[Journal logo]

Volume 69 
Part 5 
Pages i30-i31  
May 2013  

Received 19 April 2013
Accepted 22 April 2013
Online 27 April 2013

Key indicators
Single-crystal X-ray study
T = 297 K
Mean [sigma](As-S) = 0.001 Å
R = 0.028
wR = 0.057
Data-to-parameter ratio = 22.1
Details
Open access

Trilithium thioarsenate octahydrate

aInstitute of Chemical Technology and Analytics, Vienna University of Technology, Getreidemarkt 9/164SC, A-1060 Vienna, Austria
Correspondence e-mail: kurt.mereiter@tuwien.ac.at

The title compound, Li3AsS4·8H2O, is built up from infinite cationic [Li3(H2O)8]3+ chains which extend along [001] and are cross-linked by isolated tetrahedral AsS43- anions via O-H...S hydrogen bonds. Two Li and two As atoms lie on special positions with site symmetries -1 (1 × Li) and 2 (1 × Li and 2 × As). The [Li3(H2O)8]3+ chain contains four independent Li atoms of which two are in octahedral and two in tetrahedral coordination by water O atoms. An outstanding feature of this chain is a linear group of three edge-sharing LiO6 octahedra to both ends of which two LiO4 tetrahedra are attached by face-sharing. Such groups of composition Li5O16 are linked into branched chains by means of a further LiO4 tetrahedron sharing vertices with four adjacent LiO6 octahedra. The Li-O bonds range from 1.876 (5) to 2.054 (6) Å for the LiO4 tetrahedra and from 2.026 (5) to 2.319 (5) Å for the LiO6 octahedra. The two independent AsS43- anions have As-S bond lengths ranging from 2.1482 (6) to 2.1677 (6) Å [<As-S> = 2.161 (10) Å]. The eight independent water molecules of the structure donate 16 relatively straight O-H...S hydrogen bonds to all S atoms of the AsS4 tetrahedra [<O...S> = 3.295 (92) Å]. Seven water molecules are in distorted tetrahedral coordination by two Li and two S; one water molecule has a flat pyramidal coordination by one Li and two S. At variance with related compounds like Schlippe's salt, Na3SbS4·9H2O, there are neither alkali-sulfur bonds nor O-H...O hydrogen bonds in the structure.

Related literature

For crystal structures of related chalcogenosalt hydrates based on isolated tetrahedral XY4 anions, see: Mereiter et al. (1979[Mereiter, K., Preisinger, A. & Guth, H. (1979). Acta Cryst. B35, 19-25.], 1982[Mereiter, K., Preisinger, A., Baumgartner, O., Heger, G., Mikenda, W. & Steidl, H. (1982). Acta Cryst. B38, 401-408.], 1983[Mereiter, K., Preisinger, A. & Zellner, A. (1983). Inorg. Chim. Acta, 72, 67-73.]); Krebs et al. (1990[Krebs, B., Huerter, H. U., Enax, J. & Froehlich, R. (1990). Z. Anorg. Allg. Chem. 581, 141-152.]); Krebs & Jacobsen (1976[Krebs, B. & Jacobsen, H. J. (1976). Z. Anorg. Allg. Chem. 421, 97-104.]); Krebs & Huerter (1980[Krebs, B. & Huerter, H. U. (1980). Z. Anorg. Allg. Chem. 462, 143-151.]); Schiwy et al. (1973[Schiwy, W., Pohl, S. & Krebs, B. (1973). Z. Anorg. Allg. Chem. 402, 77-86.]); Melullis & Dehnen (2007[Melullis, M. & Dehnen, S. (2007). Z. Anorg. Allg. Chem. 633, 2159-2167.]), Ruzin et al. (2006[Ruzin, E., Kracke, A. & Dehnen, S. (2006). Z. Anorg. Allg. Chem. 632, 1018-1026.], 2008[Ruzin, E., Jakobi, S. & Dehnen, S. (2008). Z. Anorg. Allg. Chem. 634, 995-1001.]). For the prototype compound Schlippe's Salt, Na3SbS4·9H2O, see: Schlippe (1821[Schlippe, K. (1821). Versuche ueber das Schwefelspiessglanznatron und den Goldschwefel. In Schweiggers Journal für Chemie und Physik. XXXIII, 1821, S. 320-323.]). For the synthesis of the title compound and early crystallographic data, see: Rémy & Bachet (1968[Rémy, F. & Bachet, B. (1968). Bull. Soc. Chim. Fr. pp. 3568-3569.]). For the synthesis and crystal structure of Ba3(AsS4)2·7H2O as a precursor of the title compound, see: Mereiter & Preisinger (1992[Mereiter, K. & Preisinger, A. (1992). Acta Cryst. C48, 984-987.]). For the crystal structure of Na2S·9H2O, see: Preisinger et al. (1982[Preisinger, A., Mereiter, K., Baumgartner, O., Heger, G., Mikenda, W. & Steidl, H. (1982). Inorg. Chim. Acta, 57, 237-246.]). For a review on O-H...S hydrogen bonds in salt hydrates, see: Mikenda et al. (1989[Mikenda, W., Mereiter, K. & Preisinger, A. (1989). Inorg. Chim. Acta, 161, 21-28.]).

Experimental

Crystal data
  • Li3AsS4·8H2O

  • Mr = 368.11

  • Monoclinic, P 2/c

  • a = 10.036 (2) Å

  • b = 10.064 (2) Å

  • c = 14.264 (3) Å

  • [beta] = 107.30 (1)°

  • V = 1375.5 (5) Å3

  • Z = 4

  • Mo K[alpha] radiation

  • [mu] = 3.09 mm-1

  • T = 297 K

  • 0.30 × 0.27 × 0.25 mm

Data collection
  • Philips PW1100 four-circle diffractometer

  • Absorption correction: for a sphere [mu]R = 0.45 Tmin = 0.51, Tmax = 0.54

  • 5729 measured reflections

  • 4001 independent reflections

  • 2913 reflections with I > 2[sigma](I)

  • Rint = 0.026

  • 3 standard reflections every 60 min intensity decay: 2.0%

Refinement
  • R[F2 > 2[sigma](F2)] = 0.028

  • wR(F2) = 0.057

  • S = 1.05

  • 4001 reflections

  • 181 parameters

  • H-atom parameters constrained

  • [Delta][rho]max = 0.61 e Å-3

  • [Delta][rho]min = -0.36 e Å-3

Table 1
Selected bond lengths (Å)

Li1-O2 2.130 (2)
Li1-O1 2.203 (2)
Li1-O3 2.274 (2)
Li2-O3 2.026 (4)
Li2-O2 2.127 (5)
Li2-O5 2.202 (4)
Li2-O4 2.225 (5)
Li2-O6 2.271 (5)
Li2-O7 2.319 (5)
Li3-O4 1.991 (3)
Li3-O1 2.009 (4)
Li4-O8 1.876 (5)
Li4-O5 1.957 (5)
Li4-O6 1.990 (6)
Li4-O7 2.054 (6)
As1-S2 2.1482 (6)
As1-S1 2.1711 (6)
As2-S4 2.1574 (6)
As2-S3 2.1677 (6)

Table 2
Hydrogen-bond geometry (Å, °)

D-H...A D-H H...A D...A D-H...A
O1-H1A...S1i 0.80 2.49 3.262 (2) 163
O1-H1B...S4ii 0.80 2.51 3.287 (2) 163
O2-H2A...S1iii 0.80 2.76 3.531 (2) 162
O2-H2B...S2 0.80 2.37 3.167 (2) 173
O3-H3A...S3iv 0.80 2.61 3.400 (2) 168
O3-H3B...S4 0.80 2.39 3.190 (2) 173
O4-H4A...S1iii 0.80 2.51 3.240 (2) 153
O4-H4B...S3v 0.80 2.42 3.207 (2) 170
O5-H5A...S1 0.80 2.45 3.247 (2) 172
O5-H5B...S2iii 0.80 2.50 3.303 (2) 177
O6-H6A...S3 0.80 2.57 3.354 (2) 168
O6-H6B...S4iv 0.80 2.54 3.307 (2) 162
O7-H7A...S1vi 0.80 2.49 3.244 (2) 157
O7-H7B...S3 0.80 2.58 3.333 (2) 157
O8-H8A...S2vii 0.80 2.50 3.253 (2) 157
O8-H8B...S3vi 0.80 2.61 3.394 (2) 166
Symmetry codes: (i) [x+1, -y+1, z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+1; (iii) -x, -y+1, -z+1; (iv) -x+1, -y+2, -z+1; (v) [x, -y+2, z+{\script{1\over 2}}]; (vi) [-x, y, -z+{\script{1\over 2}}]; (vii) x, y+1, z.

Data collection: Philips PW1100 software (Hornstra & Vossers, 1973[Hornstra, J. & Vossers, H. (1973). Philips Tech. Rev. 33, 61-73.]); cell refinement: LLSQ (Mereiter, 1992[Mereiter (1992). LLSQ and PWD. Vienna University of Technology, Austria.]); data reduction: PWD (Mereiter, 1992[Mereiter (1992). LLSQ and PWD. Vienna University of Technology, Austria.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and DIAMOND (Brandenburg, 2012[Brandenburg, K. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PJ2002 ).


References

Brandenburg, K. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Hornstra, J. & Vossers, H. (1973). Philips Tech. Rev. 33, 61-73.
Krebs, B. & Huerter, H. U. (1980). Z. Anorg. Allg. Chem. 462, 143-151.  [CrossRef] [ChemPort]
Krebs, B., Huerter, H. U., Enax, J. & Froehlich, R. (1990). Z. Anorg. Allg. Chem. 581, 141-152.  [CrossRef] [ChemPort]
Krebs, B. & Jacobsen, H. J. (1976). Z. Anorg. Allg. Chem. 421, 97-104.  [CrossRef] [ChemPort]
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.  [ISI] [CrossRef] [ChemPort] [details]
Melullis, M. & Dehnen, S. (2007). Z. Anorg. Allg. Chem. 633, 2159-2167.  [CrossRef] [ChemPort]
Mereiter (1992). LLSQ and PWD. Vienna University of Technology, Austria.
Mereiter, K. & Preisinger, A. (1992). Acta Cryst. C48, 984-987.  [CrossRef] [details]
Mereiter, K., Preisinger, A., Baumgartner, O., Heger, G., Mikenda, W. & Steidl, H. (1982). Acta Cryst. B38, 401-408.  [CrossRef] [details]
Mereiter, K., Preisinger, A. & Guth, H. (1979). Acta Cryst. B35, 19-25.  [CrossRef] [details]
Mereiter, K., Preisinger, A. & Zellner, A. (1983). Inorg. Chim. Acta, 72, 67-73.  [CrossRef] [ChemPort]
Mikenda, W., Mereiter, K. & Preisinger, A. (1989). Inorg. Chim. Acta, 161, 21-28.  [CrossRef] [ChemPort]
Preisinger, A., Mereiter, K., Baumgartner, O., Heger, G., Mikenda, W. & Steidl, H. (1982). Inorg. Chim. Acta, 57, 237-246.  [CrossRef] [ChemPort]
Rémy, F. & Bachet, B. (1968). Bull. Soc. Chim. Fr. pp. 3568-3569.
Ruzin, E., Jakobi, S. & Dehnen, S. (2008). Z. Anorg. Allg. Chem. 634, 995-1001.  [CrossRef] [ChemPort]
Ruzin, E., Kracke, A. & Dehnen, S. (2006). Z. Anorg. Allg. Chem. 632, 1018-1026.  [CSD] [CrossRef] [ChemPort]
Schiwy, W., Pohl, S. & Krebs, B. (1973). Z. Anorg. Allg. Chem. 402, 77-86.  [CrossRef] [ChemPort]
Schlippe, K. (1821). Versuche ueber das Schwefelspiessglanznatron und den Goldschwefel. In Schweiggers Journal für Chemie und Physik. XXXIII, 1821, S. 320-323.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [ChemPort] [details]
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.  [ISI] [CrossRef] [ChemPort] [details]


Acta Cryst (2013). E69, i30-i31   [ doi:10.1107/S1600536813010921 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.