supplementary materials


nc2308 scheme

Acta Cryst. (2013). E69, o674    [ doi:10.1107/S1600536813008672 ]

4-(1H-Pyrrolo[2,3-b]pyridin-2-yl)pyridine

P.-H. Huang, Y.-S. Wen and J.-Y. Shen

Abstract top

The asymmetric unit of the title compound, C12H9N3, contains two independent molecules in which the dihedral angle between the pyridine and azaindole rings are 8.23 (6) and 9.89 (2)°. In the crystal, both types of molecule are connected by pairs of N-H-N hydrogen bonds into inversion dimers.

Comment top

The title compound has been shown to be an precursor for the production of luminescent organic compound (Liu et al., 2000). In the crystal structure of the title compound two crystallographically independent molecules are found which shows no large structural differences. Both molecules are nearly coplanar, the dihedral angles between the pyridine and the azaindole rings is 8.23 (6)° and 9.89 (2)° (Huang et al., 2012). Each of these molecules is connected into centrosymmetrically dimers by intermolecular N—H—N hydrogen bonding.

Related literature top

For the production of luminescent organic compounds, see: Liu et al. (2000); Parcerisa et al. (2008). For related structures, see: Huang et al. (2012).

Experimental top

The compound was synthesized by the following procedure (Parcerisa et al., 2008). A solution of [3-(2-hydroxy-2-pyridin-4-yl-ethyl)-pyridin-2-yl]-carbamic acid tert-butyl ester (1 mmol and acetonitrile (12 ml) was cooled to ice temperature. Afterwards triethylamine (1.2 mmol) and trifluoromethanesulfonic anhydride (1.1 mmol) was added over a period of 5 min. The mixture was stirred at room temperature for 2 h, trifluoroacetic acid was added (1.5 mmol) and afterwards the mixture was heated under reflux for 1 h. The mixture was cooled to room temperature and neutralized using 2 N NaOH. The aqueous layer was extracted with ethyl ether and the organic extract was washed with brine and aqueous Na2SO4, dried and concentrated. The residue was purified by column chromatography using hexane/ethyl acetate (2:8) as eluent, followed by recrystallization in CH2Cl2 and hexane to give a white solid in 64% yield. Crystals suitable for X-ray diffraction were grown from a CH2Cl2 solution layered with hexane at room temperature. 1H NMR (CDCl3, 300 MHz): 8.62 (dd, 2 H, J= 1.0, 3.1 Hz), 8.29 (dd, 1 H, J= 1.0, 3.4 Hz), 8.00 (dd, 1 H, J = 1.0, 5.3 Hz), 7.72 (dd, 2 H, J = 1.0, 3.1 Hz), 7.13 (dd, 1 H, J= 3.4, 5.3 Hz), 6.99 (s, 1 H), Anal. Calcd for C12H9N3: C, 73.83; H, 4.65; N, 21.52. Found: C, 74.21; H, 4.40; N, 21.34.

Refinement top

H atoms were located in difference map but were positioned with idealized geometry and refined isotropic with Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with labeling and displacement ellipsoids drawn at the 30% probability level. H atoms are shown as small spheres of arbitrary radii.
4-(1H-Pyrrolo[2,3-b]pyridin-2-yl)pyridine top
Crystal data top
C12H9N3Z = 4
Mr = 195.22F(000) = 408
Triclinic, P1Dx = 1.368 Mg m3
Dm = 1.368 Mg m3
Dm measured by not measured
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.5529 (5) ÅCell parameters from 1585 reflections
b = 10.0457 (8) Åθ = 2.6–23.3°
c = 14.5282 (11) ŵ = 0.09 mm1
α = 83.372 (2)°T = 295 K
β = 86.697 (2)°Plate, colorless
γ = 87.427 (2)°0.30 × 0.20 × 0.05 mm
V = 947.69 (13) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3329 independent reflections
Radiation source: fine-focus sealed tube2573 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ω scansθmax = 25.0°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 77
Tmin = 0.975, Tmax = 0.996k = 1111
10193 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0442P)2 + 0.126P]
where P = (Fo2 + 2Fc2)/3
3329 reflections(Δ/σ)max < 0.001
271 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C12H9N3γ = 87.427 (2)°
Mr = 195.22V = 947.69 (13) Å3
Triclinic, P1Z = 4
a = 6.5529 (5) ÅMo Kα radiation
b = 10.0457 (8) ŵ = 0.09 mm1
c = 14.5282 (11) ÅT = 295 K
α = 83.372 (2)°0.30 × 0.20 × 0.05 mm
β = 86.697 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3329 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2573 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.996Rint = 0.034
10193 measured reflectionsθmax = 25.0°
Refinement top
R[F2 > 2σ(F2)] = 0.058H-atom parameters constrained
wR(F2) = 0.124Δρmax = 0.14 e Å3
S = 1.14Δρmin = 0.17 e Å3
3329 reflectionsAbsolute structure: ?
271 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.2449 (3)0.99700 (17)0.92427 (12)0.0443 (5)
H10.17871.05680.95320.053*
N20.0037 (3)0.82637 (19)0.94609 (13)0.0523 (5)
N30.7664 (4)1.3698 (2)0.86462 (16)0.0704 (6)
N40.7252 (3)0.97632 (17)0.57580 (12)0.0452 (5)
H4A0.66511.04370.54500.054*
N50.4869 (3)0.80868 (19)0.55706 (13)0.0524 (5)
N61.2240 (4)1.3404 (2)0.62691 (16)0.0710 (6)
C10.4379 (3)1.0098 (2)0.88094 (14)0.0423 (5)
C20.4911 (3)0.8951 (2)0.84219 (15)0.0493 (6)
H20.61310.87800.80890.059*
C30.3285 (3)0.8067 (2)0.86152 (15)0.0435 (5)
C40.2881 (4)0.6784 (2)0.84216 (16)0.0548 (6)
H40.38260.62900.80830.066*
C50.1035 (4)0.6273 (2)0.87473 (17)0.0576 (7)
H50.07130.54180.86300.069*
C60.0344 (4)0.7025 (2)0.92484 (17)0.0589 (7)
H60.15800.66440.94540.071*
C70.1773 (3)0.8734 (2)0.91330 (14)0.0416 (5)
C80.5755 (5)1.3615 (3)0.90108 (19)0.0712 (8)
H80.51401.43760.92320.085*
C90.4636 (4)1.2481 (2)0.90816 (18)0.0603 (7)
H90.33011.24930.93370.072*
C100.5497 (3)1.1326 (2)0.87731 (14)0.0445 (5)
C110.7495 (4)1.1396 (2)0.84044 (16)0.0561 (6)
H110.81621.06440.81930.067*
C120.8479 (4)1.2578 (3)0.83527 (18)0.0678 (7)
H120.98111.25970.80940.081*
C130.9063 (3)0.9796 (2)0.61960 (14)0.0424 (5)
C140.9524 (3)0.8542 (2)0.66219 (15)0.0485 (6)
H141.06560.82930.69690.058*
C150.7970 (3)0.7688 (2)0.64396 (14)0.0436 (5)
C160.7536 (4)0.6348 (2)0.66723 (16)0.0554 (6)
H160.83950.57710.70350.066*
C170.5792 (4)0.5904 (2)0.63473 (17)0.0573 (6)
H170.54540.50120.64860.069*
C180.4535 (4)0.6788 (2)0.58133 (17)0.0557 (6)
H180.33660.64500.56070.067*
C190.6574 (3)0.8490 (2)0.58945 (14)0.0415 (5)
C201.0412 (5)1.3402 (3)0.59264 (18)0.0692 (8)
H200.98181.42250.57010.083*
C210.9327 (4)1.2275 (2)0.58795 (16)0.0566 (6)
H210.80441.23500.56310.068*
C221.0152 (3)1.1027 (2)0.62031 (14)0.0444 (5)
C231.2075 (4)1.1013 (2)0.65608 (17)0.0559 (6)
H231.27121.02050.67870.067*
C241.3034 (4)1.2199 (3)0.65792 (18)0.0672 (7)
H241.43191.21590.68240.081*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0419 (10)0.0413 (11)0.0508 (11)0.0013 (8)0.0011 (9)0.0113 (8)
N20.0454 (11)0.0507 (12)0.0623 (13)0.0102 (9)0.0003 (9)0.0112 (9)
N30.0765 (16)0.0626 (16)0.0714 (15)0.0247 (13)0.0063 (12)0.0053 (12)
N40.0435 (11)0.0392 (11)0.0524 (11)0.0022 (8)0.0088 (9)0.0003 (8)
N50.0511 (12)0.0480 (12)0.0583 (12)0.0112 (9)0.0108 (9)0.0003 (9)
N60.0781 (17)0.0669 (16)0.0707 (15)0.0277 (13)0.0007 (13)0.0125 (12)
C10.0354 (12)0.0475 (14)0.0435 (13)0.0009 (10)0.0020 (10)0.0034 (10)
C20.0432 (13)0.0539 (15)0.0498 (14)0.0005 (11)0.0038 (11)0.0054 (11)
C30.0457 (13)0.0409 (13)0.0441 (13)0.0020 (10)0.0037 (10)0.0057 (10)
C40.0627 (16)0.0474 (15)0.0542 (15)0.0029 (12)0.0004 (12)0.0089 (11)
C50.0703 (17)0.0414 (14)0.0629 (16)0.0094 (12)0.0066 (13)0.0096 (11)
C60.0570 (15)0.0540 (16)0.0674 (17)0.0163 (12)0.0014 (13)0.0095 (13)
C70.0408 (12)0.0412 (13)0.0439 (13)0.0038 (10)0.0064 (10)0.0062 (10)
C80.080 (2)0.0510 (17)0.083 (2)0.0045 (14)0.0019 (16)0.0076 (14)
C90.0568 (15)0.0499 (16)0.0747 (18)0.0087 (12)0.0038 (13)0.0109 (13)
C100.0477 (13)0.0461 (14)0.0394 (12)0.0052 (10)0.0064 (10)0.0002 (10)
C110.0500 (14)0.0573 (16)0.0607 (16)0.0104 (12)0.0045 (12)0.0049 (12)
C120.0593 (17)0.076 (2)0.0665 (18)0.0216 (15)0.0066 (13)0.0018 (15)
C130.0394 (12)0.0457 (14)0.0423 (12)0.0011 (10)0.0029 (10)0.0059 (10)
C140.0448 (13)0.0499 (15)0.0509 (14)0.0019 (11)0.0111 (11)0.0034 (11)
C150.0465 (13)0.0395 (13)0.0439 (13)0.0006 (10)0.0027 (10)0.0016 (10)
C160.0632 (16)0.0461 (15)0.0559 (15)0.0016 (12)0.0070 (12)0.0009 (11)
C170.0707 (17)0.0407 (14)0.0604 (16)0.0123 (12)0.0045 (13)0.0010 (11)
C180.0556 (15)0.0524 (16)0.0595 (15)0.0157 (12)0.0078 (12)0.0004 (12)
C190.0431 (12)0.0385 (13)0.0429 (12)0.0062 (10)0.0006 (10)0.0040 (9)
C200.087 (2)0.0538 (17)0.0668 (18)0.0156 (15)0.0081 (16)0.0007 (13)
C210.0595 (15)0.0505 (15)0.0601 (16)0.0079 (12)0.0115 (12)0.0013 (12)
C220.0440 (13)0.0497 (14)0.0403 (13)0.0053 (10)0.0007 (10)0.0083 (10)
C230.0494 (14)0.0582 (16)0.0618 (16)0.0072 (12)0.0079 (12)0.0093 (12)
C240.0570 (16)0.082 (2)0.0658 (18)0.0206 (15)0.0063 (13)0.0156 (15)
Geometric parameters (Å, º) top
N1—C71.366 (2)C8—H80.9300
N1—C11.384 (2)C9—C101.378 (3)
N1—H10.8600C9—H90.9300
N2—C71.338 (3)C10—C111.387 (3)
N2—C61.343 (3)C11—C121.368 (3)
N3—C121.329 (3)C11—H110.9300
N3—C81.332 (3)C12—H120.9300
N4—C191.362 (3)C13—C141.367 (3)
N4—C131.382 (2)C13—C221.457 (3)
N4—H4A0.8600C14—C151.416 (3)
N5—C191.334 (3)C14—H140.9300
N5—C181.336 (3)C15—C161.388 (3)
N6—C201.324 (3)C15—C191.408 (3)
N6—C241.336 (3)C16—C171.373 (3)
C1—C21.362 (3)C16—H160.9300
C1—C101.457 (3)C17—C181.384 (3)
C2—C31.413 (3)C17—H170.9300
C2—H20.9300C18—H180.9300
C3—C41.390 (3)C20—C211.374 (3)
C3—C71.403 (3)C20—H200.9300
C4—C51.373 (3)C21—C221.384 (3)
C4—H40.9300C21—H210.9300
C5—C61.381 (3)C22—C231.390 (3)
C5—H50.9300C23—C241.375 (3)
C6—H60.9300C23—H230.9300
C8—C91.373 (3)C24—H240.9300
C7—N1—C1108.49 (17)C12—C11—H11120.1
C7—N1—H1125.8C10—C11—H11120.1
C1—N1—H1125.8N3—C12—C11124.5 (3)
C7—N2—C6113.4 (2)N3—C12—H12117.7
C12—N3—C8115.3 (2)C11—C12—H12117.7
C19—N4—C13108.82 (17)C14—C13—N4108.76 (19)
C19—N4—H4A125.6C14—C13—C22128.8 (2)
C13—N4—H4A125.6N4—C13—C22122.39 (19)
C19—N5—C18113.62 (19)C13—C14—C15107.79 (19)
C20—N6—C24115.3 (2)C13—C14—H14126.1
C2—C1—N1108.75 (19)C15—C14—H14126.1
C2—C1—C10129.1 (2)C16—C15—C19117.3 (2)
N1—C1—C10122.06 (19)C16—C15—C14136.3 (2)
C1—C2—C3108.01 (19)C19—C15—C14106.40 (18)
C1—C2—H2126.0C17—C16—C15117.6 (2)
C3—C2—H2126.0C17—C16—H16121.2
C4—C3—C7117.2 (2)C15—C16—H16121.2
C4—C3—C2136.3 (2)C16—C17—C18119.9 (2)
C7—C3—C2106.46 (19)C16—C17—H17120.0
C5—C4—C3117.6 (2)C18—C17—H17120.0
C5—C4—H4121.2N5—C18—C17125.2 (2)
C3—C4—H4121.2N5—C18—H18117.4
C4—C5—C6120.1 (2)C17—C18—H18117.4
C4—C5—H5119.9N5—C19—N4125.41 (19)
C6—C5—H5119.9N5—C19—C15126.4 (2)
N2—C6—C5125.0 (2)N4—C19—C15108.23 (18)
N2—C6—H6117.5N6—C20—C21124.8 (3)
C5—C6—H6117.5N6—C20—H20117.6
N2—C7—N1125.10 (19)C21—C20—H20117.6
N2—C7—C3126.6 (2)C20—C21—C22119.7 (2)
N1—C7—C3108.29 (18)C20—C21—H21120.2
N3—C8—C9124.4 (3)C22—C21—H21120.2
N3—C8—H8117.8C21—C22—C23116.1 (2)
C9—C8—H8117.8C21—C22—C13122.5 (2)
C8—C9—C10119.7 (2)C23—C22—C13121.3 (2)
C8—C9—H9120.1C24—C23—C22119.7 (2)
C10—C9—H9120.1C24—C23—H23120.1
C9—C10—C11116.3 (2)C22—C23—H23120.1
C9—C10—C1122.5 (2)N6—C24—C23124.3 (2)
C11—C10—C1121.1 (2)N6—C24—H24117.8
C12—C11—C10119.7 (2)C23—C24—H24117.8
C7—N1—C1—C20.5 (2)C19—N4—C13—C140.7 (2)
C7—N1—C1—C10177.80 (18)C19—N4—C13—C22178.17 (19)
N1—C1—C2—C30.2 (2)N4—C13—C14—C150.6 (2)
C10—C1—C2—C3177.3 (2)C22—C13—C14—C15177.8 (2)
C1—C2—C3—C4179.9 (2)C13—C14—C15—C16179.2 (3)
C1—C2—C3—C70.1 (2)C13—C14—C15—C190.3 (2)
C7—C3—C4—C50.3 (3)C19—C15—C16—C170.5 (3)
C2—C3—C4—C5179.7 (2)C14—C15—C16—C17179.3 (2)
C3—C4—C5—C60.0 (4)C15—C16—C17—C180.4 (4)
C7—N2—C6—C50.4 (3)C19—N5—C18—C170.0 (3)
C4—C5—C6—N20.3 (4)C16—C17—C18—N50.1 (4)
C6—N2—C7—N1179.2 (2)C18—N5—C19—N4179.1 (2)
C6—N2—C7—C30.1 (3)C18—N5—C19—C150.2 (3)
C1—N1—C7—N2179.9 (2)C13—N4—C19—N5180.0 (2)
C1—N1—C7—C30.5 (2)C13—N4—C19—C150.6 (2)
C4—C3—C7—N20.2 (3)C16—C15—C19—N50.5 (3)
C2—C3—C7—N2179.8 (2)C14—C15—C19—N5179.6 (2)
C4—C3—C7—N1179.60 (18)C16—C15—C19—N4178.96 (19)
C2—C3—C7—N10.4 (2)C14—C15—C19—N40.2 (2)
C12—N3—C8—C90.9 (4)C24—N6—C20—C210.4 (4)
N3—C8—C9—C100.8 (4)N6—C20—C21—C220.3 (4)
C8—C9—C10—C110.2 (4)C20—C21—C22—C230.1 (3)
C8—C9—C10—C1178.6 (2)C20—C21—C22—C13178.4 (2)
C2—C1—C10—C9170.0 (2)C14—C13—C22—C21168.3 (2)
N1—C1—C10—C96.7 (3)N4—C13—C22—C218.6 (3)
C2—C1—C10—C118.7 (4)C14—C13—C22—C2310.1 (3)
N1—C1—C10—C11174.5 (2)N4—C13—C22—C23173.0 (2)
C9—C10—C11—C120.9 (3)C21—C22—C23—C240.2 (3)
C1—C10—C11—C12177.9 (2)C13—C22—C23—C24178.2 (2)
C8—N3—C12—C110.0 (4)C20—N6—C24—C230.2 (4)
C10—C11—C12—N30.9 (4)C22—C23—C24—N60.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N2i0.862.223.061 (3)167
N4—H4A···N5ii0.862.223.066 (3)169
Symmetry codes: (i) x, y+2, z+2; (ii) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N2i0.862.223.061 (3)167.0
N4—H4A···N5ii0.862.223.066 (3)168.6
Symmetry codes: (i) x, y+2, z+2; (ii) x+1, y+2, z+1.
Acknowledgements top

This work is partially supported by the instrumentation center, National Taiwan University, and Cardinal Tien College of Healthcare & Management.

references
References top

Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Huang, P.-H., Wen, Y.-S. & Shen, J.-Y. (2012). Acta Cryst. E68, o1943.

Liu, S. F., Wu, Q., Schmider, H. L., Aziz, H., Hu, N. X., Popovic, Z. & Wang, S. (2000). J. Am. Chem. Soc. 122, 3671–3678.

Parcerisa, J., Romero, M. & Pujol, M. D. (2008). Tetrahedron, 64, 500–507.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.