supplementary materials


lh5602 scheme

Acta Cryst. (2013). E69, o672    [ doi:10.1107/S160053681300891X ]

1-(10-Bromoanthracen-9-yl)-1H-imidazole

H. M. Lee and H.-J. Lee

Abstract top

In the title molecule, C17H11BrN2, the planes of the anthracene ring system [maximum deviation from the mean plane = 0.036 (3) Å] and the imidazole ring form a dihedral angle of 85.14 (14)°. In the crystal, weak C-H...N and C-H...Br hydrogen bonds link the molecules into double chains propagating along [01-1]. In addition, [pi]-[pi] stacking interactions between pairs of benzene rings are observed, with centroid-centroid distances of 3.7968 (17) and 3.8496 (16) Å.

Comment top

The title compound is a side-product in the preparation of 9,10-di(1H-imidazol-1-yl)anthracene. The latter compound is a ditopic bis(imidazole) ligand which can form intriguing coordination polymers with transition metal ions (Lee et al., et al. 2011). The title compound however, features only one imidazole moiety. 9-(10'-Bromo-9'-anthryl)carbazole is a structure in the literature which is related to the title compound (Boyer et al. 1993).

The molecular structure of the title compound is shown in Fig. 1. The anthracene ring system [maximum deviation from the mean plane = 0.036 (3)Å for C11] and imidazole ring form a dihedral angle of 85.14 (14) Å. In the crystal, weak hydrogen bonds of the type C—H···N and C—H···Br link the molecules into one-dimensional double chains propagating along [0, 1, -1] (Fig. 2). Double chains are further stablized by ππ stacking interaction between pairs of anthracene rings. The contact distances are 3.7968 (17) [Cg1···Cg1(-x, 2 - y, 1 - z)] and 3.8496 (16) Å [Cg1···Cg1(-x, 2 - y, 1 - z)]. Cg1 and Cg2 are the centroids of C12—C17 and C4/C5/C10—C12/C17, respectively.

Related literature top

For the preparation of the title compound, see: Lee et al. (2011). For the structure of a related compound, see: Boyer et al. (1993).

Experimental top

The compound was isolated as a side-product in the preparation of 9,10-di(1H-imidazol-1-yl)anthracene (dia) (Lee et al., 2011). Suitable crystals were obtained by slow evaporation of a methanol solution of the compound at room temperature.

Refinement top

The hydrogen atom upon C2 was located in a difference Fourier map and freely refined. All the other hydrogen atoms were positioned geometrically and refined as riding atoms, with C—H = 0.95 Å with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids for the non-hydrogen atoms. The H atoms are dipicted by circles of an arbitrary radius.
[Figure 2] Fig. 2. A view of a double chain displaying the hydrogen bonds as dashed lines. The viewing direction is along [1,1,1].
1-(10-Bromoanthracen-9-yl)-1H-imidazole top
Crystal data top
C17H11BrN2Z = 2
Mr = 323.19F(000) = 324
Triclinic, P1Dx = 1.648 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.1832 (2) ÅCell parameters from 2906 reflections
b = 8.8473 (2) Åθ = 2.4–27.9°
c = 9.5814 (2) ŵ = 3.15 mm1
α = 75.355 (1)°T = 150 K
β = 81.624 (1)°Block, colorless
γ = 77.134 (1)°0.35 × 0.26 × 0.07 mm
V = 651.36 (3) Å3
Data collection top
Bruker SMART APEXII
diffractometer
2846 independent reflections
Radiation source: fine-focus sealed tube2562 reflections with I > 2σ
Graphite monochromatorRint = 0.017
ω scansθmax = 27.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1010
Tmin = 0.406, Tmax = 0.822k = 611
6236 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.0608P)2 + 0.4219P]
where P = (Fo2 + 2Fc2)/3
2846 reflections(Δ/σ)max < 0.001
185 parametersΔρmax = 0.54 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C17H11BrN2γ = 77.134 (1)°
Mr = 323.19V = 651.36 (3) Å3
Triclinic, P1Z = 2
a = 8.1832 (2) ÅMo Kα radiation
b = 8.8473 (2) ŵ = 3.15 mm1
c = 9.5814 (2) ÅT = 150 K
α = 75.355 (1)°0.35 × 0.26 × 0.07 mm
β = 81.624 (1)°
Data collection top
Bruker SMART APEXII
diffractometer
2846 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2562 reflections with I > 2σ
Tmin = 0.406, Tmax = 0.822Rint = 0.017
6236 measured reflectionsθmax = 27.0°
Refinement top
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.100Δρmax = 0.54 e Å3
S = 1.11Δρmin = 0.28 e Å3
2846 reflectionsAbsolute structure: ?
185 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.29223 (4)1.29770 (3)0.32328 (3)0.02958 (12)
C10.0666 (4)0.7593 (4)0.9486 (3)0.0298 (6)
H10.03970.82590.92910.036*
C20.0985 (4)0.6312 (4)1.0596 (3)0.0294 (6)
C30.3352 (4)0.6527 (3)0.9386 (3)0.0221 (5)
H30.45200.63450.90720.027*
C40.2461 (3)0.8922 (3)0.7399 (3)0.0185 (5)
C50.2927 (3)1.0313 (3)0.7525 (3)0.0182 (5)
C60.3187 (3)1.0569 (3)0.8880 (3)0.0230 (5)
H60.30470.97710.97390.028*
C70.3633 (4)1.1936 (4)0.8968 (3)0.0288 (6)
H70.37811.20910.98830.035*
C80.3875 (4)1.3121 (3)0.7700 (4)0.0308 (6)
H80.42181.40550.77670.037*
C90.3622 (4)1.2942 (3)0.6381 (3)0.0266 (6)
H90.37761.37610.55430.032*
C100.3129 (3)1.1539 (3)0.6238 (3)0.0192 (5)
C110.2836 (3)1.1299 (3)0.4912 (3)0.0207 (5)
C120.2413 (3)0.9892 (3)0.4780 (3)0.0194 (5)
C130.2162 (4)0.9609 (3)0.3427 (3)0.0269 (6)
H130.23071.03920.25590.032*
C140.1720 (4)0.8240 (4)0.3366 (3)0.0323 (7)
H140.15610.80760.24570.039*
C150.1494 (4)0.7059 (3)0.4631 (4)0.0313 (7)
H150.11660.61150.45710.038*
C160.1741 (3)0.7257 (3)0.5940 (3)0.0241 (6)
H160.15980.64430.67840.029*
C170.2214 (3)0.8676 (3)0.6065 (3)0.0188 (5)
H20.028 (4)0.592 (4)1.127 (4)0.028 (9)*
N10.2190 (3)0.7738 (3)0.8691 (2)0.0197 (4)
N20.2670 (3)0.5647 (3)1.0537 (3)0.0255 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.03324 (19)0.02543 (17)0.02217 (17)0.00272 (12)0.00137 (11)0.00551 (11)
C10.0215 (14)0.0357 (16)0.0255 (15)0.0028 (12)0.0044 (11)0.0041 (12)
C20.0327 (16)0.0333 (15)0.0203 (14)0.0138 (13)0.0029 (12)0.0037 (12)
C30.0235 (13)0.0176 (12)0.0214 (13)0.0005 (10)0.0061 (10)0.0005 (10)
C40.0173 (12)0.0156 (11)0.0184 (12)0.0014 (9)0.0049 (10)0.0016 (10)
C50.0164 (12)0.0174 (12)0.0184 (12)0.0019 (9)0.0045 (9)0.0024 (10)
C60.0243 (13)0.0233 (13)0.0193 (13)0.0003 (10)0.0058 (10)0.0025 (10)
C70.0279 (15)0.0314 (15)0.0287 (15)0.0010 (12)0.0091 (12)0.0123 (12)
C80.0332 (16)0.0218 (13)0.0402 (17)0.0043 (11)0.0097 (13)0.0098 (12)
C90.0271 (14)0.0175 (12)0.0323 (15)0.0020 (11)0.0061 (12)0.0006 (11)
C100.0181 (12)0.0155 (11)0.0212 (13)0.0003 (9)0.0052 (10)0.0003 (10)
C110.0208 (13)0.0172 (12)0.0179 (12)0.0023 (10)0.0032 (10)0.0026 (10)
C120.0170 (12)0.0190 (12)0.0179 (12)0.0038 (9)0.0046 (9)0.0014 (10)
C130.0279 (14)0.0283 (14)0.0204 (13)0.0046 (11)0.0063 (11)0.0043 (11)
C140.0329 (16)0.0378 (16)0.0277 (15)0.0034 (13)0.0093 (12)0.0154 (13)
C150.0310 (16)0.0240 (14)0.0417 (18)0.0012 (12)0.0110 (13)0.0141 (13)
C160.0225 (13)0.0191 (12)0.0296 (15)0.0009 (10)0.0059 (11)0.0046 (11)
C170.0175 (12)0.0156 (11)0.0204 (13)0.0022 (9)0.0050 (10)0.0019 (10)
N10.0218 (11)0.0175 (10)0.0170 (10)0.0018 (8)0.0044 (9)0.0012 (8)
N20.0345 (13)0.0192 (11)0.0208 (11)0.0053 (9)0.0076 (10)0.0017 (9)
Geometric parameters (Å, º) top
Br1—C111.898 (3)C7—H70.9500
C1—C21.350 (4)C8—C91.362 (4)
C1—N11.377 (4)C8—H80.9500
C1—H10.9500C9—C101.431 (4)
C2—N21.372 (4)C9—H90.9500
C2—H20.86 (4)C10—C111.401 (4)
C3—N21.309 (4)C11—C121.403 (4)
C3—N11.366 (3)C12—C171.432 (4)
C3—H30.9500C12—C131.432 (4)
C4—C171.400 (4)C13—C141.356 (4)
C4—C51.404 (4)C13—H130.9500
C4—N11.431 (3)C14—C151.405 (5)
C5—C61.426 (4)C14—H140.9500
C5—C101.438 (4)C15—C161.358 (4)
C6—C71.364 (4)C15—H150.9500
C6—H60.9500C16—C171.430 (4)
C7—C81.411 (5)C16—H160.9500
C2—C1—N1106.2 (3)C11—C10—C9123.4 (2)
C2—C1—H1126.9C5—C10—C9118.1 (2)
N1—C1—H1126.9C10—C11—C12122.8 (2)
C1—C2—N2110.7 (3)C10—C11—Br1118.82 (19)
C1—C2—H2128 (2)C12—C11—Br1118.3 (2)
N2—C2—H2121 (2)C11—C12—C17118.4 (2)
N2—C3—N1112.1 (2)C11—C12—C13123.5 (2)
N2—C3—H3123.9C17—C12—C13118.1 (2)
N1—C3—H3123.9C14—C13—C12121.0 (3)
C17—C4—C5122.4 (2)C14—C13—H13119.5
C17—C4—N1119.2 (2)C12—C13—H13119.5
C5—C4—N1118.4 (2)C13—C14—C15120.8 (3)
C4—C5—C6122.7 (2)C13—C14—H14119.6
C4—C5—C10118.7 (2)C15—C14—H14119.6
C6—C5—C10118.6 (2)C16—C15—C14120.5 (3)
C7—C6—C5121.3 (3)C16—C15—H15119.7
C7—C6—H6119.4C14—C15—H15119.7
C5—C6—H6119.4C15—C16—C17120.9 (3)
C6—C7—C8120.1 (3)C15—C16—H16119.6
C6—C7—H7120.0C17—C16—H16119.6
C8—C7—H7120.0C4—C17—C16122.3 (2)
C9—C8—C7120.9 (3)C4—C17—C12119.1 (2)
C9—C8—H8119.5C16—C17—C12118.6 (2)
C7—C8—H8119.5C3—N1—C1105.9 (2)
C8—C9—C10121.0 (3)C3—N1—C4128.0 (2)
C8—C9—H9119.5C1—N1—C4126.1 (2)
C10—C9—H9119.5C3—N2—C2105.1 (2)
C11—C10—C5118.5 (2)
N1—C1—C2—N20.4 (4)C17—C12—C13—C141.2 (4)
C17—C4—C5—C6179.8 (2)C12—C13—C14—C150.0 (4)
N1—C4—C5—C61.9 (4)C13—C14—C15—C161.0 (5)
C17—C4—C5—C101.1 (4)C14—C15—C16—C170.8 (4)
N1—C4—C5—C10177.3 (2)C5—C4—C17—C16180.0 (2)
C4—C5—C6—C7179.8 (3)N1—C4—C17—C161.7 (4)
C10—C5—C6—C70.6 (4)C5—C4—C17—C121.1 (4)
C5—C6—C7—C81.1 (4)N1—C4—C17—C12177.2 (2)
C6—C7—C8—C91.9 (5)C15—C16—C17—C4179.4 (3)
C7—C8—C9—C100.9 (4)C15—C16—C17—C120.4 (4)
C4—C5—C10—C110.6 (4)C11—C12—C17—C40.5 (4)
C6—C5—C10—C11178.6 (2)C13—C12—C17—C4179.7 (2)
C4—C5—C10—C9179.3 (2)C11—C12—C17—C16178.5 (2)
C6—C5—C10—C91.5 (4)C13—C12—C17—C161.3 (4)
C8—C9—C10—C11179.4 (3)N2—C3—N1—C10.3 (3)
C8—C9—C10—C50.8 (4)N2—C3—N1—C4179.4 (2)
C5—C10—C11—C122.2 (4)C2—C1—N1—C30.4 (3)
C9—C10—C11—C12177.6 (3)C2—C1—N1—C4179.2 (3)
C5—C10—C11—Br1175.01 (18)C17—C4—N1—C395.3 (3)
C9—C10—C11—Br15.1 (4)C5—C4—N1—C386.3 (3)
C10—C11—C12—C172.2 (4)C17—C4—N1—C184.3 (3)
Br1—C11—C12—C17175.05 (18)C5—C4—N1—C194.1 (3)
C10—C11—C12—C13178.0 (2)N1—C3—N2—C20.0 (3)
Br1—C11—C12—C134.8 (4)C1—C2—N2—C30.3 (4)
C11—C12—C13—C14178.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···Br1i0.952.863.687 (3)147
C3—H3···N2ii0.952.583.393 (4)144
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···Br1i0.952.863.687 (3)146.7
C3—H3···N2ii0.952.583.393 (4)144.0
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y+1, z+2.
Acknowledgements top

We thank the National Science Council of Taiwan for financial support of this work.

references
References top

Boyer, G., Claramunt, R. M., Elguero, J., Fathalla, M., Foces-Foces, C., Jaime, C. & LIamas-Saiz, A. L. (1993). J. Chem. Soc. Perkin Trans. 2, pp. 757–766.

Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.

Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Lee, H.-J., Cheng, P.-Y., Chen, C.-Y., Shen, J.-S., Nandi, D. & Lee, H. M. (2011). CrystEngComm, 13, 4814–4816.

Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.