels mm-1θmax = 25.5°, θmin = 2.1°
ω scansh = 1411
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC Inc., 2004)
k = 1617
Tmin = 0.795, Tmax = 0.901l = 1919
15780 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0318P)2 + 1.7955P]
where P = (Fo2 + 2Fc2)/3
4234 reflections(Δ/σ)max < 0.001
298 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
[ZnCl2(C10H9N5)2]V = 2288.2 (10) Å3
Mr = 534.73Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.571 (2) ŵ = 1.34 mm1
b = 14.109 (3) ÅT = 293 K
c = 16.357 (6) Å0.18 × 0.17 × 0.08 mm
β = 121.03 (2)°
Data collection top
Rigaku Saturn
diffractometer
4234 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC Inc., 2004)
3396 reflections with I > 2σ(I)
Tmin = 0.795, Tmax = 0.901Rint = 0.054
15780 measured reflectionsθmax = 25.5°
Refinement top
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.108Δρmax = 0.29 e Å3
S = 1.13Δρmin = 0.37 e Å3
4234 reflectionsAbsolute structure: ?
298 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.68322 (4)0.25039 (3)0.24838 (3)0.03071 (14)
Cl10.45848 (10)0.23530 (8)0.15278 (7)0.0509 (3)
Cl20.78345 (11)0.26118 (8)0.16349 (8)0.0497 (3)
N10.7393 (3)0.1337 (2)0.3354 (2)0.0292 (7)
N20.7295 (3)0.0240 (2)0.4293 (2)0.0355 (8)
H2B0.70700.00350.46600.043*
N30.4890 (3)0.1159 (2)0.4056 (2)0.0296 (7)
N40.4098 (3)0.0541 (2)0.3346 (2)0.0397 (8)
N50.3487 (3)0.0612 (2)0.4450 (2)0.0408 (8)
N60.7382 (3)0.3573 (2)0.3450 (2)0.0296 (7)
N70.7435 (3)0.4386 (2)0.4625 (2)0.0364 (8)
H7B0.71630.47260.49310.044*
N80.4444 (3)0.4297 (2)0.3544 (2)0.0365 (8)
N90.4108 (4)0.3434 (3)0.3729 (3)0.0538 (10)
N100.3299 (3)0.4606 (3)0.4226 (2)0.0451 (9)
C10.3285 (4)0.0233 (3)0.3628 (3)0.0430 (10)
H1A0.26170.02140.32840.052*
C20.4508 (4)0.1196 (3)0.4693 (3)0.0365 (9)
H2A0.49020.15790.52340.044*
C30.5917 (4)0.1708 (3)0.4012 (3)0.0343 (9)
H3A0.64270.20690.45960.041*
H3B0.54850.21530.34860.041*
C40.6863 (4)0.1093 (3)0.3879 (3)0.0303 (8)
C50.8245 (4)0.0578 (2)0.3448 (3)0.0298 (8)
C60.9044 (4)0.0445 (3)0.3054 (3)0.0394 (10)
H6A0.91190.09060.26770.047*
C70.9728 (4)0.0410 (3)0.3253 (3)0.0488 (11)
H7A1.02720.05260.29990.059*
C80.9624 (4)0.1100 (3)0.3820 (3)0.0532 (12)
H8A1.00910.16670.39300.064*
C90.8851 (4)0.0962 (3)0.4218 (3)0.0474 (11)
H9A0.87890.14190.46030.057*
C100.8166 (4)0.0113 (3)0.4024 (3)0.0332 (9)
C110.3423 (5)0.3666 (3)0.4131 (4)0.0575 (13)
H11A0.30460.32140.43390.069*
C120.3953 (4)0.4976 (3)0.3841 (3)0.0391 (10)
H12A0.40550.56220.37840.047*
C130.5230 (4)0.4372 (3)0.3080 (3)0.0402 (10)
H13A0.52020.50210.28760.048*
H13B0.48250.39730.25160.048*
C140.6671 (4)0.4081 (2)0.3725 (3)0.0312 (8)
C150.8726 (4)0.4064 (3)0.4977 (3)0.0357 (9)
C160.9907 (4)0.4177 (3)0.5860 (3)0.0474 (11)
H16A0.99130.44920.63620.057*
C171.1066 (4)0.3798 (3)0.5951 (3)0.0501 (11)
H17A1.18780.38640.65260.060*
C181.1045 (4)0.3318 (3)0.5199 (3)0.0453 (10)
H18A1.18480.30760.52840.054*
C190.9880 (4)0.3192 (3)0.4339 (3)0.0394 (10)
H19A0.98790.28660.38450.047*
C200.8700 (4)0.3568 (2)0.4231 (3)0.0303 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0327 (3)0.0346 (2)0.0271 (2)0.0017 (2)0.01704 (19)0.0012 (2)
Cl10.0329 (6)0.0760 (8)0.0360 (6)0.0080 (5)0.0122 (5)0.0010 (5)
Cl20.0603 (7)0.0596 (7)0.0490 (6)0.0071 (6)0.0422 (6)0.0101 (5)
N10.0346 (18)0.0314 (16)0.0269 (16)0.0019 (14)0.0196 (15)0.0015 (13)
N20.042 (2)0.0355 (18)0.0383 (19)0.0013 (15)0.0270 (17)0.0085 (15)
N30.0360 (18)0.0282 (16)0.0311 (17)0.0003 (14)0.0219 (15)0.0011 (13)
N40.046 (2)0.043 (2)0.0349 (19)0.0053 (16)0.0247 (17)0.0046 (16)
N50.046 (2)0.042 (2)0.048 (2)0.0040 (17)0.0343 (18)0.0073 (17)
N60.0311 (17)0.0321 (17)0.0295 (17)0.0040 (13)0.0182 (15)0.0021 (14)
N70.043 (2)0.0366 (18)0.0391 (19)0.0059 (15)0.0285 (17)0.0036 (15)
N80.0377 (19)0.043 (2)0.0364 (19)0.0090 (15)0.0249 (16)0.0064 (15)
N90.068 (3)0.046 (2)0.073 (3)0.0085 (19)0.054 (2)0.008 (2)
N100.040 (2)0.062 (2)0.040 (2)0.0096 (18)0.0247 (18)0.0006 (18)
C10.041 (2)0.042 (2)0.046 (3)0.006 (2)0.023 (2)0.002 (2)
C20.048 (3)0.037 (2)0.036 (2)0.0027 (19)0.029 (2)0.0005 (18)
C30.041 (2)0.031 (2)0.041 (2)0.0027 (17)0.028 (2)0.0004 (17)
C40.031 (2)0.031 (2)0.028 (2)0.0020 (16)0.0151 (17)0.0018 (16)
C50.026 (2)0.030 (2)0.031 (2)0.0007 (16)0.0129 (17)0.0004 (16)
C60.037 (2)0.046 (2)0.041 (2)0.0018 (19)0.024 (2)0.0052 (19)
C70.042 (3)0.057 (3)0.055 (3)0.007 (2)0.030 (2)0.001 (2)
C80.047 (3)0.043 (3)0.068 (3)0.016 (2)0.029 (3)0.004 (2)
C90.047 (3)0.036 (2)0.064 (3)0.010 (2)0.032 (2)0.012 (2)
C100.030 (2)0.036 (2)0.036 (2)0.0032 (17)0.0180 (18)0.0007 (17)
C110.064 (3)0.057 (3)0.075 (4)0.006 (2)0.052 (3)0.011 (3)
C120.039 (2)0.041 (2)0.036 (2)0.0101 (19)0.018 (2)0.0000 (18)
C130.042 (2)0.052 (3)0.035 (2)0.014 (2)0.025 (2)0.0104 (19)
C140.036 (2)0.030 (2)0.034 (2)0.0039 (17)0.0231 (19)0.0039 (17)
C150.037 (2)0.034 (2)0.039 (2)0.0007 (17)0.0214 (19)0.0002 (18)
C160.048 (3)0.057 (3)0.036 (2)0.008 (2)0.021 (2)0.007 (2)
C170.039 (3)0.051 (3)0.044 (3)0.009 (2)0.010 (2)0.001 (2)
C180.031 (2)0.044 (2)0.054 (3)0.0043 (19)0.017 (2)0.003 (2)
C190.037 (2)0.032 (2)0.049 (3)0.0040 (18)0.023 (2)0.0036 (19)
C200.033 (2)0.0229 (18)0.035 (2)0.0013 (15)0.0177 (18)0.0009 (16)
Geometric parameters (Å, º) top
Zn1—N62.035 (3)C3—C41.498 (5)
Zn1—N12.051 (3)C3—H3A0.9700
Zn1—Cl22.2264 (11)C3—H3B0.9700
Zn1—Cl12.2496 (13)C5—C61.385 (5)
N1—C41.332 (4)C5—C101.392 (5)
N1—C51.410 (4)C6—C71.386 (5)
N2—C41.344 (4)C6—H6A0.9300
N2—C101.384 (4)C7—C81.393 (6)
N2—H2B0.8601C7—H7A0.9300
N3—C21.326 (4)C8—C91.364 (6)
N3—N41.361 (4)C8—H8A0.9300
N3—C31.451 (4)C9—C101.379 (5)
N4—C11.315 (5)C9—H9A0.9300
N5—C21.323 (5)C11—H11A0.9300
N5—C11.352 (5)C12—H12A0.9300
N6—C141.333 (4)C13—C141.500 (5)
N6—C201.396 (5)C13—H13A0.9700
N7—C141.339 (5)C13—H13B0.9700
N7—C151.372 (5)C15—C161.394 (6)
N7—H7B0.8600C15—C201.394 (5)
N8—C121.327 (5)C16—C171.379 (6)
N8—N91.358 (4)C16—H16A0.9300
N8—C131.458 (4)C17—C181.394 (6)
N9—C111.306 (5)C17—H17A0.9300
N10—C121.317 (5)C18—C191.368 (6)
N10—C111.351 (5)C18—H18A0.9300
C1—H1A0.9300C19—C201.389 (5)
C2—H2A0.9300C19—H19A0.9300
N6—Zn1—N1101.28 (12)C5—C6—H6A121.8
N6—Zn1—Cl2112.27 (9)C7—C6—H6A121.8
N1—Zn1—Cl2114.06 (9)C6—C7—C8122.0 (4)
N6—Zn1—Cl1113.37 (9)C6—C7—H7A119.0
N1—Zn1—Cl1104.20 (9)C8—C7—H7A119.0
Cl2—Zn1—Cl1111.11 (5)C9—C8—C7121.4 (4)
C4—N1—C5105.2 (3)C9—C8—H8A119.3
C4—N1—Zn1124.7 (2)C7—C8—H8A119.3
C5—N1—Zn1129.7 (2)C8—C9—C10117.1 (4)
C4—N2—C10107.7 (3)C8—C9—H9A121.5
C4—N2—H2B126.1C10—C9—H9A121.5
C10—N2—H2B126.2C9—C10—N2131.8 (4)
C2—N3—N4110.2 (3)C9—C10—C5122.2 (4)
C2—N3—C3129.2 (3)N2—C10—C5106.0 (3)
N4—N3—C3120.5 (3)N9—C11—N10115.5 (4)
C1—N4—N3101.6 (3)N9—C11—H11A122.2
C2—N5—C1102.3 (3)N10—C11—H11A122.2
C14—N6—C20105.5 (3)N10—C12—N8110.4 (4)
C14—N6—Zn1131.3 (3)N10—C12—H12A124.8
C20—N6—Zn1117.6 (2)N8—C12—H12A124.8
C14—N7—C15108.3 (3)N8—C13—C14112.3 (3)
C14—N7—H7B125.9N8—C13—H13A109.1
C15—N7—H7B125.8C14—C13—H13A109.1
C12—N8—N9109.9 (3)N8—C13—H13B109.1
C12—N8—C13129.6 (3)C14—C13—H13B109.1
N9—N8—C13120.5 (3)H13A—C13—H13B107.9
C11—N9—N8101.9 (3)N6—C14—N7111.8 (3)
C12—N10—C11102.3 (3)N6—C14—C13124.4 (3)
N4—C1—N5115.5 (4)N7—C14—C13123.4 (3)
N4—C1—H1A122.2N7—C15—C16132.1 (4)
N5—C1—H1A122.2N7—C15—C20105.7 (3)
N5—C2—N3110.3 (3)C16—C15—C20122.1 (4)
N5—C2—H2A124.8C17—C16—C15116.6 (4)
N3—C2—H2A124.8C17—C16—H16A121.7
N3—C3—C4112.1 (3)C15—C16—H16A121.7
N3—C3—H3A109.2C16—C17—C18121.3 (4)
C4—C3—H3A109.2C16—C17—H17A119.3
N3—C3—H3B109.2C18—C17—H17A119.3
C4—C3—H3B109.2C19—C18—C17122.0 (4)
H3A—C3—H3B107.9C19—C18—H18A119.0
N1—C4—N2112.5 (3)C17—C18—H18A119.0
N1—C4—C3123.9 (3)C18—C19—C20117.7 (4)
N2—C4—C3123.7 (3)C18—C19—H19A121.2
C6—C5—C10120.9 (3)C20—C19—H19A121.2
C6—C5—N1130.5 (3)C19—C20—C15120.3 (4)
C10—C5—N1108.6 (3)C19—C20—N6131.1 (3)
C5—C6—C7116.5 (4)C15—C20—N6108.6 (3)
N6—Zn1—N1—C463.8 (3)C8—C9—C10—N2178.7 (4)
Cl2—Zn1—N1—C4175.4 (3)C8—C9—C10—C50.2 (6)
Cl1—Zn1—N1—C454.1 (3)C4—N2—C10—C9177.6 (4)
N6—Zn1—N1—C5125.0 (3)C4—N2—C10—C51.1 (4)
Cl2—Zn1—N1—C54.2 (3)C6—C5—C10—C91.2 (6)
Cl1—Zn1—N1—C5117.1 (3)N1—C5—C10—C9177.5 (4)
C2—N3—N4—C10.9 (4)C6—C5—C10—N2180.0 (3)
C3—N3—N4—C1177.1 (3)N1—C5—C10—N21.4 (4)
N1—Zn1—N6—C1497.6 (3)N8—N9—C11—N100.4 (6)
Cl2—Zn1—N6—C14140.3 (3)C12—N10—C11—N90.6 (6)
Cl1—Zn1—N6—C1413.4 (3)C11—N10—C12—N80.5 (5)
N1—Zn1—N6—C2051.9 (3)N9—N8—C12—N100.3 (5)
Cl2—Zn1—N6—C2070.1 (3)C13—N8—C12—N10179.9 (4)
Cl1—Zn1—N6—C20163.0 (2)C12—N8—C13—C14108.7 (4)
C12—N8—N9—C110.0 (5)N9—N8—C13—C1471.5 (5)
C13—N8—N9—C11179.8 (4)C20—N6—C14—N70.9 (4)
N3—N4—C1—N50.7 (5)Zn1—N6—C14—N7151.4 (3)
C2—N5—C1—N40.2 (5)C20—N6—C14—C13172.7 (3)
C1—N5—C2—N30.4 (4)Zn1—N6—C14—C1335.1 (5)
N4—N3—C2—N50.9 (4)C15—N7—C14—N60.3 (4)
C3—N3—C2—N5176.7 (3)C15—N7—C14—C13174.0 (3)
C2—N3—C3—C4130.2 (4)N8—C13—C14—N6139.7 (4)
N4—N3—C3—C454.4 (4)N8—C13—C14—N747.5 (5)
C5—N1—C4—N20.5 (4)C14—N7—C15—C16179.6 (4)
Zn1—N1—C4—N2172.5 (2)C14—N7—C15—C201.4 (4)
C5—N1—C4—C3178.2 (3)N7—C15—C16—C17176.0 (4)
Zn1—N1—C4—C38.8 (5)C20—C15—C16—C172.0 (6)
C10—N2—C4—N10.4 (4)C15—C16—C17—C180.7 (6)
C10—N2—C4—C3179.1 (3)C16—C17—C18—C190.5 (7)
N3—C3—C4—N1143.9 (3)C17—C18—C19—C200.5 (6)
N3—C3—C4—N237.6 (5)C18—C19—C20—C150.7 (6)
C4—N1—C5—C6179.6 (4)C18—C19—C20—N6178.6 (4)
Zn1—N1—C5—C67.1 (6)N7—C15—C20—C19176.4 (3)
C4—N1—C5—C101.2 (4)C16—C15—C20—C192.1 (6)
Zn1—N1—C5—C10171.4 (2)N7—C15—C20—N61.9 (4)
C10—C5—C6—C71.1 (6)C16—C15—C20—N6179.7 (3)
N1—C5—C6—C7177.2 (4)C14—N6—C20—C19176.3 (4)
C5—C6—C7—C80.2 (6)Zn1—N6—C20—C1926.9 (5)
C6—C7—C8—C90.7 (7)C14—N6—C20—C151.7 (4)
C7—C8—C9—C100.7 (7)Zn1—N6—C20—C15155.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···N5i0.862.042.899 (4)177
N7—H7B···N10ii0.861.962.814 (4)172
C3—H3B···Cl10.972.833.641 (4)142
C13—H13B···Cl10.972.733.628 (4)154
C2—H2A···Cl1iii0.932.773.596 (4)148
C13—H13A···N4iv0.972.623.261 (5)124
C18—H18A···Cl1v0.932.813.635 (4)149
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+1; (iii) x, y+1/2, z+1/2; (iv) x+1, y+1/2, z+1/2; (v) x+1, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···N5i0.862.042.899 (4)176.6
N7—H7B···N10ii0.861.962.814 (4)172.4
C3—H3B···Cl10.972.833.641 (4)142.1
C13—H13B···Cl10.972.733.628 (4)154.2
C2—H2A···Cl1iii0.932.773.596 (4)148.0
C13—H13A···N4iv0.972.623.261 (5)123.9
C18—H18A···Cl1v0.932.813.635 (4)148.6
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+1; (iii) x, y+1/2, z+1/2; (iv) x+1, y+1/2, z+1/2; (v) x+1, y+1/2, z+1/2.
Acknowledgements top

The study was supported by the Science and Technology Department of Henan Province (grant No. 082102330003).

references
References top

Jin, G.-H., Yang, Y., Zhou, X.-L. & Meng, X.-R. (2012). Z. Naturforsch. Teil B, 67, 29–35.

Rigaku/MSC (2004). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Wang, X.-X., Han, X., Qiao, Z., Jin, G.-H. & Meng, X.-R. (2012). Z. Naturforsch. Teil B, 67, 783–790.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.