

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

N-(2-Methyl-3-oxo-1,3-diphenylpropyl)-acetamide

Deli Yang, Daxin Shi, Qi Zhang, Hongxin Chai and Jiarong Li*

School of Chemical Engineering and Environment, Beijing Institute of Technology, Beijing 100081, People's Republic of China Correspondence e-mail: jrli@bit.edu.cn

Received 12 January 2013; accepted 17 March 2013

Key indicators: single-crystal X-ray study; T = 153 K; mean σ (C–C) = 0.004 Å; R factor = 0.070; wR factor = 0.156; data-to-parameter ratio = 15.4.

In the title compound, $C_{18}H_{19}NO_2$, the dihedral angle between the benzene rings is 42.0 (1)°. In the crystal, molecules are linked by N-H···O and C-H··· π interactions.

Related literature

For the biological properties of *N*-(2-methyl-3-oxo-1,3diphenylpropyl)acetamide derivatives, see: Barluenga *et al.* (1993); Casimir *et al.* (1995) and for their synthesis, see: Dakin & West (1928); Selvam & Perumal (2009); Heravi *et al.* (2009).

Experimental

Crystal data

$C_{18}H_{19}NO_2$
$M_r = 281.34$
Monoclinic, P21/d
a = 9.156 (5) Å
<i>b</i> = 17.668 (8) Å
c = 10.103 (5) Å
$\beta = 107.914~(7)^{\circ}$

 $V = 1555.0 (13) \text{ Å}^{3}$ Z = 4Mo K\alpha radiation $\mu = 0.08 \text{ mm}^{-1}$ T = 153 K $0.61 \times 0.07 \times 0.02 \text{ mm}$ 12600 measured reflections

 $R_{\rm int} = 0.050$

refinement $\Delta \rho_{\text{max}} = 0.22 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.24 \text{ e } \text{\AA}^{-3}$

3028 independent reflections

2386 reflections with $I > 2\sigma(I)$

H atoms treated by a mixture of

independent and constrained

Data collection

```
Rigaku AFC10/Saturn724+
diffractometer
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2008)
T_{\rm min} = 0.954, T_{\rm max} = 0.998
```

Refinement

Table 1

 $R[F^2 > 2\sigma(F^2)] = 0.070$ $wR(F^2) = 0.156$ S = 1.003028 reflections 197 parameters

Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C10–C15 and C1–C6 benzene rings, respectively.

		5	<i>D</i> II <i>I</i> I
.94 (3)	1.98 (3)	2.874 (3)	158 (2)
.95	2.85 (1)	3.649 (3)	142 (1)
.98	2.98 (1)	3.472 (3)	112 (1)
	.94 (3) .95 .98	.94 (3) 1.98 (3) .95 2.85 (1) .98 2.98 (1)	.94 (3) 1.98 (3) 2.874 (3) .95 2.85 (1) 3.649 (3) .98 2.98 (1) 3.472 (3)

Data collection: *CrystalClear* (Rigaku, 2008); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *CrystalStructure* (Rigaku/MSC, 2009); software used to prepare material for publication: *CrystalStructure*.

The authors thank Beijing Institute of Technology for the X-ray diffraction analysis.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LX2279).

References

- Barluenga, J., Viado, A., Aguilar, E., Fustero, S. & Olano, B. (1993). J. Org. Chem. 58, 5972–5975.
- Casimir, J. R., Turetta, C., Ettouati, L. & Pairs, J. (1995). *Tetrahedron Lett.* 36, 4797–4800.
- Dakin, H. D. & West, R. (1928). J. Biol. Chem. 78, 745-756.
- Heravi, M. M., Behbahani, F. K., Daraie, M. & Oskooie, H. A. (2009). Mol. Divers. 13, 375–378.
- Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2009). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.
- Selvam, P. & Perumal, P. (2009). Arkivoc, x, 265-282.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2013). E69, o633 [https://doi.org/10.1107/S1600536813007320]

N-(2-Methyl-3-oxo-1,3-diphenylpropyl)acetamide

Deli Yang, Daxin Shi, Qi Zhang, Hongxin Chai and Jiarong Li

S1. Comment

N–(2–methyl–3–oxo–1,3–diphenylpropyl)acetamide is a class of 2–acetamino carbonyl compounds which exhibit great importance of biological (Casimir *et al.*, 1995) and pharmacological (Barluenga *et al.*, 1993) properties. Here, we report the crystal structure of the title compound. In the title molecule (Fig. 1), the dihedral angle formed by the benzene rings is 42.0°, and the methyl and the acetamide groups have an anti–conformation. In the crystal structure (Fig. 2), molecules are connected by N–H…O and C–H… π interactions (Table 1, Cg1 and Cg2 are the centroids of the C10–C15 benzene ring and the C1–C6 benzene ring, respectively).

S2. Experimental

A solution of benzaldehyde (2 mmol) and propiophenone (2 mmol) in the presence of acetyl chloride and $TiCl_4$ was stirred in acetonitrile (5 ml) at room teperature for 3 h. The reaction mixture was poured to room temperature and then filtered to give the title compound. The product was recrystallizated from petrolum ether and ethyl acetate to give white crystalline powder. m.p. 439–441 K.

S3. Refinement

C—H were included in the riding model approximation with C—H distances 0.95–1.00 Å, and with $U_{iso}(H)=1.2U_{eq}(C)$ or $1.5U_{eq}(C)$ (methyl). Freely refined H atoms of NH group were located in difference Fourrier maps with N—H distances 0.94 Å with $U_{iso}(H)=1.5U_{eq}(N)$.

Figure 1

The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2

A view of N—H···O and C—H··· π interactions. (dotted lines) in the crystal structure of the title compound. H atoms non–participating in hydrogen–bonding were omitted for clarity. [Symmetry codes: (i) x, -y + 3/2, z - 1/2; (ii) -x + 1, -y + 1, -z + 1; (iii) x, -y + 3/2, z + 1/2.]

N-(2-Methyl-3-oxo-1,3-diphenylpropyl)acetamide

Crystal data

C₁₈H₁₉NO₂ $M_r = 281.34$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 9.156 (5) Å b = 17.668 (8) Å c = 10.103 (5) Å $\beta = 107.914$ (7)° V = 1555.0 (13) Å³ Z = 4

Data collection

Rigaku AFC10/Saturn724+ diffractometer Radiation source: Rotating Anode Graphite monochromator Detector resolution: 28.5714 pixels mm⁻¹ phi and ω scans Absorption correction: multi-scan (*CrystalClear*; Rigaku, 2008) $T_{\min} = 0.954, T_{\max} = 0.998$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.070$ $wR(F^2) = 0.156$ S = 1.003028 reflections 197 parameters 0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map F(000) = 600 $D_x = 1.202 \text{ Mg m}^{-3}$ Melting point = 439–441 K Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3372 reflections $\theta = 2.3-29.0^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ T = 153 KPrism, colorless $0.61 \times 0.07 \times 0.02 \text{ mm}$

12600 measured reflections 3028 independent reflections 2386 reflections with $I > 2\sigma(I)$ $R_{int} = 0.050$ $\theta_{max} = 26.0^\circ, \theta_{min} = 2.3^\circ$ $h = -11 \rightarrow 11$ $k = -20 \rightarrow 21$ $l = -12 \rightarrow 12$

Hydrogen site location: difference Fourier map H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0511P)^2 + 1.630P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.22$ e Å⁻³ $\Delta\rho_{min} = -0.24$ e Å⁻³ Extinction correction: *SHELXL97* (Sheldrick, 2008), Fc*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.014 (2)

Special details

Experimental. Spectral data: IR (KBr): 3297, 3061, 2980, 1683, 1651, 1544, 1448, 1370, 1208, 1140, 970, 707, 615 cm⁻¹; ¹H–NMR(DMSO,p.p.m.):1.13 (3*H*, d, J = 6.8 Hz C₁H₃), 1.85 (3*H*, s, C₁O₁C₁H₃), 4.00–4.14 (1*H*, m, C₁H₁), 5.26 (1*H*, t, J = 11.6 Hz, C₁H₁), 7.12 (1*H*, t, J = 6.8 Hz, Benzene-H), 7.22 (2*H*, t, J = 8.0 Hz, Benzene-H), 7.29 (2*H*, d, J = 7.6 Hz, Benzene-H), 7.47 (2*H*, t, J = 8.0 Hz, Benzene-H), 7.58 (1*H*, t, J = 6.8 Hz, Benzene-H), 7.80 (2*H*, t, J = 7.6 Hz, Benzene-H), 8.30 (1*H*, d, J = 9.2 Hz, NH); ESI-MS m/z: $[M+Na]^+$ 304.2.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
01	0.2368 (2)	0.56897 (11)	0.6152 (2)	0.0553 (6)
O2	0.13769 (19)	0.74116 (10)	0.76594 (17)	0.0390 (4)
N1	0.1849 (2)	0.74059 (11)	0.5589 (2)	0.0305 (5)
C1	0.2662 (3)	0.55877 (14)	0.2653 (3)	0.0401 (6)
H1	0.3342	0.5998	0.2680	0.048*
C2	0.2150 (3)	0.51473 (15)	0.1457 (3)	0.0483 (7)
H2	0.2490	0.5252	0.0677	0.058*
C3	0.1143 (3)	0.45551 (16)	0.1410 (3)	0.0535 (8)
H3	0.0791	0.4255	0.0593	0.064*
C4	0.0646 (3)	0.43978 (15)	0.2540 (3)	0.0520 (8)
H4	-0.0055	0.3995	0.2497	0.062*
C5	0.1172 (3)	0.48288 (15)	0.3731 (3)	0.0456 (7)
Н5	0.0841	0.4714	0.4512	0.055*
C6	0.2190 (3)	0.54355 (13)	0.3808 (3)	0.0373 (6)
C7	0.2732 (3)	0.58798 (14)	0.5128 (3)	0.0384 (6)
C8	0.3799 (3)	0.65579 (13)	0.5217 (2)	0.0324 (5)
H8	0.3626	0.6769	0.4263	0.039*
C9	0.3469 (3)	0.71774 (13)	0.6157 (2)	0.0317 (5)
Н9	0.3627	0.6956	0.7101	0.038*
C10	0.4548 (3)	0.78490 (13)	0.6304 (2)	0.0327 (5)
C11	0.4362 (3)	0.83580 (13)	0.5211 (3)	0.0369 (6)
H11	0.3546	0.8289	0.4372	0.044*
C12	0.5363 (3)	0.89691 (15)	0.5338 (3)	0.0444 (7)
H12	0.5236	0.9308	0.4580	0.053*
C13	0.6541 (3)	0.90834 (16)	0.6565 (3)	0.0472 (7)
H13	0.7209	0.9505	0.6656	0.057*
C14	0.6741 (3)	0.85819 (16)	0.7654 (3)	0.0470 (7)
H14	0.7551	0.8657	0.8495	0.056*
C15	0.5756 (3)	0.79640 (15)	0.7523 (3)	0.0400 (6)
H15	0.5910	0.7618	0.8273	0.048*
C16	0.5456 (3)	0.62634 (15)	0.5778 (3)	0.0439 (6)
H16A	0.5626	0.6044	0.6704	0.053*
H16B	0.6174	0.6683	0.5838	0.053*
H16C	0.5626	0.5875	0.5148	0.053*
C17	0.0921 (3)	0.74884 (12)	0.6372 (2)	0.0304 (5)
C18	-0.0729 (3)	0.76761 (16)	0.5617 (3)	0.0443 (7)
H18A	-0.1391	0.7270	0.5764	0.053*
H18B	-0.0867	0.7728	0.4621	0.053*
H18C	-0.1003	0.8153	0.5976	0.053*
H1N	0.143 (3)	0.7487 (15)	0.463 (3)	0.045 (8)*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
01	0.0705 (14)	0.0501 (12)	0.0574 (12)	-0.0110 (10)	0.0374 (11)	0.0049 (9)

supporting information

O2	0.0429 (10)	0.0491 (11)	0.0273 (9)	-0.0032 (8)	0.0144 (7)	-0.0034 (7)
N1	0.0310 (10)	0.0378 (11)	0.0252 (10)	0.0059 (8)	0.0122 (8)	0.0044 (8)
C1	0.0411 (14)	0.0314 (13)	0.0484 (15)	-0.0016 (11)	0.0149 (12)	-0.0001 (11)
C2	0.0540 (16)	0.0398 (15)	0.0507 (17)	0.0019 (13)	0.0157 (14)	-0.0025 (12)
C3	0.0512 (16)	0.0361 (15)	0.065 (2)	-0.0022 (13)	0.0063 (15)	-0.0054 (13)
C4	0.0422 (15)	0.0315 (14)	0.078 (2)	-0.0072 (12)	0.0126 (15)	0.0000 (13)
C5	0.0415 (15)	0.0352 (14)	0.0650 (19)	0.0015 (11)	0.0236 (14)	0.0066 (12)
C6	0.0362 (13)	0.0276 (12)	0.0517 (15)	0.0044 (10)	0.0190 (12)	0.0039 (10)
C7	0.0386 (13)	0.0340 (13)	0.0480 (15)	0.0036 (11)	0.0216 (12)	0.0056 (11)
C8	0.0364 (12)	0.0302 (12)	0.0347 (12)	0.0023 (10)	0.0172 (10)	0.0055 (9)
C9	0.0321 (12)	0.0359 (13)	0.0291 (12)	0.0045 (10)	0.0121 (10)	0.0036 (9)
C10	0.0336 (12)	0.0361 (13)	0.0319 (12)	0.0035 (10)	0.0151 (10)	-0.0036 (10)
C11	0.0459 (14)	0.0335 (13)	0.0340 (13)	-0.0012 (11)	0.0163 (11)	-0.0043 (10)
C12	0.0546 (16)	0.0338 (14)	0.0499 (16)	-0.0018 (12)	0.0235 (14)	-0.0036 (11)
C13	0.0499 (16)	0.0396 (15)	0.0576 (17)	-0.0069 (12)	0.0245 (14)	-0.0101 (13)
C14	0.0425 (15)	0.0511 (17)	0.0470 (16)	-0.0064 (13)	0.0132 (12)	-0.0118 (13)
C15	0.0383 (13)	0.0471 (15)	0.0357 (13)	0.0031 (11)	0.0131 (11)	-0.0022 (11)
C16	0.0406 (14)	0.0395 (14)	0.0545 (17)	0.0083 (12)	0.0190 (13)	0.0072 (12)
C17	0.0347 (12)	0.0273 (11)	0.0312 (12)	-0.0021 (9)	0.0129 (10)	-0.0013 (9)
C18	0.0363 (13)	0.0554 (17)	0.0446 (15)	0.0087 (12)	0.0172 (12)	0.0066 (12)

Geometric parameters (Å, °)

01—C7	1.227 (3)	C9—C10	1.522 (3)
O2—C17	1.245 (3)	С9—Н9	1.0000
N1—C17	1.336 (3)	C10—C11	1.393 (3)
N1—C9	1.473 (3)	C10—C15	1.394 (3)
N1—H1N	0.94 (3)	C11—C12	1.396 (4)
C1—C6	1.390 (3)	C11—H11	0.9500
C1—C2	1.392 (4)	C12—C13	1.385 (4)
C1—H1	0.9500	C12—H12	0.9500
С2—С3	1.386 (4)	C13—C14	1.380 (4)
С2—Н2	0.9500	C13—H13	0.9500
C3—C4	1.381 (4)	C14—C15	1.396 (4)
С3—Н3	0.9500	C14—H14	0.9500
C4—C5	1.380 (4)	C15—H15	0.9500
C4—H4	0.9500	C16—H16A	0.9800
C5—C6	1.407 (3)	C16—H16B	0.9800
С5—Н5	0.9500	C16—H16C	0.9800
C6—C7	1.494 (4)	C17—C18	1.505 (3)
С7—С8	1.531 (3)	C18—H18A	0.9800
C8—C16	1.538 (3)	C18—H18B	0.9800
С8—С9	1.538 (3)	C18—H18C	0.9800
С8—Н8	1.0000		
C17 N1 C0	122.2 (2)		100.2
CI/-NI-C9	123.2 (2)	C8—C9—H9	108.2
CI/—NI—HIN	117.8 (16)	C11—C10—C15	118.4 (2)
C9—N1—H1N	119.0 (16)	C11—C10—C9	120.5 (2)

C6—C1—C2	120.8 (3)	C15—C10—C9	121.0 (2)
C6—C1—H1	119.6	C10-C11-C12	120.6 (2)
C2—C1—H1	119.6	C10-C11-H11	119.7
C3—C2—C1	119.6 (3)	C12—C11—H11	119.7
C3—C2—H2	120.2	C13-C12-C11	120.2 (3)
C1 - C2 - H2	120.2	C_{13} $-C_{12}$ $-H_{12}$	119.9
C4-C3-C2	120.2	C_{11} C_{12} H_{12}	119.9
C4-C3-H3	110 7	C14-C13-C12	119.9 119.7(3)
$C_{2} - C_{3} - H_{3}$	119.7	C14 $C13$ $C12$ $C14$ $C13$ $H13$	120.2
$C_2 C_3 H_3$	119.7	C_{12} C_{13} H_{13}	120.2
$C_5 = C_4 = C_5$	120.2	C_{12} C_{13} C_{14} C_{15}	120.2 120.2(3)
$C_3 = C_4 = H_4$	120.2	$C_{13} = C_{14} = C_{13}$	120.2 (3)
C_{3}	120.2 121 1 (2)	C15 - C14 - H14	119.9
C4 - C5 - U5	121.1 (5)	C13 - C14 - H14	119.9
С4—С5—Н5	119.4	C10 - C15 - C14	120.8 (5)
C6C5H5	119.4	C10-C15-H15	119.6
CI = C6 = C5	118.2 (2)		119.6
CIC6C/	123.0 (2)	C8—C16—H16A	109.5
C5—C6—C7	118.9 (2)	C8—C16—H16B	109.5
O1—C7—C6	120.4 (2)	H16A—C16—H16B	109.5
O1—C7—C8	119.9 (2)	C8—C16—H16C	109.5
C6—C7—C8	119.6 (2)	H16A—C16—H16C	109.5
C7—C8—C16	107.2 (2)	H16B—C16—H16C	109.5
C7—C8—C9	110.49 (19)	O2—C17—N1	122.5 (2)
C16—C8—C9	111.9 (2)	O2—C17—C18	121.0 (2)
С7—С8—Н8	109.1	N1-C17-C18	116.5 (2)
C16—C8—H8	109.1	C17—C18—H18A	109.5
С9—С8—Н8	109.1	C17—C18—H18B	109.5
N1-C9-C10	111.73 (19)	H18A—C18—H18B	109.5
N1—C9—C8	108.67 (19)	C17—C18—H18C	109.5
C10—C9—C8	111.73 (18)	H18A—C18—H18C	109.5
N1—C9—H9	108.2	H18B—C18—H18C	109.5
С10—С9—Н9	108.2		
C6—C1—C2—C3	0.8(4)	C7—C8—C9—N1	-58.1(2)
C1—C2—C3—C4	-0.1(4)	C16—C8—C9—N1	-177.54(19)
C2—C3—C4—C5	-0.8(4)	C7—C8—C9—C10	178.12 (19)
C3-C4-C5-C6	1.0 (4)	C16—C8—C9—C10	58.7 (3)
$C^{2}-C^{1}-C^{6}-C^{5}$	-0.5(4)	N1-C9-C10-C11	-47.8(3)
$C_{2}^{-}C_{1}^{-}C_{6}^{-}C_{7}^{-}$	178.6(2)	C8-C9-C10-C11	74 1 (3)
C_{4} C_{5} C_{6} C_{1}	-0.4(4)	N1 - C9 - C10 - C15	1331(2)
C4-C5-C6-C7	-1795(2)	C_{8} C_{9} C_{10} C_{15}	-1049(2)
C1 - C6 - C7 - 01	-174.8(2)	C_{15} C_{10} C_{11} C_{12}	-0.1(3)
C_{5} C_{6} C_{7} O_{1}	43(4)	C9-C10-C11-C12	-1792(2)
$C_{1} - C_{6} - C_{7} - C_{8}$		C10-C11-C12-C13	-11(4)
$C_{1} = C_{0} = C_{1} = C_{0}$	-1780(2)	$C_{11} = C_{12} = C_{13} = C_{14}$	1.1(+) 1.2(A)
01 - 07 - 08 - 016	86.0 (3)	C12 - C13 - C14 C12 - C13 - C14	-0.3(4)
$C_{1} - C_{1} - C_{0} - C_{10}$	-016(3)	$C_{12} = C_{13} = C_{14} = C_{13}$	10.3(4)
$C_0 - C_7 - C_0 - C_{10}$	-91.0(3)	C11 - C10 - C13 - C14	1.0(4)
UI-U/-U8-U9	-30.1 (3)	UY-UIU-UI3-UI4	-1/9.9 (Z)

supporting information

С6—С7—С8—С9	146.2 (2)	C13—C14—C15—C10	-0.9 (4)
C17—N1—C9—C10	-102.4 (2)	C9—N1—C17—O2	3.4 (3)
C17—N1—C9—C8	133.9 (2)	C9—N1—C17—C18	-176.2 (2)

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C10–C15 and C1–C6 benzene rings, respectively.

D—H···A	D—H	H…A	D····A	<i>D</i> —H··· <i>A</i>
N1—H1 <i>N</i> ····O2 ⁱ	0.94 (3)	1.98 (3)	2.874 (3)	158 (2)
$C1$ — $H1$ ··· $Cg1^i$	0.95	2.85 (1)	3.649 (3)	142 (1)
C16—H16 A ···Cg2 ⁱⁱ	0.98	2.98 (1)	3.472 (3)	112 (1)

Symmetry codes: (i) x, -y+3/2, z-1/2; (ii) -x+1, y+3/2, -z+3/2.