supplementary materials


lh5605 scheme

Acta Cryst. (2013). E69, o728    [ doi:10.1107/S1600536813009859 ]

4-Amino-3-(3-methoxybenzyl)-1H-1,2,4-triazole-5(4H)-thione

B. K. Sarojini, P. S. Manjula, G. Hegde, D. Kour, S. Anthal, V. K. Gupta and R. Kant

Abstract top

In the title molecule, C10H12N4SO, the triazole ring forms a dihedral angle of 73.0 (5)° with the benzene ring. The methoxy group is approximtely coplanar with the benzene ring with a C[pdbond]C-O-Cmethyl torsion angle of 4.7 (3)°. In the crystal, N-H...S hydrogen bonds connect pairs of inversion-related molecules, which are in turn connected by N-H...N hydrogen bonds into chains of rings along [010]. Weak C-H...O hydrogen bonds connect these chains into a two-dimensional network parallel to (-102).

Comment top

The chemistry of triazoles has received considerable attention in recent years because of their versatility in the synthesis of many other heterocyclic compounds. 1,2,4-Triazole derivatives are well known for their different biological activities, therefore various 1,2,4-triazole derivatives and their N-bridged heterocyclic analogs have been extensively studied (Holla et al., 2001; 2006). The derivatives of 1,2,4-triazole are known to exhibit anti-inflammatory (Mullican et al., 1993), antiviral (Jones et al., 1965), antimicrobial (Cansiz et al., 2001), and antidepressant activity (Kane et al., 1988). Hence, synthesis of the corresponding heterocyclic compounds could be of interest from the viewpoint of chemical reactivity and biological activity. In the title compound (Fig. 1), the bond lengths and angles have normal values (Allen et al., 1987) and are comparable with closely related structures (Chen et al., 2007; Karczmarzyk et al., 2012; Gao et al., 2011). The angles around atom C3 in the triazole ring deviate from the normal angles based on Csp2 hybridization, giving bond angles of 102.72 (14)° and 130.12 (13)° for N2—C3—N4 and N2—C3—S1, respectively. The dihedral angle between the triazole ring (N1/N2/C3/N4/C5) and the benzene ring (C8—C13) is 73.0 (5)°. In the crystal, N—H···S hydrogen bonds connect pairs of inversion related molecules, which are in turn connected by N—H···N hydrogen bonds into chains of rings along [010]. In addition, weak C—H···O hydrogen bonds connect these chains into a two-dimensional network parallel to (102) (Fig. 2).

Related literature top

For background to the chemistry of triazoles, see: Holla et al. (2001, 2006). For the biological activity of 1,2,4-triazole derivatives, see: Cansiz et al. (2001); Jones et al. (1965); Kane et al. (1988); Mullican et al. (1993). For related structures, see: Chen et al. (2007); Gao et al. (2011); Karczmarzyk et al. (2012). For standard bond-length data, see: Allen et al. (1987).

Experimental top

A well triturated mixture of 3-methoxyphenylacetic acid (0.83 g.0.05 mol) and thiocarbohydrazide (0.53 g. 0.05 mol) was fused in a round bottom flask for one hour on a oil bath at 413 K. It was cooled to room temperature and washed with sodium bicarbonate (5%) solution to remove unreacted acid and again washed with water. The dried compound was recrystallized from methanol to yield single crystals (mp. 417–419 K).

Refinement top

Atoms H61 and H62 attached to N6 were located in a difference map and refined isotropically. The remaining H atoms were positioned geometrically and were treated as riding on their parent C/N atoms, with C—H distances of 0.93–0.96 Å and N—H distance of 0.86 Å with Uiso(H) = 1.2Ueq(C/N) or Uiso(H) = 1.5Ueq(Cmethyl).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with ellipsoids drawn at the 40% probability level. H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Part of the crystal structure with hydrogen bonds shown as dashed lines.
4-Amino-3-(3-methoxybenzyl)-1H-1,2,4-triazole-5(4H)-thione top
Crystal data top
C10H12N4OSF(000) = 496
Mr = 236.30Dx = 1.440 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7374 reflections
a = 7.4580 (3) Åθ = 3.5–29.0°
b = 5.8006 (2) ŵ = 0.28 mm1
c = 25.2817 (10) ÅT = 293 K
β = 94.513 (4)°Plate, white
V = 1090.32 (7) Å30.3 × 0.2 × 0.1 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
2130 independent reflections
Radiation source: fine-focus sealed tube1748 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
Detector resolution: 16.1049 pixels mm-1θmax = 26.0°, θmin = 3.5°
ω scansh = 99
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 77
Tmin = 0.946, Tmax = 1.000l = 3131
15190 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0408P)2 + 0.3289P]
where P = (Fo2 + 2Fc2)/3
2130 reflections(Δ/σ)max = 0.002
154 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C10H12N4OSV = 1090.32 (7) Å3
Mr = 236.30Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.4580 (3) ŵ = 0.28 mm1
b = 5.8006 (2) ÅT = 293 K
c = 25.2817 (10) Å0.3 × 0.2 × 0.1 mm
β = 94.513 (4)°
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
2130 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
1748 reflections with I > 2σ(I)
Tmin = 0.946, Tmax = 1.000Rint = 0.042
15190 measured reflectionsθmax = 26.0°
Refinement top
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.088Δρmax = 0.19 e Å3
S = 1.03Δρmin = 0.24 e Å3
2130 reflectionsAbsolute structure: ?
154 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Experimental. CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27–08-2010 CrysAlis171. NET) (compiled Aug 27 2010,11:50:40) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.79363 (6)1.26508 (8)1.014843 (19)0.03712 (16)
O10.4364 (2)0.7659 (2)0.66746 (5)0.0467 (4)
N10.6715 (2)0.7764 (2)0.91172 (6)0.0323 (4)
N20.77124 (19)0.8746 (2)0.95420 (6)0.0319 (4)
H20.86210.80770.97070.038*
C30.7134 (2)1.0833 (3)0.96726 (6)0.0254 (4)
N40.56824 (17)1.1164 (2)0.93177 (5)0.0239 (3)
C50.5471 (2)0.9287 (3)0.89877 (6)0.0246 (4)
N60.4558 (2)1.3106 (3)0.92853 (8)0.0360 (4)
C70.4041 (2)0.9044 (3)0.85492 (6)0.0284 (4)
H7A0.29940.99080.86390.034*
H7B0.36960.74340.85190.034*
C80.4584 (2)0.9870 (3)0.80138 (6)0.0249 (4)
C90.5382 (2)1.2018 (3)0.79529 (7)0.0322 (4)
H90.56171.29720.82460.039*
C100.5823 (2)1.2730 (3)0.74597 (8)0.0339 (4)
H100.63471.41700.74230.041*
C110.5501 (2)1.1344 (3)0.70177 (7)0.0328 (4)
H110.58051.18380.66860.039*
C120.4717 (2)0.9206 (3)0.70779 (7)0.0290 (4)
C130.4246 (2)0.8490 (3)0.75726 (7)0.0271 (4)
H130.36960.70640.76070.032*
C140.4954 (3)0.8208 (4)0.61719 (8)0.0492 (5)
H14A0.43480.95720.60370.074*
H14B0.46860.69500.59320.074*
H14C0.62280.84750.62050.074*
H620.524 (3)1.436 (4)0.9246 (8)0.049 (6)*
H610.403 (3)1.324 (4)0.9573 (10)0.065 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0330 (3)0.0444 (3)0.0325 (3)0.0079 (2)0.00694 (19)0.0124 (2)
O10.0607 (9)0.0517 (8)0.0284 (7)0.0206 (7)0.0078 (6)0.0085 (6)
N10.0352 (8)0.0312 (8)0.0297 (9)0.0065 (6)0.0034 (7)0.0030 (6)
N20.0317 (8)0.0324 (8)0.0303 (8)0.0109 (6)0.0064 (7)0.0018 (6)
C30.0232 (8)0.0305 (9)0.0227 (9)0.0032 (7)0.0025 (7)0.0025 (7)
N40.0223 (7)0.0239 (7)0.0250 (7)0.0044 (5)0.0015 (6)0.0009 (6)
C50.0267 (8)0.0244 (8)0.0228 (9)0.0007 (7)0.0033 (7)0.0004 (6)
N60.0353 (9)0.0290 (9)0.0422 (11)0.0141 (7)0.0073 (8)0.0061 (7)
C70.0264 (9)0.0310 (9)0.0273 (9)0.0015 (7)0.0010 (7)0.0032 (7)
C80.0204 (8)0.0265 (8)0.0272 (9)0.0033 (6)0.0028 (7)0.0003 (7)
C90.0355 (10)0.0263 (9)0.0341 (10)0.0017 (7)0.0023 (8)0.0043 (7)
C100.0326 (10)0.0238 (9)0.0450 (11)0.0031 (7)0.0003 (8)0.0055 (8)
C110.0311 (9)0.0363 (10)0.0310 (10)0.0006 (8)0.0016 (8)0.0079 (8)
C120.0261 (9)0.0335 (9)0.0267 (9)0.0010 (7)0.0012 (7)0.0008 (7)
C130.0256 (9)0.0248 (8)0.0304 (10)0.0024 (7)0.0004 (7)0.0008 (7)
C140.0469 (13)0.0726 (15)0.0287 (11)0.0096 (11)0.0073 (9)0.0059 (10)
Geometric parameters (Å, º) top
S1—C31.6745 (17)C7—H7B0.9700
O1—C121.368 (2)C8—C131.380 (2)
O1—C141.414 (2)C8—C91.395 (2)
N1—C51.304 (2)C9—C101.377 (3)
N1—N21.381 (2)C9—H90.9300
N2—C31.335 (2)C10—C111.382 (3)
N2—H20.8600C10—H100.9300
C3—N41.364 (2)C11—C121.384 (2)
N4—C51.373 (2)C11—H110.9300
N4—N61.4029 (19)C12—C131.389 (2)
C5—C71.483 (2)C13—H130.9300
N6—H620.90 (2)C14—H14A0.9600
N6—H610.86 (3)C14—H14B0.9600
C7—C81.521 (2)C14—H14C0.9600
C7—H7A0.9700
C12—O1—C14117.84 (15)C13—C8—C7119.48 (15)
C5—N1—N2104.16 (13)C9—C8—C7121.71 (15)
C3—N2—N1113.69 (14)C10—C9—C8120.12 (16)
C3—N2—H2123.2C10—C9—H9119.9
N1—N2—H2123.2C8—C9—H9119.9
N2—C3—N4102.72 (14)C9—C10—C11121.26 (16)
N2—C3—S1130.12 (13)C9—C10—H10119.4
N4—C3—S1127.17 (12)C11—C10—H10119.4
C3—N4—C5109.59 (13)C10—C11—C12118.69 (17)
C3—N4—N6126.24 (14)C10—C11—H11120.7
C5—N4—N6124.17 (14)C12—C11—H11120.7
N1—C5—N4109.83 (15)O1—C12—C11124.32 (16)
N1—C5—C7125.34 (15)O1—C12—C13115.29 (15)
N4—C5—C7124.83 (14)C11—C12—C13120.39 (16)
N4—N6—H62108.4 (14)C8—C13—C12120.74 (15)
N4—N6—H61109.5 (17)C8—C13—H13119.6
H62—N6—H61109 (2)C12—C13—H13119.6
C5—C7—C8114.15 (14)O1—C14—H14A109.5
C5—C7—H7A108.7O1—C14—H14B109.5
C8—C7—H7A108.7H14A—C14—H14B109.5
C5—C7—H7B108.7O1—C14—H14C109.5
C8—C7—H7B108.7H14A—C14—H14C109.5
H7A—C7—H7B107.6H14B—C14—H14C109.5
C13—C8—C9118.79 (16)
C5—N1—N2—C30.81 (19)C5—C7—C8—C13132.14 (16)
N1—N2—C3—N41.00 (18)C5—C7—C8—C949.4 (2)
N1—N2—C3—S1179.11 (13)C13—C8—C9—C100.1 (3)
N2—C3—N4—C50.80 (17)C7—C8—C9—C10178.66 (16)
S1—C3—N4—C5179.30 (13)C8—C9—C10—C110.4 (3)
N2—C3—N4—N6179.29 (16)C9—C10—C11—C120.1 (3)
S1—C3—N4—N60.6 (3)C14—O1—C12—C114.7 (3)
N2—N1—C5—N40.25 (18)C14—O1—C12—C13174.70 (17)
N2—N1—C5—C7179.94 (15)C10—C11—C12—O1178.59 (17)
C3—N4—C5—N10.36 (19)C10—C11—C12—C130.8 (3)
N6—N4—C5—N1179.74 (16)C9—C8—C13—C121.0 (2)
C3—N4—C5—C7179.46 (15)C7—C8—C13—C12179.59 (15)
N6—N4—C5—C70.4 (3)O1—C12—C13—C8178.05 (15)
N1—C5—C7—C887.4 (2)C11—C12—C13—C81.4 (3)
N4—C5—C7—C892.39 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···O1i0.972.463.308 (2)146
N6—H62···N1ii0.90 (2)2.30 (2)3.190 (2)174
N2—H2···S1iii0.862.603.377 (1)151
Symmetry codes: (i) x+1/2, y+1/2, z+3/2; (ii) x, y+1, z; (iii) x+2, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···O1i0.972.4593.308 (2)146
N6—H62···N1ii0.90 (2)2.30 (2)3.190 (2)174
N2—H2···S1iii0.862.5993.377 (1)151
Symmetry codes: (i) x+1/2, y+1/2, z+3/2; (ii) x, y+1, z; (iii) x+2, y+2, z+2.
Acknowledgements top

RK acknowledges the Department of Science & Technology for the sanction of the single-crystal X-ray diffractometer as a National Facility under a mega research project No. SR/S2/ CMP-47/2003.

references
References top

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Cansiz, A., Servi, S., Koparir, M., Altintas, M. & Digrak, M. (2001). J. Chem. Soc. Pak. 23, 237–239.

Chen, X.-A., Huang, X.-B. & Wu, H.-Y. (2007). Acta Cryst. E63, o3191.

Gao, Y., Zhang, L. & Wang, H. (2011). Acta Cryst. E67, o1794.

Holla, B. S., Rao, B. S., Sarojini, B. K., Akberali, P. M. & Suchetha Kumari, N. (2006). Euro. J. Med. Chem. 41, 657–663.

Holla, B. S., Sarojini, B. K., Rao, B. S., Akberali, P. M. & Suchetha Kumari, N. (2001). Il Farmaco, 56, 565–570.

Jones, D. H., Slack, R., Squires, S. & Wooldridge, K. R. H. (1965). J. Med. Chem. 8, 676–680.

Kane, J. M., Dudley, M. W., Sorensen, S. M. & Miller, F. P. (1988). J. Med. Chem. 31, 1253–1258.

Karczmarzyk, Z., Pitucha, M., Wysocki, W., Fruziński, A. & Olender, E. (2012). Acta Cryst. E68, o3264–o3265.

Mullican, M. D., Wilson, M. W., Connor, D. T., Kostlan, C. R., Schrier, D. J. & Dyer, R. D. (1993). J. Med. Chem. 36, 1090–1099.

Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.