supplementary materials


lr2102 scheme

Acta Cryst. (2013). E69, o725    [ doi:10.1107/S1600536813009410 ]

4-Methylanilinium 4-hydroxybenzenesulfonate

J. V. Jovita, S. Sathya, G. Usha, R. Vasanthi and P. Sagayaraj

Abstract top

In the crystal of the title molecular salt, C7H10N+·C6H5O4S-, the benzenesulfonate units are linked through phenol-sulfonate O-H...O hydrogen bonds, forming chains along the c-axis direction. These chains are linked via N-H...O hydrogen bonds involving two of the three H atoms of the ammonium group of the 4-methylanilium cation, giving rise to two-dimensional networks parallel to the bc plane which are further connected through an additional N-H...O interaction in which the third ammonium H atom is involved, generating a three-dimensional network.

Comment top

The stucture of the title compound, (I), is shown in Figure 1. Bond lengh and angles are within the standard values (Allen et al., 1987). In the crystal the phenolsulfonate units are joined together through O4-H4···O3 hydrogen bonds, forming chains along the c crystallographic axis. These chains are subsequently linked together through N-H···O interactions involving the 4-methylanilium units. First, giving rise to a two-dimensional network parallel to bc plane, through interactions involving two of the three hydrogens of the ammonium moiety: N1-H1A···O2 and N1-H1C···O1 and finally generating a three-dimensional network through the use of the third hydrogen atom bonded to the nitrogen: N1-H1B···O4 (Table 1 and Figure 2).

Related literature top

For the biological activity of related compounds, see: Fukami et al. (2000). For standard bond lengths, see: Allen et al. (1987).

Experimental top

The 4-MAPS compound was synthesized by the reaction of equimolar mixture of 4-methyl aniline and phenolsulfonic acid. To a saturated solution of 4-methyl aniline in acetone, phenolsulfonic acid was slowly added at room temperature. The solution was stirred for six hours to get an homogeneous solution, filtered and kept for slow evaporation at room temperature. After that a saturated solution of 4-MAPS was prepared by using methanol at room temperature. The prepared solution was kept to constant temperature in water bath at 30° C to avoid the effect of fluctuation in room temperature. An slow evaporation process was allowed for a period of 15 days. The grown crystals of an approximate size of 12 x 9 x 2 mm3 were harvested and re-crystallized to grow pure crystals for further studies.

Refinement top

H atoms were positioned geometrically and treated as riding on their parent atoms, with C—H distance of 0.93 - 0.96 Å, N—H distance of 0.89 Å, O—H distance of 0.82 Å and Uiso(H) = 1.2Ueq(N and Caromatic) and Uiso(H) = 1.5Ueq( Cmethyl)

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. A view of the the packing of the the title compound. Dashed lines indicate hydrogen bonds.
4-Methylanilinium 4-hydroxybenzenesulfonate top
Crystal data top
C7H10N+·C6H5O4SF(000) = 592
Mr = 281.32Dx = 1.441 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5614 reflections
a = 11.6450 (2) Åθ = 2.8–29.4°
b = 7.1670 (1) ŵ = 0.26 mm1
c = 16.3080 (3) ÅT = 293 K
β = 107.654 (1)°Block, colourless
V = 1296.96 (4) Å30.30 × 0.30 × 0.20 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2285 independent reflections
Radiation source: fine-focus sealed tube2045 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω and φ scanθmax = 25.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1313
Tmin = 0.926, Tmax = 0.950k = 88
11047 measured reflectionsl = 1919
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.091 w = 1/[σ2(Fo2) + (0.0467P)2 + 0.4532P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2285 reflectionsΔρmax = 0.24 e Å3
175 parametersΔρmin = 0.29 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0070 (12)
Crystal data top
C7H10N+·C6H5O4SV = 1296.96 (4) Å3
Mr = 281.32Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.6450 (2) ŵ = 0.26 mm1
b = 7.1670 (1) ÅT = 293 K
c = 16.3080 (3) Å0.30 × 0.30 × 0.20 mm
β = 107.654 (1)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2285 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2045 reflections with I > 2σ(I)
Tmin = 0.926, Tmax = 0.950Rint = 0.029
11047 measured reflectionsθmax = 25.0°
Refinement top
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.091Δρmax = 0.24 e Å3
S = 1.06Δρmin = 0.29 e Å3
2285 reflectionsAbsolute structure: ?
175 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.65813 (14)0.2000 (2)0.30612 (10)0.0311 (4)
C20.54731 (14)0.1192 (2)0.26762 (10)0.0375 (4)
H20.50570.06160.30110.045*
C30.49842 (14)0.1242 (2)0.17924 (10)0.0391 (4)
H30.42400.06880.15320.047*
C40.55951 (14)0.2109 (2)0.12920 (10)0.0328 (4)
C50.67033 (15)0.2933 (2)0.16791 (11)0.0365 (4)
H50.71160.35210.13450.044*
C60.71913 (14)0.2878 (2)0.25594 (10)0.0355 (4)
H60.79350.34320.28200.043*
C70.91246 (16)0.3025 (2)0.27651 (11)0.0420 (4)
C80.79646 (16)0.2324 (3)0.24420 (12)0.0455 (4)
H80.75420.20010.28220.055*
C90.74260 (15)0.2096 (2)0.15731 (12)0.0423 (4)
H90.66460.16280.13670.051*
C100.80527 (14)0.2568 (2)0.10108 (11)0.0353 (4)
C110.92034 (15)0.3268 (2)0.13049 (12)0.0432 (4)
H110.96230.35810.09220.052*
C120.97244 (15)0.3499 (3)0.21799 (12)0.0450 (4)
H121.05000.39860.23820.054*
C130.9715 (2)0.3262 (3)0.37143 (13)0.0614 (6)
H13A0.95810.21660.40110.092*
H13B1.05650.34460.38250.092*
H13C0.93770.43270.39140.092*
N10.74899 (13)0.2321 (2)0.00829 (9)0.0424 (4)
H1A0.76920.12110.00760.064*
H1B0.66920.23870.00390.064*
H1C0.77430.32140.02000.064*
O10.82148 (11)0.05029 (17)0.43307 (7)0.0458 (3)
O20.77002 (13)0.37156 (18)0.44678 (8)0.0559 (4)
O30.63246 (11)0.1221 (2)0.45415 (8)0.0526 (4)
O40.50641 (11)0.21139 (18)0.04252 (7)0.0450 (3)
H40.54990.26610.01920.068*
S10.72587 (4)0.18720 (6)0.41863 (2)0.03519 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0357 (8)0.0251 (8)0.0341 (8)0.0030 (6)0.0128 (7)0.0003 (6)
C20.0401 (9)0.0344 (9)0.0402 (9)0.0053 (7)0.0156 (7)0.0051 (7)
C30.0354 (8)0.0381 (9)0.0416 (9)0.0091 (7)0.0084 (7)0.0018 (7)
C40.0377 (8)0.0283 (8)0.0332 (8)0.0027 (6)0.0119 (7)0.0009 (6)
C50.0384 (9)0.0356 (9)0.0404 (9)0.0032 (7)0.0193 (7)0.0013 (7)
C60.0329 (8)0.0336 (9)0.0405 (9)0.0048 (7)0.0119 (7)0.0026 (7)
C70.0459 (9)0.0283 (9)0.0484 (10)0.0016 (7)0.0093 (8)0.0028 (7)
C80.0492 (10)0.0398 (10)0.0502 (10)0.0040 (8)0.0192 (8)0.0065 (8)
C90.0358 (9)0.0345 (9)0.0548 (11)0.0065 (7)0.0108 (8)0.0039 (8)
C100.0376 (8)0.0243 (8)0.0429 (9)0.0023 (7)0.0105 (7)0.0014 (7)
C110.0404 (9)0.0381 (9)0.0542 (11)0.0022 (7)0.0191 (8)0.0033 (8)
C120.0349 (9)0.0372 (9)0.0589 (11)0.0045 (7)0.0079 (8)0.0003 (8)
C130.0728 (14)0.0525 (12)0.0495 (12)0.0006 (10)0.0045 (10)0.0017 (9)
N10.0475 (8)0.0328 (8)0.0455 (8)0.0036 (6)0.0119 (7)0.0014 (6)
O10.0507 (7)0.0420 (7)0.0437 (7)0.0128 (6)0.0126 (5)0.0063 (5)
O20.0760 (9)0.0356 (7)0.0452 (7)0.0002 (7)0.0020 (6)0.0077 (6)
O30.0587 (8)0.0666 (9)0.0394 (7)0.0015 (7)0.0252 (6)0.0000 (6)
O40.0464 (7)0.0555 (8)0.0325 (6)0.0069 (6)0.0110 (5)0.0001 (5)
S10.0436 (3)0.0304 (2)0.0315 (2)0.00412 (16)0.01122 (17)0.00084 (15)
Geometric parameters (Å, º) top
C1—C21.380 (2)C9—C101.376 (2)
C1—C61.386 (2)C9—H90.9300
C1—S11.7662 (16)C10—C111.374 (2)
C2—C31.380 (2)C10—N11.466 (2)
C2—H20.9300C11—C121.381 (3)
C3—C41.382 (2)C11—H110.9300
C3—H30.9300C12—H120.9300
C4—O41.3603 (19)C13—H13A0.9600
C4—C51.385 (2)C13—H13B0.9600
C5—C61.375 (2)C13—H13C0.9600
C5—H50.9300N1—H1A0.8900
C6—H60.9300N1—H1B0.8900
C7—C121.385 (3)N1—H1C0.8900
C7—C81.387 (2)O1—S11.4487 (12)
C7—C131.501 (3)O2—S11.4414 (13)
C8—C91.374 (3)O3—S11.4556 (13)
C8—H80.9300O4—H40.8200
C2—C1—C6119.85 (15)C11—C10—N1119.19 (15)
C2—C1—S1120.82 (12)C9—C10—N1119.79 (15)
C6—C1—S1119.30 (12)C10—C11—C12118.74 (16)
C1—C2—C3119.81 (15)C10—C11—H11120.6
C1—C2—H2120.1C12—C11—H11120.6
C3—C2—H2120.1C11—C12—C7121.83 (16)
C2—C3—C4120.32 (15)C11—C12—H12119.1
C2—C3—H3119.8C7—C12—H12119.1
C4—C3—H3119.8C7—C13—H13A109.5
O4—C4—C3117.48 (14)C7—C13—H13B109.5
O4—C4—C5122.66 (14)H13A—C13—H13B109.5
C3—C4—C5119.85 (15)C7—C13—H13C109.5
C6—C5—C4119.78 (15)H13A—C13—H13C109.5
C6—C5—H5120.1H13B—C13—H13C109.5
C4—C5—H5120.1C10—N1—H1A109.5
C5—C6—C1120.38 (14)C10—N1—H1B109.5
C5—C6—H6119.8H1A—N1—H1B109.5
C1—C6—H6119.8C10—N1—H1C109.5
C12—C7—C8117.63 (17)H1A—N1—H1C109.5
C12—C7—C13120.91 (17)H1B—N1—H1C109.5
C8—C7—C13121.46 (17)C4—O4—H4109.5
C9—C8—C7121.47 (17)O2—S1—O1112.76 (8)
C9—C8—H8119.3O2—S1—O3113.86 (8)
C7—C8—H8119.3O1—S1—O3110.38 (8)
C8—C9—C10119.31 (16)O2—S1—C1106.67 (7)
C8—C9—H9120.3O1—S1—C1106.46 (7)
C10—C9—H9120.3O3—S1—C1106.13 (7)
C11—C10—C9121.02 (16)
C6—C1—C2—C30.8 (2)C8—C9—C10—C110.3 (3)
S1—C1—C2—C3177.26 (13)C8—C9—C10—N1179.65 (15)
C1—C2—C3—C40.5 (2)C9—C10—C11—C120.2 (3)
C2—C3—C4—O4179.85 (15)N1—C10—C11—C12179.88 (15)
C2—C3—C4—C50.0 (2)C10—C11—C12—C70.7 (3)
O4—C4—C5—C6179.95 (14)C8—C7—C12—C110.8 (3)
C3—C4—C5—C60.2 (2)C13—C7—C12—C11179.14 (17)
C4—C5—C6—C10.1 (2)C2—C1—S1—O2134.51 (14)
C2—C1—C6—C50.6 (2)C6—C1—S1—O247.42 (14)
S1—C1—C6—C5177.49 (12)C2—C1—S1—O1104.85 (14)
C12—C7—C8—C90.3 (3)C6—C1—S1—O173.21 (14)
C13—C7—C8—C9179.63 (17)C2—C1—S1—O312.76 (15)
C7—C8—C9—C100.2 (3)C6—C1—S1—O3169.17 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O1i0.891.962.8367 (19)169
N1—H1B···O4ii0.891.962.839 (2)170
N1—H1A···O2iii0.891.942.8091 (19)166
O4—H4···O3iii0.821.822.6343 (17)173
Symmetry codes: (i) x, y1/2, z1/2; (ii) x+1, y, z; (iii) x, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O1i0.891.962.8367 (19)169.0
N1—H1B···O4ii0.891.962.839 (2)169.5
N1—H1A···O2iii0.891.942.8091 (19)165.7
O4—H4···O3iii0.821.822.6343 (17)172.5
Symmetry codes: (i) x, y1/2, z1/2; (ii) x+1, y, z; (iii) x, y+1/2, z1/2.
Acknowledgements top

The authors thank Professor D. Velmurugan, Centre for Advanced Study in Crystallography and Biophysics, University of Madras, for providing data collection and computer facilities.

references
References top

Allen, F. H., Kennard, O., Waston, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.

Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Fukami, H., Imajo, S., Ito, A., Kakutani, S., Shibata, H., Sumida, M., Tanaka, T., Niwata, S., Saitoh, M., Kiso, Y., Miyazaki, M., Okunishi, H., Urata, H. & Arakawa, K. (2000). Drug Des. Discov. 17, 69–84.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.