

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

4-Methylanilinium 4-hydroxybenzenesulfonate

J. V. Jovita,^a S. Sathya,^a G. Usha,^a* R. Vasanthi^a and P. Sagayaraj^b

^aPG and Research Department of Physics, Queen Mary's College, Chennai-4, Tamilnadu, India, and ^bDepartment of Physics, Loyola college, Chennai-34, Tamilnadu, India

Correspondence e-mail: guqmc@yahoo.com

Received 8 March 2013; accepted 7 April 2013

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.002 Å; R factor = 0.030; wR factor = 0.091; data-to-parameter ratio = 13.1.

In the crystal of the title molecular salt, $C_7H_{10}N^+ \cdot C_6H_5O_4S^-$, the benzenesulfonate units are linked through phenol– sulfonate O-H···O hydrogen bonds, forming chains along the *c*-axis direction. These chains are linked *via* N-H···O hydrogen bonds involving two of the three H atoms of the ammonium group of the 4-methylanilium cation, giving rise to two-dimensional networks parallel to the *bc* plane which are further connected through an additional N-H···O interaction in which the third ammonium H atom is involved, generating a three-dimensional network.

Related literature

For the biological activity of related compounds, see: Fukami *et al.* (2000). For standard bond lengths, see: Allen *et al.* (1987).

Experimental

Crystal data $C_7H_{10}N^+ \cdot C_6H_5O_4S^ M_r = 281.32$ Monoclinic, $P2_1/c$ a = 11.6450 (2) Åb = 7.1670 (1) Åc = 16.3080 (3) Å $\beta = 107.654 \ (1)^{\circ}$ $V = 1296.96 \ (4) \ \text{Å}^{3}$ Z = 4Mo $K\alpha$ radiation

Data collection

Bruker Kappa APEXII CCD diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2004) $T_{\rm min} = 0.926, T_{\rm max} = 0.950$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.030$ 175 parameters $wR(F^2) = 0.091$ H-atom parameters constrainedS = 1.06 $\Delta \rho_{max} = 0.24$ e Å $^{-3}$ 2285 reflections $\Delta \rho_{min} = -0.29$ e Å $^{-3}$

 Table 1

 Hydrogen-bond geometry (Å, °).

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccc} N1-H1C\cdots O1^{i} & 0.89 & 1.96 & 2.8367 \ (19) & 169 \\ N1-H1B\cdots O4^{ii} & 0.89 & 1.96 & 2.839 \ (2) & 170 \\ N1-H1A\cdots O2^{iii} & 0.89 & 1.94 & 2.8091 \ (19) & 166 \\ O4-H4\cdots O3^{iii} & 0.82 & 1.82 & 2.6343 \ (17) & 173 \end{array}$	$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
01 111 05 0.02 1.02 2.05 15 (17) 175	$N1-H1C\cdotsO1^{i}$ $N1-H1B\cdotsO4^{ii}$ $N1-H1A\cdotsO2^{iii}$ $O4-H4\cdotsO3^{iii}$	0.89 0.89 0.89 0.89	1.96 1.96 1.94 1.82	2.8367 (19) 2.839 (2) 2.8091 (19) 2.6343 (17)	169 170 166 173

Symmetry codes: (i) $x, -y - \frac{1}{2}, z - \frac{1}{2}$; (ii) -x + 1, -y, -z; (iii) $x, -y + \frac{1}{2}, z - \frac{1}{2}$.

Data collection: *APEX2* (Bruker, 2004); cell refinement: *APEX2* and *SAINT* (Bruker, 2004); data reduction: *SAINT* and *XPREP* (Bruker, 2004); program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1993); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012); software used to prepare material for publication: *PLATON* (Spek, 2009).

The authors thank Professor D. Velmurugan, Centre for Advanced Study in Crystallography and Biophysics, University of Madras, for providing data collection and computer facilities.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LR2102).

References

- Allen, F. H., Kennard, O., Waston, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
- Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.

- Fukami, H., Imajo, S., Ito, A., Kakutani, S., Shibata, H., Sumida, M., Tanaka, T., Niwata, S., Saitoh, M., Kiso, Y., Miyazaki, M., Okunishi, H., Urata, H. & Arakawa, K. (2000). Drug Des. Discov. 17, 69–84.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

 $\mu = 0.26 \text{ mm}^{-1}$

 $0.30 \times 0.30 \times 0.20$ mm

11047 measured reflections

2285 independent reflections

2045 reflections with $I > 2\sigma(I)$

T = 293 K

 $R_{\rm int} = 0.029$

supporting information

Acta Cryst. (2013). E69, o725 [https://doi.org/10.1107/S1600536813009410] 4-Methylanilinium 4-hydroxybenzenesulfonate

J. V. Jovita, S. Sathya, G. Usha, R. Vasanthi and P. Sagayaraj

S1. Comment

The stucture of the title compound, (I), is shown in Figure 1. Bond lengh and angles are within the standard values (Allen *et al.*, 1987). In the crystal the phenolsulfonate units are joined together through O4-H4···O3 hydrogen bonds, forming chains along the *c* crystallographic axis. These chains are subsequently linked together through N-H···O interactions involving the 4-methylanilium units. First, giving rise to a two-dimensional network parallel to *bc* plane, through interactions involving two of the three hydrogens of the ammonium moiety: N1-H1A···O2 and N1-H1C···O1 and finally generating a three-dimensional network through the use of the third hydrogen atom bonded to the nitrogen: N1-H1B···O4 (Table 1 and Figure 2).

S2. Experimental

The 4-MAPS compound was synthesized by the reaction of equimolar mixture of 4-methyl aniline and phenolsulfonic acid. To a saturated solution of 4-methyl aniline in acetone, phenolsulfonic acid was slowly added at room temperature. The solution was stirred for six hours to get an homogeneous solution, filtered and kept for slow evaporation at room temperature. After that a saturated solution of 4-MAPS was prepared by using methanol at room temperature. The prepared solution was kept to constant temperature in water bath at 30° C to avoid the effect of fluctuation in room temperature. An slow evaporation process was allowed for a period of 15 days. The grown crystals of an approximate size of $12 \times 9 \times 2$ mm3 were harvested and re-crystallized to grow pure crystals for further studies.

S3. Refinement

H atoms were positioned geometrically and treated as riding on their parent atoms, with C—H distance of 0.93 - 0.96 Å, N—H distance of 0.89 Å, O—H distance of 0.82 Å and $U_{iso}(H) = 1.2Ueq(N \text{ and } C_{aromatic})$ and $U_{iso}(H) = 1.5Ueq(C_{methyl})$

The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.

Figure 2

A view of the the packing of the the title compound. Dashed lines indicate hydrogen bonds.

4-Methylanilinium 4-hydroxybenzenesulfonate

Crystal data

$C_7H_{10}N^+ \cdot C_6H_5O_4S^-$ $M_r = 281.32$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 11.6450 (2) Å b = 7.1670 (1) Å c = 16.3080 (3) Å $\beta = 107.654$ (1)° V = 1296.96 (4) Å ³ Z = 4	F(000) = 592 $D_x = 1.441 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 5614 reflections $\theta = 2.8-29.4^{\circ}$ $\mu = 0.26 \text{ mm}^{-1}$ T = 293 K Block, colourless $0.30 \times 0.30 \times 0.20 \text{ mm}$
Data collection	
Bruker Kappa APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω and φ scan Absorption correction: multi-scan	11047 measured reflections 2285 independent reflections 2045 reflections with $I > 2\sigma(I)$ $R_{int} = 0.029$ $\theta_{max} = 25.0^{\circ}, \theta_{min} = 2.6^{\circ}$ $h = -13 \rightarrow 13$
(SADABS; Bruker, 2004) $T_{min} = 0.926, T_{max} = 0.950$	$k = -8 \rightarrow 8$ $l = -19 \rightarrow 19$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.030$	H-atom parameters constrained
$wR(F^2) = 0.091$	$w = 1/[\sigma^2(F_o^2) + (0.0467P)^2 + 0.4532P]$
S = 1.06	where $P = (F_o^2 + 2F_c^2)/3$
2285 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
175 parameters	$\Delta ho_{ m max} = 0.24 \ { m e} \ { m \AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.29 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Secondary atom site location: difference Fourier map	Extinction coefficient: 0.0070 (12)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.65813 (14)	0.2000 (2)	0.30612 (10)	0.0311 (4)
C2	0.54731 (14)	0.1192 (2)	0.26762 (10)	0.0375 (4)
H2	0.5057	0.0616	0.3011	0.045*
C3	0.49842 (14)	0.1242 (2)	0.17924 (10)	0.0391 (4)
Н3	0.4240	0.0688	0.1532	0.047*
C4	0.55951 (14)	0.2109 (2)	0.12920 (10)	0.0328 (4)
C5	0.67033 (15)	0.2933 (2)	0.16791 (11)	0.0365 (4)
Н5	0.7116	0.3521	0.1345	0.044*
C6	0.71913 (14)	0.2878 (2)	0.25594 (10)	0.0355 (4)
H6	0.7935	0.3432	0.2820	0.043*
C7	0.91246 (16)	-0.3025 (2)	0.27651 (11)	0.0420 (4)
C8	0.79646 (16)	-0.2324 (3)	0.24420 (12)	0.0455 (4)
H8	0.7542	-0.2001	0.2822	0.055*
C9	0.74260 (15)	-0.2096 (2)	0.15731 (12)	0.0423 (4)
Н9	0.6646	-0.1628	0.1367	0.051*
C10	0.80527 (14)	-0.2568 (2)	0.10108 (11)	0.0353 (4)
C11	0.92034 (15)	-0.3268 (2)	0.13049 (12)	0.0432 (4)
H11	0.9623	-0.3581	0.0922	0.052*
C12	0.97244 (15)	-0.3499 (3)	0.21799 (12)	0.0450 (4)
H12	1.0500	-0.3986	0.2382	0.054*
C13	0.9715 (2)	-0.3262 (3)	0.37143 (13)	0.0614 (6)
H13A	0.9581	-0.2166	0.4011	0.092*
H13B	1.0565	-0.3446	0.3825	0.092*

H13C	0.9377	-0.4327	0.3914	0.092*	
N1	0.74899 (13)	-0.2321 (2)	0.00829 (9)	0.0424 (4)	
H1A	0.7692	-0.1211	-0.0076	0.064*	
H1B	0.6692	-0.2387	-0.0039	0.064*	
H1C	0.7743	-0.3214	-0.0200	0.064*	
01	0.82148 (11)	0.05029 (17)	0.43307 (7)	0.0458 (3)	
O2	0.77002 (13)	0.37156 (18)	0.44678 (8)	0.0559 (4)	
03	0.63246 (11)	0.1221 (2)	0.45415 (8)	0.0526 (4)	
04	0.50641 (11)	0.21139 (18)	0.04252 (7)	0.0450 (3)	
H4	0.5499	0.2661	0.0192	0.068*	
S 1	0.72587 (4)	0.18720 (6)	0.41863 (2)	0.03519 (16)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0357 (8)	0.0251 (8)	0.0341 (8)	0.0030 (6)	0.0128 (7)	-0.0003 (6)
C2	0.0401 (9)	0.0344 (9)	0.0402 (9)	-0.0053 (7)	0.0156 (7)	0.0051 (7)
C3	0.0354 (8)	0.0381 (9)	0.0416 (9)	-0.0091 (7)	0.0084 (7)	0.0018 (7)
C4	0.0377 (8)	0.0283 (8)	0.0332 (8)	0.0027 (6)	0.0119 (7)	-0.0009 (6)
C5	0.0384 (9)	0.0356 (9)	0.0404 (9)	-0.0032 (7)	0.0193 (7)	0.0013 (7)
C6	0.0329 (8)	0.0336 (9)	0.0405 (9)	-0.0048 (7)	0.0119 (7)	-0.0026 (7)
C7	0.0459 (9)	0.0283 (9)	0.0484 (10)	-0.0016 (7)	0.0093 (8)	-0.0028 (7)
C8	0.0492 (10)	0.0398 (10)	0.0502 (10)	0.0040 (8)	0.0192 (8)	-0.0065 (8)
C9	0.0358 (9)	0.0345 (9)	0.0548 (11)	0.0065 (7)	0.0108 (8)	-0.0039 (8)
C10	0.0376 (8)	0.0243 (8)	0.0429 (9)	-0.0023 (7)	0.0105 (7)	-0.0014 (7)
C11	0.0404 (9)	0.0381 (9)	0.0542 (11)	0.0022 (7)	0.0191 (8)	-0.0033 (8)
C12	0.0349 (9)	0.0372 (9)	0.0589 (11)	0.0045 (7)	0.0079 (8)	0.0003 (8)
C13	0.0728 (14)	0.0525 (12)	0.0495 (12)	0.0006 (10)	0.0045 (10)	-0.0017 (9)
N1	0.0475 (8)	0.0328 (8)	0.0455 (8)	-0.0036 (6)	0.0119 (7)	0.0014 (6)
01	0.0507 (7)	0.0420 (7)	0.0437 (7)	0.0128 (6)	0.0126 (5)	0.0063 (5)
O2	0.0760 (9)	0.0356 (7)	0.0452 (7)	-0.0002 (7)	0.0020 (6)	-0.0077 (6)
O3	0.0587 (8)	0.0666 (9)	0.0394 (7)	0.0015 (7)	0.0252 (6)	0.0000 (6)
O4	0.0464 (7)	0.0555 (8)	0.0325 (6)	-0.0069 (6)	0.0110 (5)	-0.0001 (5)
S 1	0.0436 (3)	0.0304 (2)	0.0315 (2)	0.00412 (16)	0.01122 (17)	-0.00084 (15)

Geometric parameters (Å, °)

C1—C2	1.380 (2)	C9—C10	1.376 (2)	
C1—C6	1.386 (2)	С9—Н9	0.9300	
C1—S1	1.7662 (16)	C10-C11	1.374 (2)	
C2—C3	1.380 (2)	C10—N1	1.466 (2)	
С2—Н2	0.9300	C11—C12	1.381 (3)	
C3—C4	1.382 (2)	C11—H11	0.9300	
С3—Н3	0.9300	C12—H12	0.9300	
C4—O4	1.3603 (19)	C13—H13A	0.9600	
C4—C5	1.385 (2)	C13—H13B	0.9600	
C5—C6	1.375 (2)	C13—H13C	0.9600	
С5—Н5	0.9300	N1—H1A	0.8900	

supporting information

С6—Н6	0.9300	N1—H1B	0.8900
C7—C12	1.385 (3)	N1—H1C	0.8900
C7—C8	1 387 (2)	01-81	1 4487 (12)
C7 $C13$	1.507(2)	02 S1	1.1107(12) 1.4414(13)
C^{R}	1.301(3)	02-51	1.4414(13)
	1.374 (3)	03-51	1.4556 (15)
С8—Н8	0.9300	04—H4	0.8200
C2—C1—C6	119.85 (15)	C11—C10—N1	119.19 (15)
C2—C1—S1	120.82 (12)	C9—C10—N1	119.79 (15)
C6—C1—S1	119.30 (12)	C10-C11-C12	118.74 (16)
C1—C2—C3	119.81 (15)	C10-C11-H11	120.6
C1—C2—H2	120.1	C12—C11—H11	120.6
C3—C2—H2	120.1	C11—C12—C7	121.83 (16)
$C_{2}-C_{3}-C_{4}$	120 32 (15)	C11—C12—H12	119.1
$C_2 - C_3 - H_3$	119.8	$C7_{12}_{112}_{112}$	119.1
$C_2 = C_3 = H_3$	110.8	$C7 C12 H12 \wedge$	100.5
C4 = C3 = HS	117.0	C7 C12 U12D	109.5
04-04-03	117.48 (14)	C/—CI3—HI3B	109.5
O4—C4—C5	122.66 (14)	H13A—C13—H13B	109.5
C3—C4—C5	119.85 (15)	C7—C13—H13C	109.5
C6—C5—C4	119.78 (15)	H13A—C13—H13C	109.5
С6—С5—Н5	120.1	H13B—C13—H13C	109.5
С4—С5—Н5	120.1	C10—N1—H1A	109.5
C5—C6—C1	120.38 (14)	C10—N1—H1B	109.5
С5—С6—Н6	119.8	H1A—N1—H1B	109.5
C1—C6—H6	119.8	C10-N1-H1C	109.5
C_{12} C_{7} C_{8}	117.63 (17)	$H1A_N1_H1C$	109.5
$C_{12} = C_7 = C_0^2$	117.03(17) 120.01(17)	HIA NI HIC	109.5
$C_{12} - C_{12} - C_{13}$	120.91(17)		109.5
	121.46 (17)	C4—O4—H4	109.5
C9—C8—C7	121.47 (17)	02-81-01	112.76 (8)
С9—С8—Н8	119.3	O2—S1—O3	113.86 (8)
С7—С8—Н8	119.3	01—S1—O3	110.38 (8)
C8—C9—C10	119.31 (16)	O2—S1—C1	106.67 (7)
С8—С9—Н9	120.3	O1—S1—C1	106.46 (7)
С10—С9—Н9	120.3	O3—S1—C1	106.13 (7)
C11—C10—C9	121.02 (16)		
C6-C1-C2-C3	0.8(2)	C8—C9—C10—C11	0.3(3)
S1 C1 C2 C3	-177.26(13)	$C_8 = C_9 = C_{10} = N_1$	-179.65(15)
S1 - C1 - C2 - C3	-0.5(2)	$C_{0} = C_{10} = C_{10} = C_{11}$	1/9.05(13)
C1 = C2 = C3 = C4	-0.3(2)	C9-C10-C11-C12	0.2(3)
	-1/9.85 (15)		-1/9.88 (15)
$C_2 - C_3 - C_4 - C_5$	0.0 (2)	C10—C11—C12—C7	-0.7(3)
O4—C4—C5—C6	-179.95 (14)	C8—C7—C12—C11	0.8 (3)
C3—C4—C5—C6	0.2 (2)	C13—C7—C12—C11	-179.14 (17)
C4—C5—C6—C1	0.1 (2)	C2-C1-S1-O2	-134.51 (14)
C2-C1-C6-C5	-0.6 (2)	C6—C1—S1—O2	47.42 (14)
S1—C1—C6—C5	177.49 (12)	C2-C1-S1-O1	104.85 (14)
C12—C7—C8—C9	-0.3 (3)	C6-C1-S1-O1	-73.21 (14)
C13—C7—C8—C9	179.63 (17)	C2—C1—S1—O3	-12.76 (15)

supporting information

<u>C7—C8—C9—C10</u>	-0.2 (3)	C6—C1—S1—O3	16	9.17 (13)
Hydrogen-bond geometry (Å, °)				
D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
N1—H1 <i>C</i> ···O1 ⁱ	0.89	1.96	2.8367 (19)	169
N1—H1 <i>B</i> ····O4 ⁱⁱ	0.89	1.96	2.839 (2)	170
N1—H1A····O2 ⁱⁱⁱ	0.89	1.94	2.8091 (19)	166
O4—H4···O3 ⁱⁱⁱ	0.82	1.82	2.6343 (17)	173

Symmetry codes: (i) *x*, -*y*-1/2, *z*-1/2; (ii) -*x*+1, -*y*, -*z*; (iii) *x*, -*y*+1/2, *z*-1/2.