organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(2,2-Di­chloro­acet­yl)-3-ethyl-2,6-di­phenyl­piperidin-4-one

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and bDepartment of Chemistry, Government Arts College (Autonomous), Coimbatore 641 018, India
*Correspondence e-mail: mnpsy2004@yahoo.com

(Received 30 March 2013; accepted 23 April 2013; online 27 April 2013)

The asymmetric unit of the title compound, C21H21Cl2NO2, contains two independent mol­ecules that show similar geometrical features. The piperidine ring adopts a distorted boat conformation. The phenyl rings substituted at the 2- and 6-positions of the piperidine ring are oriented at angles of 65.4 (1) [64.7 (2)°] and 89.2 (1)° [86.3 (2)°] with respect to the least-squares plane of the piperidine ring. In the crystal, adjacent mol­ecules are linked by a network of C—H⋯O inter­actions, forming a C(6) chain along the c-axis direction.

Related literature

For the biological activity of piperidine derivatives, see: Aridoss et al. (2009[Aridoss, G., Parthiban, P., Ramachandran, R., Prakash, M., Kabilan, S. & Jeong, Y. T. (2009). Eur. J. Med. Chem. 44, 577-592.]); Nalanishi et al. (1974[Nalanishi, M., Shiraki, M., Kobayakawa, T. & Kobayashi, R. (1974). Jpn Patent No. 74-3987.]); Michael (2001[Michael, J. P. (2001). The Alkaloids. Chemistry and Biology, edited by G. A. Cordell, Vol. 55, pp. 91-258. New York: Academic Press.]); Pinder (1992[Pinder, A. R. (1992). Nat. Prod. Rep. 9, 491-504.]); Rubiralta et al. (1991[Rubiralta, M., Giralt, E. & Diez, A. (1991). Piperidine: Structure, Preparation, Reactivity, and Synthetic Applications of Piperidine and its Derivatives. pp. 225-312. Amsterdam: Elsevier.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For asymmetry parameters, see: Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]).

[Scheme 1]

Experimental

Crystal data
  • C21H21Cl2NO2

  • Mr = 390.29

  • Monoclinic, P 21 /c

  • a = 17.4615 (13) Å

  • b = 19.0291 (15) Å

  • c = 11.9501 (9) Å

  • β = 91.825 (5)°

  • V = 3968.7 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 293 K

  • 0.22 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.928, Tmax = 0.940

  • 36640 measured reflections

  • 9905 independent reflections

  • 5029 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.175

  • S = 1.00

  • 9905 reflections

  • 471 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1i 0.98 2.49 3.435 (3) 161
C20′—H20F⋯O1ii 0.96 2.48 3.415 (4) 164
C6′—H6′⋯O2′iii 0.98 2.51 3.292 (3) 137
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Piperidine derivatives are the valued heterocyclic compounds in the field of medicinal chemistry. The compounds possessing an amide bond linkage have a wide range of biological activities such as antimicrobial, anti-inflammatory, antiviral, antimalarial and general anesthetics (Aridoss et al., 2009). Functionalized piperidines are familiar substructures found in biologically active natural products and synthetic pharmaceuticals (Michael, 2001; Pinder, 1992; Rubiralta et al., 1991). Piperidines have been found to exhibit blood cholesterol-lowering activities (Nalanishi et al., 1974). Against this background and to ascertain the molecular structure and conformation, crystallographic study of the title compound has been carried out.

The ORTEP plot of the molecule is shown in Fig. 1. The chloro substituted piperidine derivative crystallizes in monoclinic space group P21/c. The piperidine ring adopts distorted boat conformation with the puckering parameters (Cremer & Pople, 1975) and the asymmetry parameters (Nardelli, 1983) are: q2=0.651 (3) Å, q3 = -0.078 (3) Å, φ2 = 77.0 (2)° and Δs(C2 & C5)= 19.1 (2)°. The sum of the bond angles around N1 [359°] is in accordance with sp2 hybridization.

The planar phenyl rings [C7—C12 & C13—C18] substituted at 2,6-positions of the piperidine ring subtend angles of 65.4 (1)° [64.7 (2)°] & 89.2 (1)° [86.3 (2)°] in both the molecules with the best plane of the piperidine ring. The two phenyl rings are approximately perpendicular to each other with a dihedral angle of 86.5 (1)° [82.8 (2)°].

The dichloroacetyl groups substituted at the Nth-position of the piperidine ring are axial and equatorial orientation for the both molecules which can be seen from the torsion angles of [N1—C21—C22—Cl2=] 88.5 (2)° [-97.0 (2)°] & [N1—C21—C22—Cl1=] -150.5 (2)° [142.5 (2)°], respectively.

The crystal packing reveals that the symmetry related molecules are linked through a network of C—H···O type of intermolecular interactions.

Related literature top

For the biological activity of piperidine derivatives, see: Aridoss et al. (2009); Nalanishi et al. (1974); Michael (2001); Pinder (1992); Rubiralta et al. (1991). For puckering parameters, see: Cremer & Pople (1975). For asymmetry parameters, see: Nardelli (1983).

Experimental top

3-Ethyl-2,6-diphenylpiperidin-4-one (5 mmol) was dissolved in 60 ml of anhydrous benzene. To this solution, dichloroacetylchloride (20 mmol) and triethylamine (20 mmol) were added and the reaction mixture was allowed to stirr for 8 h. The course of the reaction was monitored by TLC. The organic layer was dried over anhydrous Na2SO4 and the resulting pasty mass was purified by recrystallization from ethyl acetate. Yield: 74%, Melting point: 140–142°C

Refinement top

N and C-bound H atoms were positioned geometrically (C–H = 0.93–0.98 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for all other H atoms.

Structure description top

Piperidine derivatives are the valued heterocyclic compounds in the field of medicinal chemistry. The compounds possessing an amide bond linkage have a wide range of biological activities such as antimicrobial, anti-inflammatory, antiviral, antimalarial and general anesthetics (Aridoss et al., 2009). Functionalized piperidines are familiar substructures found in biologically active natural products and synthetic pharmaceuticals (Michael, 2001; Pinder, 1992; Rubiralta et al., 1991). Piperidines have been found to exhibit blood cholesterol-lowering activities (Nalanishi et al., 1974). Against this background and to ascertain the molecular structure and conformation, crystallographic study of the title compound has been carried out.

The ORTEP plot of the molecule is shown in Fig. 1. The chloro substituted piperidine derivative crystallizes in monoclinic space group P21/c. The piperidine ring adopts distorted boat conformation with the puckering parameters (Cremer & Pople, 1975) and the asymmetry parameters (Nardelli, 1983) are: q2=0.651 (3) Å, q3 = -0.078 (3) Å, φ2 = 77.0 (2)° and Δs(C2 & C5)= 19.1 (2)°. The sum of the bond angles around N1 [359°] is in accordance with sp2 hybridization.

The planar phenyl rings [C7—C12 & C13—C18] substituted at 2,6-positions of the piperidine ring subtend angles of 65.4 (1)° [64.7 (2)°] & 89.2 (1)° [86.3 (2)°] in both the molecules with the best plane of the piperidine ring. The two phenyl rings are approximately perpendicular to each other with a dihedral angle of 86.5 (1)° [82.8 (2)°].

The dichloroacetyl groups substituted at the Nth-position of the piperidine ring are axial and equatorial orientation for the both molecules which can be seen from the torsion angles of [N1—C21—C22—Cl2=] 88.5 (2)° [-97.0 (2)°] & [N1—C21—C22—Cl1=] -150.5 (2)° [142.5 (2)°], respectively.

The crystal packing reveals that the symmetry related molecules are linked through a network of C—H···O type of intermolecular interactions.

For the biological activity of piperidine derivatives, see: Aridoss et al. (2009); Nalanishi et al. (1974); Michael (2001); Pinder (1992); Rubiralta et al. (1991). For puckering parameters, see: Cremer & Pople (1975). For asymmetry parameters, see: Nardelli (1983).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atomic numbering and displacement ellipsoids drawn at 50% probability level.
[Figure 2] Fig. 2. The crystal packing of the molecules. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity.
1-(2,2-Dichloroacetyl)-3-ethyl-2,6-diphenylpiperidin-4-one top
Crystal data top
C21H21Cl2NO2F(000) = 1632
Mr = 390.29Dx = 1.306 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5029 reflections
a = 17.4615 (13) Åθ = 1.2–28.5°
b = 19.0291 (15) ŵ = 0.34 mm1
c = 11.9501 (9) ÅT = 293 K
β = 91.825 (5)°Block, yellow
V = 3968.7 (5) Å30.22 × 0.20 × 0.18 mm
Z = 8
Data collection top
Bruker SMART APEXII CCD
diffractometer
9905 independent reflections
Radiation source: fine-focus sealed tube5029 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
ω and φ scansθmax = 28.5°, θmin = 1.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 2322
Tmin = 0.928, Tmax = 0.940k = 2525
36640 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.175H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0716P)2 + 1.3041P]
where P = (Fo2 + 2Fc2)/3
9905 reflections(Δ/σ)max = 0.001
471 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
C21H21Cl2NO2V = 3968.7 (5) Å3
Mr = 390.29Z = 8
Monoclinic, P21/cMo Kα radiation
a = 17.4615 (13) ŵ = 0.34 mm1
b = 19.0291 (15) ÅT = 293 K
c = 11.9501 (9) Å0.22 × 0.20 × 0.18 mm
β = 91.825 (5)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
9905 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
5029 reflections with I > 2σ(I)
Tmin = 0.928, Tmax = 0.940Rint = 0.058
36640 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.175H-atom parameters constrained
S = 1.00Δρmax = 0.40 e Å3
9905 reflectionsΔρmin = 0.44 e Å3
471 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C2'0.75368 (14)0.67575 (13)0.9369 (2)0.0483 (6)
H2'0.74820.70321.00550.058*
C20.56922 (13)0.31595 (12)0.33385 (18)0.0395 (5)
H20.56100.29150.26230.047*
C3'0.70448 (15)0.71253 (14)0.8467 (2)0.0547 (7)
H3'0.65050.70580.86380.066*
C30.53120 (14)0.27084 (12)0.42207 (19)0.0426 (5)
H30.47570.27220.40770.051*
C40.54816 (14)0.30054 (12)0.5380 (2)0.0445 (6)
C4'0.71760 (15)0.68289 (14)0.7315 (2)0.0548 (7)
C50.61719 (14)0.34645 (13)0.54913 (19)0.0465 (6)
H5A0.63650.34370.62600.056*
H5B0.60110.39460.53570.056*
C5'0.78880 (14)0.64026 (15)0.7192 (2)0.0522 (6)
H5'10.80290.64200.64140.063*
H5'20.77700.59170.73650.063*
C6'0.85851 (14)0.66251 (13)0.79195 (18)0.0448 (6)
H6'0.88050.70440.75770.054*
C60.68376 (13)0.33050 (12)0.47226 (18)0.0407 (5)
H60.70910.28750.49920.049*
C70.74120 (14)0.39014 (13)0.48152 (19)0.0445 (6)
C7'0.91814 (14)0.60476 (14)0.7896 (2)0.0500 (6)
C80.80352 (18)0.38388 (17)0.5544 (2)0.0701 (8)
H80.81200.34180.59240.084*
C8'0.97601 (17)0.60923 (18)0.7143 (3)0.0732 (9)
H8'0.97920.64860.66870.088*
C9'1.0291 (2)0.5564 (3)0.7056 (4)0.1019 (14)
H9'1.06790.56020.65430.122*
C90.8536 (2)0.4392 (2)0.5716 (3)0.0848 (10)
H90.89520.43410.62160.102*
C10'1.0252 (2)0.4985 (3)0.7719 (4)0.1046 (15)
H10'1.06110.46270.76570.126*
C100.84274 (19)0.50106 (19)0.5162 (3)0.0758 (9)
H100.87610.53860.52890.091*
C110.7828 (2)0.50713 (17)0.4426 (3)0.0823 (10)
H110.77580.54880.40290.099*
C11'0.9687 (3)0.4928 (2)0.8474 (3)0.1001 (13)
H11'0.96620.45340.89320.120*
C120.73198 (18)0.45266 (15)0.4252 (3)0.0693 (8)
H120.69080.45830.37470.083*
C12'0.9150 (2)0.54601 (17)0.8556 (3)0.0777 (9)
H12'0.87620.54180.90670.093*
C13'0.73454 (14)0.60042 (14)0.9668 (2)0.0508 (6)
C130.53655 (14)0.38928 (12)0.31778 (19)0.0432 (5)
C14'0.77351 (17)0.56980 (16)1.0579 (2)0.0634 (7)
H14'0.80750.59701.10080.076*
C140.57078 (15)0.43437 (14)0.2430 (2)0.0542 (6)
H140.61270.41890.20370.065*
C150.54368 (19)0.50191 (15)0.2260 (2)0.0667 (8)
H150.56770.53170.17640.080*
C15'0.76317 (19)0.50055 (18)1.0861 (3)0.0743 (9)
H15'0.79030.48141.14710.089*
C160.48117 (19)0.52479 (16)0.2825 (3)0.0698 (8)
H160.46340.57050.27250.084*
C16'0.7127 (2)0.45959 (18)1.0242 (3)0.0764 (9)
H16'0.70640.41231.04130.092*
C170.44518 (18)0.48050 (15)0.3530 (3)0.0685 (8)
H170.40170.49570.38890.082*
C17'0.6718 (2)0.48940 (19)0.9369 (3)0.0831 (10)
H17'0.63660.46230.89580.100*
C180.47247 (15)0.41297 (14)0.3722 (2)0.0539 (6)
H180.44780.38350.42170.065*
C18'0.68197 (17)0.55937 (17)0.9089 (3)0.0673 (8)
H18'0.65290.57880.85010.081*
C19'0.72176 (19)0.79250 (16)0.8463 (3)0.0743 (9)
H19A0.72290.80930.92300.089*
H19B0.77240.79970.81710.089*
C190.55729 (16)0.19375 (13)0.4187 (2)0.0510 (6)
H19C0.55880.17850.34140.061*
H19D0.60880.19020.45110.061*
C200.50454 (18)0.14531 (14)0.4820 (2)0.0640 (7)
H20A0.50510.15850.55950.096*
H20B0.52190.09770.47540.096*
H20C0.45330.14910.45090.096*
C20'0.6652 (2)0.83623 (19)0.7787 (3)0.0905 (11)
H20D0.66180.81890.70330.136*
H20E0.68200.88430.77830.136*
H20F0.61580.83340.81140.136*
C21'0.88364 (15)0.71449 (14)0.9815 (2)0.0545 (7)
C210.69852 (14)0.29727 (13)0.2715 (2)0.0438 (5)
C220.78180 (14)0.27937 (15)0.3034 (2)0.0562 (7)
H220.79850.30750.36850.067*
C22'0.96346 (16)0.73251 (16)0.9400 (2)0.0627 (8)
H22'0.97530.70220.87650.075*
N1'0.83558 (11)0.68196 (10)0.90685 (16)0.0430 (5)
N10.65366 (11)0.31767 (9)0.35573 (15)0.0389 (4)
O1'0.67356 (12)0.69236 (13)0.65272 (18)0.0795 (6)
O10.50727 (11)0.28989 (10)0.61640 (15)0.0603 (5)
O2'0.86636 (12)0.73129 (13)1.07511 (17)0.0803 (7)
O20.67618 (10)0.29028 (10)0.17464 (14)0.0577 (5)
Cl1'0.96162 (6)0.82083 (5)0.89659 (10)0.1063 (4)
Cl10.84132 (5)0.29718 (5)0.19055 (8)0.0855 (3)
Cl20.78382 (5)0.18921 (4)0.33926 (7)0.0781 (3)
Cl2'1.03240 (5)0.72012 (6)1.04814 (9)0.0994 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C2'0.0476 (14)0.0536 (16)0.0442 (13)0.0010 (11)0.0076 (10)0.0025 (11)
C20.0465 (13)0.0371 (13)0.0346 (12)0.0006 (10)0.0015 (9)0.0047 (9)
C3'0.0462 (15)0.0575 (17)0.0607 (16)0.0018 (12)0.0056 (11)0.0051 (13)
C30.0484 (14)0.0377 (13)0.0417 (13)0.0022 (10)0.0023 (10)0.0017 (10)
C40.0542 (15)0.0382 (13)0.0413 (13)0.0127 (11)0.0064 (10)0.0001 (10)
C4'0.0475 (15)0.0567 (17)0.0596 (17)0.0098 (12)0.0053 (12)0.0081 (13)
C50.0628 (16)0.0429 (14)0.0339 (12)0.0063 (12)0.0014 (10)0.0066 (10)
C5'0.0570 (16)0.0575 (17)0.0418 (13)0.0030 (13)0.0023 (11)0.0031 (12)
C6'0.0501 (14)0.0471 (14)0.0373 (12)0.0030 (11)0.0040 (10)0.0006 (10)
C60.0519 (14)0.0365 (13)0.0332 (11)0.0030 (10)0.0033 (9)0.0020 (9)
C70.0543 (15)0.0436 (14)0.0354 (12)0.0001 (11)0.0020 (10)0.0084 (10)
C7'0.0510 (15)0.0590 (17)0.0399 (13)0.0004 (12)0.0005 (10)0.0086 (12)
C80.083 (2)0.070 (2)0.0563 (17)0.0106 (17)0.0196 (15)0.0026 (15)
C8'0.0600 (18)0.082 (2)0.078 (2)0.0036 (16)0.0163 (15)0.0175 (17)
C9'0.065 (2)0.121 (4)0.122 (3)0.008 (2)0.020 (2)0.052 (3)
C90.082 (2)0.102 (3)0.069 (2)0.023 (2)0.0250 (17)0.013 (2)
C10'0.080 (3)0.107 (3)0.124 (4)0.041 (2)0.029 (2)0.057 (3)
C100.075 (2)0.065 (2)0.087 (2)0.0167 (17)0.0042 (18)0.0323 (19)
C110.085 (2)0.0466 (18)0.114 (3)0.0094 (17)0.013 (2)0.0011 (18)
C11'0.129 (3)0.083 (3)0.088 (3)0.046 (3)0.010 (2)0.007 (2)
C120.070 (2)0.0474 (17)0.089 (2)0.0043 (14)0.0236 (16)0.0057 (15)
C12'0.098 (2)0.073 (2)0.0621 (19)0.0297 (19)0.0124 (16)0.0063 (16)
C13'0.0490 (15)0.0573 (16)0.0468 (14)0.0031 (12)0.0101 (11)0.0041 (12)
C130.0514 (14)0.0401 (13)0.0374 (12)0.0008 (11)0.0079 (10)0.0011 (10)
C14'0.0730 (19)0.068 (2)0.0495 (16)0.0082 (15)0.0004 (13)0.0079 (14)
C140.0627 (17)0.0513 (16)0.0481 (14)0.0032 (13)0.0053 (12)0.0071 (12)
C150.088 (2)0.0491 (17)0.0618 (18)0.0020 (16)0.0123 (16)0.0153 (14)
C15'0.084 (2)0.079 (2)0.0598 (18)0.0006 (18)0.0047 (16)0.0254 (17)
C160.094 (2)0.0417 (16)0.072 (2)0.0169 (16)0.0134 (17)0.0017 (15)
C16'0.087 (2)0.066 (2)0.077 (2)0.0142 (18)0.0154 (18)0.0180 (17)
C170.080 (2)0.0495 (17)0.076 (2)0.0179 (15)0.0008 (16)0.0094 (15)
C17'0.090 (2)0.076 (2)0.083 (2)0.0334 (19)0.0022 (19)0.0125 (19)
C180.0626 (17)0.0456 (15)0.0536 (15)0.0053 (13)0.0018 (12)0.0013 (12)
C18'0.0635 (18)0.072 (2)0.0665 (18)0.0177 (16)0.0031 (14)0.0155 (16)
C19'0.078 (2)0.0592 (19)0.085 (2)0.0062 (16)0.0018 (17)0.0047 (17)
C190.0650 (17)0.0385 (14)0.0496 (15)0.0041 (12)0.0052 (12)0.0018 (11)
C200.083 (2)0.0454 (16)0.0637 (18)0.0069 (14)0.0018 (14)0.0047 (14)
C20'0.077 (2)0.076 (2)0.119 (3)0.0138 (18)0.008 (2)0.030 (2)
C21'0.0580 (16)0.0532 (16)0.0520 (15)0.0002 (13)0.0031 (12)0.0140 (13)
C210.0490 (14)0.0409 (13)0.0417 (13)0.0037 (11)0.0041 (10)0.0083 (10)
C220.0491 (15)0.0607 (18)0.0590 (16)0.0012 (13)0.0048 (12)0.0228 (13)
C22'0.0569 (17)0.0647 (19)0.0661 (18)0.0093 (14)0.0053 (13)0.0183 (14)
N1'0.0466 (11)0.0438 (12)0.0388 (10)0.0011 (9)0.0040 (8)0.0037 (9)
N10.0469 (11)0.0368 (11)0.0329 (10)0.0015 (8)0.0019 (8)0.0050 (8)
O1'0.0639 (13)0.1041 (18)0.0690 (14)0.0004 (12)0.0230 (10)0.0063 (12)
O10.0666 (12)0.0679 (13)0.0472 (10)0.0088 (9)0.0160 (9)0.0014 (9)
O2'0.0758 (14)0.1051 (18)0.0600 (13)0.0062 (12)0.0022 (10)0.0376 (12)
O20.0613 (11)0.0755 (13)0.0363 (10)0.0051 (9)0.0038 (8)0.0140 (9)
Cl1'0.1115 (8)0.0779 (6)0.1289 (9)0.0250 (5)0.0043 (6)0.0173 (6)
Cl10.0628 (5)0.0953 (6)0.1002 (6)0.0129 (4)0.0303 (4)0.0139 (5)
Cl20.0760 (5)0.0715 (5)0.0868 (6)0.0192 (4)0.0013 (4)0.0032 (4)
Cl2'0.0690 (6)0.1191 (8)0.1083 (7)0.0001 (5)0.0281 (5)0.0051 (6)
Geometric parameters (Å, º) top
C2'—N1'1.490 (3)C11'—H11'0.9300
C2'—C13'1.517 (4)C12—H120.9300
C2'—C3'1.527 (4)C12'—H12'0.9300
C2'—H2'0.9800C13'—C18'1.375 (4)
C2—N11.489 (3)C13'—C14'1.393 (4)
C2—C131.517 (3)C13—C181.387 (3)
C2—C31.528 (3)C13—C141.388 (3)
C2—H20.9800C14'—C15'1.374 (4)
C3'—C4'1.512 (4)C14'—H14'0.9300
C3'—C19'1.551 (4)C14—C151.382 (4)
C3'—H3'0.9800C14—H140.9300
C3—C41.516 (3)C15—C161.372 (4)
C3—C191.537 (3)C15—H150.9300
C3—H30.9800C15'—C16'1.376 (5)
C4—O11.213 (3)C15'—H15'0.9300
C4—C51.491 (4)C16—C171.360 (4)
C4'—O1'1.210 (3)C16—H160.9300
C4'—C5'1.496 (4)C16'—C17'1.368 (5)
C5—C61.535 (3)C16'—H16'0.9300
C5—H5A0.9700C17—C181.387 (4)
C5—H5B0.9700C17—H170.9300
C5'—C6'1.533 (3)C17'—C18'1.386 (4)
C5'—H5'10.9700C17'—H17'0.9300
C5'—H5'20.9700C18—H180.9300
C6'—N1'1.489 (3)C18'—H18'0.9300
C6'—C7'1.515 (4)C19'—C20'1.506 (4)
C6'—H6'0.9800C19'—H19A0.9700
C6—N11.493 (3)C19'—H19B0.9700
C6—C71.516 (3)C19—C201.521 (4)
C6—H60.9800C19—H19C0.9700
C7—C121.374 (4)C19—H19D0.9700
C7—C81.377 (4)C20—H20A0.9600
C7'—C12'1.370 (4)C20—H20B0.9600
C7'—C8'1.377 (4)C20—H20C0.9600
C8—C91.379 (4)C20'—H20D0.9600
C8—H80.9300C20'—H20E0.9600
C8'—C9'1.375 (5)C20'—H20F0.9600
C8'—H8'0.9300C21'—O2'1.210 (3)
C9'—C10'1.360 (6)C21'—N1'1.355 (3)
C9'—H9'0.9300C21'—C22'1.533 (4)
C9—C101.362 (5)C21—O21.217 (3)
C9—H90.9300C21—N11.352 (3)
C10'—C11'1.362 (6)C21—C221.530 (4)
C10'—H10'0.9300C22—Cl11.762 (3)
C10—C111.350 (5)C22—Cl21.768 (3)
C10—H100.9300C22—H220.9800
C11—C121.376 (4)C22'—Cl2'1.753 (3)
C11—H110.9300C22'—Cl1'1.759 (3)
C11'—C12'1.387 (5)C22'—H22'0.9800
N1'—C2'—C13'110.6 (2)C7'—C12'—C11'121.0 (3)
N1'—C2'—C3'108.43 (19)C7'—C12'—H12'119.5
C13'—C2'—C3'118.4 (2)C11'—C12'—H12'119.5
N1'—C2'—H2'106.2C18'—C13'—C14'117.2 (3)
C13'—C2'—H2'106.2C18'—C13'—C2'124.5 (2)
C3'—C2'—H2'106.2C14'—C13'—C2'118.3 (2)
N1—C2—C13111.60 (18)C18—C13—C14118.1 (2)
N1—C2—C3109.92 (18)C18—C13—C2123.0 (2)
C13—C2—C3115.73 (19)C14—C13—C2118.8 (2)
N1—C2—H2106.3C15'—C14'—C13'121.9 (3)
C13—C2—H2106.3C15'—C14'—H14'119.0
C3—C2—H2106.3C13'—C14'—H14'119.0
C4'—C3'—C2'112.0 (2)C15—C14—C13121.1 (3)
C4'—C3'—C19'109.2 (2)C15—C14—H14119.4
C2'—C3'—C19'110.3 (2)C13—C14—H14119.4
C4'—C3'—H3'108.5C16—C15—C14119.8 (3)
C2'—C3'—H3'108.5C16—C15—H15120.1
C19'—C3'—H3'108.5C14—C15—H15120.1
C4—C3—C2110.14 (19)C14'—C15'—C16'119.9 (3)
C4—C3—C19109.3 (2)C14'—C15'—H15'120.1
C2—C3—C19112.50 (19)C16'—C15'—H15'120.1
C4—C3—H3108.3C17—C16—C15119.9 (3)
C2—C3—H3108.3C17—C16—H16120.0
C19—C3—H3108.3C15—C16—H16120.0
O1—C4—C5121.5 (2)C17'—C16'—C15'119.0 (3)
O1—C4—C3122.7 (2)C17'—C16'—H16'120.5
C5—C4—C3115.7 (2)C15'—C16'—H16'120.5
O1'—C4'—C5'121.0 (3)C16—C17—C18120.9 (3)
O1'—C4'—C3'122.8 (3)C16—C17—H17119.6
C5'—C4'—C3'116.2 (2)C18—C17—H17119.6
C4—C5—C6117.13 (19)C16'—C17'—C18'121.0 (3)
C4—C5—H5A108.0C16'—C17'—H17'119.5
C6—C5—H5A108.0C18'—C17'—H17'119.5
C4—C5—H5B108.0C17—C18—C13120.1 (3)
C6—C5—H5B108.0C17—C18—H18120.0
H5A—C5—H5B107.3C13—C18—H18120.0
C4'—C5'—C6'116.3 (2)C13'—C18'—C17'120.8 (3)
C4'—C5'—H5'1108.2C13'—C18'—H18'119.6
C6'—C5'—H5'1108.2C17'—C18'—H18'119.6
C4'—C5'—H5'2108.2C20'—C19'—C3'114.8 (3)
C6'—C5'—H5'2108.2C20'—C19'—H19A108.6
H5'1—C5'—H5'2107.4C3'—C19'—H19A108.6
N1'—C6'—C7'113.72 (19)C20'—C19'—H19B108.6
N1'—C6'—C5'111.07 (19)C3'—C19'—H19B108.6
C7'—C6'—C5'108.9 (2)H19A—C19'—H19B107.5
N1'—C6'—H6'107.7C20—C19—C3112.4 (2)
C7'—C6'—H6'107.7C20—C19—H19C109.1
C5'—C6'—H6'107.7C3—C19—H19C109.1
N1—C6—C7113.76 (18)C20—C19—H19D109.1
N1—C6—C5109.86 (19)C3—C19—H19D109.1
C7—C6—C5108.67 (18)H19C—C19—H19D107.9
N1—C6—H6108.1C19—C20—H20A109.5
C7—C6—H6108.1C19—C20—H20B109.5
C5—C6—H6108.1H20A—C20—H20B109.5
C12—C7—C8117.5 (3)C19—C20—H20C109.5
C12—C7—C6123.1 (2)H20A—C20—H20C109.5
C8—C7—C6119.3 (2)H20B—C20—H20C109.5
C12'—C7'—C8'118.1 (3)C19'—C20'—H20D109.5
C12'—C7'—C6'122.8 (2)C19'—C20'—H20E109.5
C8'—C7'—C6'119.1 (3)H20D—C20'—H20E109.5
C7—C8—C9120.9 (3)C19'—C20'—H20F109.5
C7—C8—H8119.6H20D—C20'—H20F109.5
C9—C8—H8119.6H20E—C20'—H20F109.5
C9'—C8'—C7'121.0 (4)O2'—C21'—N1'124.2 (3)
C9'—C8'—H8'119.5O2'—C21'—C22'119.7 (2)
C7'—C8'—H8'119.5N1'—C21'—C22'116.1 (2)
C10'—C9'—C8'120.1 (4)O2—C21—N1124.3 (2)
C10'—C9'—H9'119.9O2—C21—C22119.1 (2)
C8'—C9'—H9'119.9N1—C21—C22116.5 (2)
C10—C9—C8120.6 (3)C21—C22—Cl1110.20 (19)
C10—C9—H9119.7C21—C22—Cl2106.73 (17)
C8—C9—H9119.7Cl1—C22—Cl2111.37 (14)
C9'—C10'—C11'120.1 (4)C21—C22—H22109.5
C9'—C10'—H10'120.0Cl1—C22—H22109.5
C11'—C10'—H10'120.0Cl2—C22—H22109.5
C11—C10—C9118.9 (3)C21'—C22'—Cl2'110.0 (2)
C11—C10—H10120.5C21'—C22'—Cl1'107.5 (2)
C9—C10—H10120.5Cl2'—C22'—Cl1'110.59 (15)
C10—C11—C12121.1 (3)C21'—C22'—H22'109.6
C10—C11—H11119.5Cl2'—C22'—H22'109.6
C12—C11—H11119.5Cl1'—C22'—H22'109.6
C10'—C11'—C12'119.7 (4)C21'—N1'—C6'122.8 (2)
C10'—C11'—H11'120.2C21'—N1'—C2'117.16 (19)
C12'—C11'—H11'120.2C6'—N1'—C2'119.39 (19)
C7—C12—C11120.9 (3)C21—N1—C2117.17 (18)
C7—C12—H12119.5C21—N1—C6123.13 (19)
C11—C12—H12119.5C2—N1—C6118.98 (17)
N1'—C2'—C3'—C4'56.8 (3)N1—C2—C13—C1450.1 (3)
C13'—C2'—C3'—C4'70.3 (3)C3—C2—C13—C14176.8 (2)
N1'—C2'—C3'—C19'65.0 (3)C18'—C13'—C14'—C15'3.1 (4)
C13'—C2'—C3'—C19'168.0 (2)C2'—C13'—C14'—C15'175.8 (3)
N1—C2—C3—C459.4 (2)C18—C13—C14—C152.3 (4)
C13—C2—C3—C468.1 (3)C2—C13—C14—C15179.5 (2)
N1—C2—C3—C1962.8 (2)C13—C14—C15—C161.0 (4)
C13—C2—C3—C19169.7 (2)C13'—C14'—C15'—C16'0.5 (5)
C2—C3—C4—O1155.8 (2)C14—C15—C16—C171.4 (5)
C19—C3—C4—O180.2 (3)C14'—C15'—C16'—C17'1.9 (5)
C2—C3—C4—C521.9 (3)C15—C16—C17—C182.5 (5)
C19—C3—C4—C5102.1 (2)C15'—C16'—C17'—C18'1.5 (5)
C2'—C3'—C4'—O1'162.7 (3)C16—C17—C18—C131.1 (4)
C19'—C3'—C4'—O1'74.9 (3)C14—C13—C18—C171.3 (4)
C2'—C3'—C4'—C5'17.0 (3)C2—C13—C18—C17179.5 (2)
C19'—C3'—C4'—C5'105.4 (3)C14'—C13'—C18'—C17'3.5 (4)
O1—C4—C5—C6151.5 (2)C2'—C13'—C18'—C17'175.4 (3)
C3—C4—C5—C630.8 (3)C16'—C17'—C18'—C13'1.2 (5)
O1'—C4'—C5'—C6'147.2 (3)C4'—C3'—C19'—C20'69.2 (3)
C3'—C4'—C5'—C6'33.1 (3)C2'—C3'—C19'—C20'167.4 (3)
C4'—C5'—C6'—N1'40.9 (3)C4—C3—C19—C2073.3 (3)
C4'—C5'—C6'—C7'166.8 (2)C2—C3—C19—C20164.0 (2)
C4—C5—C6—N144.8 (3)O2—C21—C22—Cl131.9 (3)
C4—C5—C6—C7169.9 (2)N1—C21—C22—Cl1150.47 (18)
N1—C6—C7—C1242.3 (3)O2—C21—C22—Cl289.1 (3)
C5—C6—C7—C1280.4 (3)N1—C21—C22—Cl288.5 (2)
N1—C6—C7—C8141.7 (2)O2'—C21'—C22'—Cl2'39.6 (3)
C5—C6—C7—C895.6 (3)N1'—C21'—C22'—Cl2'142.5 (2)
N1'—C6'—C7'—C12'43.1 (4)O2'—C21'—C22'—Cl1'80.9 (3)
C5'—C6'—C7'—C12'81.3 (3)N1'—C21'—C22'—Cl1'97.0 (2)
N1'—C6'—C7'—C8'140.4 (2)O2'—C21'—N1'—C6'179.5 (3)
C5'—C6'—C7'—C8'95.2 (3)C22'—C21'—N1'—C6'1.7 (4)
C12—C7—C8—C91.4 (4)O2'—C21'—N1'—C2'8.8 (4)
C6—C7—C8—C9174.8 (3)C22'—C21'—N1'—C2'169.0 (2)
C12'—C7'—C8'—C9'0.1 (5)C7'—C6'—N1'—C21'68.2 (3)
C6'—C7'—C8'—C9'176.8 (3)C5'—C6'—N1'—C21'168.6 (2)
C7'—C8'—C9'—C10'0.0 (6)C7'—C6'—N1'—C2'121.3 (2)
C7—C8—C9—C100.5 (5)C5'—C6'—N1'—C2'1.9 (3)
C8'—C9'—C10'—C11'0.2 (6)C13'—C2'—N1'—C21'107.6 (2)
C8—C9—C10—C111.1 (5)C3'—C2'—N1'—C21'121.0 (2)
C9—C10—C11—C121.7 (6)C13'—C2'—N1'—C6'81.4 (3)
C9'—C10'—C11'—C12'0.5 (6)C3'—C2'—N1'—C6'50.1 (3)
C8—C7—C12—C110.9 (5)O2—C21—N1—C214.1 (3)
C6—C7—C12—C11175.2 (3)C22—C21—N1—C2163.3 (2)
C10—C11—C12—C70.7 (5)O2—C21—N1—C6175.7 (2)
C8'—C7'—C12'—C11'0.4 (5)C22—C21—N1—C66.8 (3)
C6'—C7'—C12'—C11'177.0 (3)C13—C2—N1—C21105.9 (2)
C10'—C11'—C12'—C7'0.6 (6)C3—C2—N1—C21124.3 (2)
N1'—C2'—C13'—C18'117.4 (3)C13—C2—N1—C683.6 (2)
C3'—C2'—C13'—C18'8.6 (4)C3—C2—N1—C646.2 (2)
N1'—C2'—C13'—C14'61.4 (3)C7—C6—N1—C2163.0 (3)
C3'—C2'—C13'—C14'172.6 (2)C5—C6—N1—C21175.0 (2)
N1—C2—C13—C18131.7 (2)C7—C6—N1—C2127.1 (2)
C3—C2—C13—C185.0 (3)C5—C6—N1—C25.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.982.493.435 (3)161
C20—H20F···O1ii0.962.483.415 (4)164
C6—H6···O2iii0.982.513.292 (3)137
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y+1/2, z+3/2; (iii) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC21H21Cl2NO2
Mr390.29
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)17.4615 (13), 19.0291 (15), 11.9501 (9)
β (°) 91.825 (5)
V3)3968.7 (5)
Z8
Radiation typeMo Kα
µ (mm1)0.34
Crystal size (mm)0.22 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.928, 0.940
No. of measured, independent and
observed [I > 2σ(I)] reflections
36640, 9905, 5029
Rint0.058
(sin θ/λ)max1)0.671
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.175, 1.00
No. of reflections9905
No. of parameters471
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.44

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.982.493.435 (3)161.2
C20'—H20F···O1ii0.962.483.415 (4)163.5
C6'—H6'···O2'iii0.982.513.292 (3)137.0
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y+1/2, z+3/2; (iii) x, y+3/2, z1/2.
 

Acknowledgements

PS thanks the UGC, New Delhi, for financial support in the form of a Research Fellowship in Science for Meritorious Students. SP thanks the UGC, New Delhi, for financial assistance in the form of a major research project.

References

First citationAridoss, G., Parthiban, P., Ramachandran, R., Prakash, M., Kabilan, S. & Jeong, Y. T. (2009). Eur. J. Med. Chem. 44, 577–592.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMichael, J. P. (2001). The Alkaloids. Chemistry and Biology, edited by G. A. Cordell, Vol. 55, pp. 91–258. New York: Academic Press.  Google Scholar
First citationNalanishi, M., Shiraki, M., Kobayakawa, T. & Kobayashi, R. (1974). Jpn Patent No. 74-3987.  Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPinder, A. R. (1992). Nat. Prod. Rep. 9, 491–504.  CrossRef CAS Web of Science Google Scholar
First citationRubiralta, M., Giralt, E. & Diez, A. (1991). Piperidine: Structure, Preparation, Reactivity, and Synthetic Applications of Piperidine and its Derivatives. pp. 225–312. Amsterdam: Elsevier.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds