supplementary materials


lh5601 scheme

Acta Cryst. (2013). E69, o671    [ doi:10.1107/S1600536813008878 ]

Methyl 2-{2-[(2-methylphenoxy)methyl]phenyl}-2-oxoacetate

M. Kaur, R. J. Butcher, J. P. Jasinski, H. S. Yathirajan and B. P. Siddaraju

Abstract top

In the title compound, C17H16O4, the dihedral angle between the benzene rings is 4.4 (2)°. In the crystal, weak C-H...O hydrogen bonds connect molecules along [001].

Comment top

The title compound (I) is used in organic synthesis as a fungicide intermediate and mainly used as an intermediate for the preparation of methyl 2(E)-methoxyimino-2-[2-(2-methylphenoxymethyl)phenyl] acetate or kresoxim-methyl, which is an active agrochemical exhibiting fungicidal activity (Ammermann et al., 2000; Balba, 2007; Cash & Cronan, 2001). The crystal structure of kresoxim-methyl (Chopra et al., 2004) and 2-[(E)-methoxyimino]-2-{2-[(2-methylphenoxy) methyl]phenyl}ethanoic acid (Kant et al., 2012) have been reported. In view of the importance of the title compound, this paper reports its crystal structure.

In (I), the dihedral angle between the mean planes of the benzene rings is 4.4 (2)° (Fig. 1). Bond lengths are in normal ranges (Allen et al., 1987). In the crystal, weak C—H···O hydrogen bonds connect (Table 1) molecules along [001] (Fig. 2).

Related literature top

The title compound is used in organic synthesis as a fungicide intermediate. For background to agrochemical fungicidal activity, see: Balba (2007); Cash & Cronan (2001); Ammermann et al. (2000); For related structures see : Chopra et al. (2004); Kant et al. (2012). For standard bond lengths, see: Allen et al. (1987).

Experimental top

The title compound was a gift sample from RL Fine Chem, Bengaluru, India. The compound was recrystallized from methyl t-butyl ether by slow evaporation (M.P.: 322–323 K).

Refinement top

All H atoms were placed in calculated positions and refined using a riding-model approximation with C—H lengths of 0.95Å (CH), 0.99Å (CH2) or 0.98Å (CH3). Isotropic displacement parameters for these atoms were set to 1.2 (CH, CH2) or 1.5 (CH3) times Ueq of the parent atom. Secondary CH2 refined with riding coordinates: C8(H8A,H8B.). Aromatic H refined with riding coordinates: C2(H2), C3(H3), C4(H4), C5(H5), C10(H10), C11(H11), C12(H12), C13(H13). Idealised Me refined as rotating group: C7(H7A,H7B,H7C), C17(H17A,H17B,H17C).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed along the b axis. Dashed lines indicate weak C—H···O intermolecular interactions. H atoms not involved in these weak intermolecular interactions have been omitted for clarity.
Methyl 2-{2-[(2-methylphenoxy)methyl]phenyl}-2-oxoacetate top
Crystal data top
C17H16O4F(000) = 1200
Mr = 284.30Dx = 1.316 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54184 Å
a = 31.6697 (11) ÅCell parameters from 3111 reflections
b = 7.5883 (2) Åθ = 2.9–75.3°
c = 12.5915 (6) ŵ = 0.77 mm1
β = 108.514 (4)°T = 123 K
V = 2869.4 (2) Å3Prism, colorless
Z = 80.47 × 0.34 × 0.14 mm
Data collection top
Agilent Xcalibur (Ruby, Gemini)
diffractometer
2551 reflections with I > 2σ(I)
Detector resolution: 10.5081 pixels mm-1Rint = 0.021
ω scansθmax = 75.5°, θmin = 2.9°
Absorption correction: multi-scan
(CrysAlis RED; Agilent, 2012)
h = 3935
Tmin = 0.921, Tmax = 1.000k = 89
5506 measured reflectionsl = 1215
2897 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.107 w = 1/[σ2(Fo2) + (0.0554P)2 + 1.2142P],
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
2897 reflectionsΔρmax = 0.23 e Å3
192 parametersΔρmin = 0.20 e Å3
Crystal data top
C17H16O4V = 2869.4 (2) Å3
Mr = 284.30Z = 8
Monoclinic, C2/cCu Kα radiation
a = 31.6697 (11) ŵ = 0.77 mm1
b = 7.5883 (2) ÅT = 123 K
c = 12.5915 (6) Å0.47 × 0.34 × 0.14 mm
β = 108.514 (4)°
Data collection top
Agilent Xcalibur (Ruby, Gemini)
diffractometer
2897 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Agilent, 2012)
2551 reflections with I > 2σ(I)
Tmin = 0.921, Tmax = 1.000Rint = 0.021
5506 measured reflectionsθmax = 75.5°
Refinement top
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.107Δρmax = 0.23 e Å3
S = 1.07Δρmin = 0.20 e Å3
2897 reflectionsAbsolute structure: ?
192 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.15989 (3)0.23976 (12)0.71615 (8)0.0269 (2)
O20.05640 (3)0.09672 (13)0.83488 (8)0.0334 (2)
O30.01120 (3)0.31730 (14)0.91715 (8)0.0328 (2)
O40.04621 (3)0.20101 (15)1.05392 (8)0.0345 (3)
C10.17209 (4)0.09964 (17)0.66403 (10)0.0228 (3)
C20.15067 (4)0.06284 (18)0.64687 (10)0.0257 (3)
H20.12610.08290.67340.031*
C30.16520 (4)0.19597 (18)0.59084 (11)0.0298 (3)
H30.15070.30710.57950.036*
C40.20081 (5)0.16704 (19)0.55151 (11)0.0315 (3)
H40.21050.25720.51240.038*
C50.22218 (4)0.00414 (19)0.57003 (10)0.0286 (3)
H50.24670.01490.54340.034*
C60.20871 (4)0.13107 (18)0.62609 (10)0.0238 (3)
C70.23140 (4)0.30732 (19)0.64563 (12)0.0306 (3)
H7A0.25760.30390.62000.046*
H7B0.24080.33510.72580.046*
H7C0.21070.39790.60390.046*
C80.12311 (4)0.21425 (17)0.75746 (11)0.0243 (3)
H8A0.12930.11450.81090.029*
H8B0.09580.18700.69470.029*
C90.11668 (4)0.38121 (17)0.81511 (10)0.0224 (3)
C100.14305 (4)0.52884 (18)0.81747 (11)0.0267 (3)
H100.16480.52500.78020.032*
C110.13820 (4)0.68171 (18)0.87322 (11)0.0287 (3)
H110.15660.78060.87350.034*
C120.10674 (4)0.69138 (17)0.92858 (11)0.0278 (3)
H120.10330.79640.96620.033*
C130.08042 (4)0.54612 (17)0.92822 (10)0.0247 (3)
H130.05910.55150.96680.030*
C140.08456 (4)0.39122 (17)0.87205 (10)0.0222 (3)
C150.05692 (4)0.23845 (17)0.87950 (10)0.0243 (3)
C160.02595 (4)0.26027 (16)0.95160 (11)0.0240 (3)
C170.02123 (5)0.2110 (2)1.13287 (13)0.0395 (4)
H17A0.03730.14741.20150.059*
H17B0.00820.15771.09940.059*
H17C0.01770.33471.15090.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0267 (4)0.0268 (5)0.0336 (5)0.0032 (4)0.0187 (4)0.0044 (4)
O20.0380 (5)0.0261 (5)0.0447 (6)0.0063 (4)0.0254 (4)0.0081 (4)
O30.0250 (5)0.0420 (6)0.0332 (5)0.0060 (4)0.0117 (4)0.0003 (4)
O40.0296 (5)0.0466 (6)0.0335 (5)0.0129 (4)0.0189 (4)0.0124 (4)
C10.0212 (5)0.0276 (6)0.0205 (5)0.0017 (5)0.0080 (4)0.0008 (5)
C20.0218 (6)0.0308 (7)0.0260 (6)0.0019 (5)0.0095 (5)0.0017 (5)
C30.0296 (7)0.0288 (7)0.0302 (7)0.0023 (5)0.0084 (5)0.0042 (5)
C40.0339 (7)0.0340 (7)0.0292 (7)0.0057 (6)0.0138 (5)0.0046 (6)
C50.0265 (6)0.0366 (7)0.0269 (6)0.0047 (5)0.0143 (5)0.0027 (5)
C60.0211 (5)0.0299 (6)0.0211 (5)0.0011 (5)0.0077 (4)0.0028 (5)
C70.0281 (6)0.0338 (7)0.0345 (7)0.0043 (5)0.0163 (5)0.0008 (6)
C80.0230 (6)0.0268 (6)0.0278 (6)0.0016 (5)0.0145 (5)0.0017 (5)
C90.0218 (5)0.0251 (6)0.0204 (5)0.0013 (5)0.0068 (4)0.0010 (5)
C100.0251 (6)0.0293 (7)0.0277 (6)0.0015 (5)0.0112 (5)0.0007 (5)
C110.0272 (6)0.0251 (6)0.0329 (7)0.0035 (5)0.0083 (5)0.0008 (5)
C120.0287 (6)0.0243 (6)0.0285 (6)0.0019 (5)0.0064 (5)0.0041 (5)
C130.0226 (6)0.0275 (6)0.0247 (6)0.0032 (5)0.0086 (4)0.0009 (5)
C140.0209 (5)0.0239 (6)0.0222 (5)0.0013 (5)0.0074 (4)0.0006 (5)
C150.0227 (6)0.0264 (6)0.0261 (6)0.0015 (5)0.0109 (5)0.0001 (5)
C160.0241 (6)0.0214 (6)0.0292 (6)0.0011 (5)0.0124 (5)0.0006 (5)
C170.0421 (8)0.0485 (9)0.0376 (8)0.0142 (7)0.0265 (6)0.0154 (7)
Geometric parameters (Å, º) top
O1—C11.3681 (15)C7—H7C0.9800
O1—C81.4315 (13)C8—H8A0.9900
O2—C151.2111 (16)C8—H8B0.9900
O3—C161.1981 (16)C8—C91.5058 (17)
O4—C161.3224 (16)C9—C101.3919 (18)
O4—C171.4560 (15)C9—C141.4204 (16)
C1—C21.3907 (18)C10—H100.9500
C1—C61.4078 (16)C10—C111.3894 (19)
C2—H20.9500C11—H110.9500
C2—C31.3915 (18)C11—C121.3876 (18)
C3—H30.9500C12—H120.9500
C3—C41.3855 (19)C12—C131.3810 (19)
C4—H40.9500C13—H130.9500
C4—C51.393 (2)C13—C141.3993 (17)
C5—H50.9500C14—C151.4736 (17)
C5—C61.3871 (18)C15—C161.5423 (16)
C6—C71.5010 (18)C17—H17A0.9800
C7—H7A0.9800C17—H17B0.9800
C7—H7B0.9800C17—H17C0.9800
C1—O1—C8117.10 (10)C9—C8—H8B110.1
C16—O4—C17116.53 (10)C10—C9—C8121.03 (11)
O1—C1—C2124.43 (11)C10—C9—C14117.85 (11)
O1—C1—C6114.82 (11)C14—C9—C8121.09 (11)
C2—C1—C6120.75 (12)C9—C10—H10119.3
C1—C2—H2120.0C11—C10—C9121.40 (12)
C1—C2—C3119.93 (11)C11—C10—H10119.3
C3—C2—H2120.0C10—C11—H11119.7
C2—C3—H3119.9C12—C11—C10120.67 (12)
C4—C3—C2120.26 (13)C12—C11—H11119.7
C4—C3—H3119.9C11—C12—H12120.5
C3—C4—H4120.4C13—C12—C11119.02 (12)
C3—C4—C5119.21 (12)C13—C12—H12120.5
C5—C4—H4120.4C12—C13—H13119.4
C4—C5—H5119.0C12—C13—C14121.25 (11)
C6—C5—C4122.02 (12)C14—C13—H13119.4
C6—C5—H5119.0C9—C14—C15121.69 (11)
C1—C6—C7119.89 (11)C13—C14—C9119.81 (11)
C5—C6—C1117.83 (12)C13—C14—C15118.40 (11)
C5—C6—C7122.28 (11)O2—C15—C14126.15 (11)
C6—C7—H7A109.5O2—C15—C16116.80 (11)
C6—C7—H7B109.5C14—C15—C16117.05 (11)
C6—C7—H7C109.5O3—C16—O4126.33 (12)
H7A—C7—H7B109.5O3—C16—C15124.09 (12)
H7A—C7—H7C109.5O4—C16—C15109.53 (10)
H7B—C7—H7C109.5O4—C17—H17A109.5
O1—C8—H8A110.1O4—C17—H17B109.5
O1—C8—H8B110.1O4—C17—H17C109.5
O1—C8—C9108.15 (10)H17A—C17—H17B109.5
H8A—C8—H8B108.4H17A—C17—H17C109.5
C9—C8—H8A110.1H17B—C17—H17C109.5
O1—C1—C2—C3178.72 (11)C8—C9—C14—C13177.75 (11)
O1—C1—C6—C5178.46 (11)C8—C9—C14—C151.40 (17)
O1—C1—C6—C70.78 (16)C9—C10—C11—C120.1 (2)
O1—C8—C9—C102.58 (16)C9—C14—C15—O24.4 (2)
O1—C8—C9—C14175.27 (10)C9—C14—C15—C16175.10 (10)
O2—C15—C16—O392.56 (17)C10—C9—C14—C130.16 (17)
O2—C15—C16—O485.23 (15)C10—C9—C14—C15176.51 (11)
C1—O1—C8—C9177.79 (10)C10—C11—C12—C130.47 (19)
C1—C2—C3—C40.34 (19)C11—C12—C13—C140.85 (19)
C2—C1—C6—C50.85 (18)C12—C13—C14—C90.70 (18)
C2—C1—C6—C7179.91 (12)C12—C13—C14—C15177.17 (11)
C2—C3—C4—C50.8 (2)C13—C14—C15—O2179.20 (12)
C3—C4—C5—C60.5 (2)C13—C14—C15—C161.30 (17)
C4—C5—C6—C10.35 (19)C14—C9—C10—C110.21 (18)
C4—C5—C6—C7179.57 (12)C14—C15—C16—O387.90 (16)
C6—C1—C2—C30.51 (19)C14—C15—C16—O494.31 (13)
C8—O1—C1—C21.38 (17)C17—O4—C16—O31.9 (2)
C8—O1—C1—C6179.34 (10)C17—O4—C16—C15179.59 (12)
C8—C9—C10—C11178.12 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17A···O2i0.982.443.3712 (18)158
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17A···O2i0.982.443.3712 (18)157.8
Symmetry code: (i) x, y, z+1/2.
Acknowledgements top

MK thanks the UOM for research facilities. RJB acknowledges the NSF–MRI program (grant No. CHE-0619278) for funds to purchase the X-ray diffractometer.

references
References top

Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Ammermann, E., Lorenz, G., Schelberger, K., Mueller, B., Kirstgen, R. & Sauter, H. (2000). Proceedings of the Brighton Crop Protection Conference–Pests and Diseases, Vol. 2, pp. 541–548. Alton, Hampshire, England: BCPC Publications.

Balba, H. (2007). J. Environ. Sci. Health, B42, 441–451.

Cash, H. & Cronan, J. M. Jr (2001). US Patent Appl. WO2001-US964920010323.

Chopra, D., Mohan, T. P., Rao, K. S. & Guru Row, T. N. (2004). Acta Cryst. E60, o2421–o2423.

Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.

Kant, R., Gupta, V. K., Kapoor, K., Shripanavar, C. S. & Banerjee, K. (2012). Acta Cryst. E68, o2425.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.