

metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Aquabis(4-methylbenzenesulfonato- κO)-(η^5 -pentamethylcyclopentadienyl)rhodium(III) monohydrate

Christopher P. Roy, Pauline M. Boyer and Joseph S. Merola*

Department of Chemistry, Virginia Tech, Blacksburg, VA 24061, USA Correspondence e-mail: jmerola@vt.edu

Received 18 March 2013; accepted 28 March 2013

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.007 Å; R factor = 0.038; wR factor = 0.086; data-to-parameter ratio = 13.9.

The title half-sandwich rhodium(III) complex, $[Rh(C_{10}H_{15})-(C_7H_7O_3S)_2(H_2O)]\cdot H_2O$, consists of a π -bonded pentamethylcyclopentadienyl group, two σ -bonded tosylate groups and an aqua ligand. The structure displays both inter- and intramolecular $O-H\cdots O$ hydrogen bonding. The intermolecular hydrogen bonding results in an extended helical chain along a 2_1 screw axis parallel to *c*, due to hydrogen bonding from the coordinating water ligand to the lattice water molecule and then to a sulfonate O atom of a different asymmetric unit.

Related literature

Synthesis details are given in Boyer *et al.* (1996). For the structure of another pentamethylcyclopentadienylmetal bistosylate (CCDC: 821138), see: Zaitsev *et al.* (2008). For the characterization of other aquo compounds, see: Bergmeister *et al.* (1990; CCDC: 601561) and Luo *et al.* (1990; CCDC: 595047). A survey of the geometry and environment of water molecules in crystalline hydrates studied by neutron diffraction can be found in in Ferraris & Franchini-Angela (1972).

Experimental

Crystal data

 $[Rh(C_{10}H_{15})(C_7H_7O_3S)_{2^-} (H_2O)] \cdot H_2O$ $M_r = 616.53$ Orthorhombic, *Pbcn* a = 23.550 (8) Å b = 18.814 (7) Åc = 12.114 (5) Å

Data collection

Siemens P4 diffractometer Absorption correction: ψ scan (North *et al.*, 1968) $T_{\min} = 0.00, T_{\max} = 0.881$ 4738 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.038$ $wR(F^2) = 0.086$ S = 1.034738 reflections 340 parameters 1 restraint Z = 8Mo K α radiation $\mu = 0.84 \text{ mm}^{-1}$ T = 295 K $0.4 \times 0.4 \times 0.4 \text{ mm}$

V = 5367 (3) Å³

4738 independent reflections 3297 reflections with $I > 2\sigma(I)$ 3 standard reflections every 200 reflections intensity decay: 0(1)

H atoms treated by a mixture of
independent and constrained
refinement
$\Delta \rho_{\rm max} = 0.38 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.29 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$D7 - H7A \cdots O8$ $D7 - H7B \cdots O3$ $D8 - H8D \cdots O2^{i}$ $D8 - H8E \cdots O5$	0.85 (5) 1.11 (8) 0.77 (8) 0.88 (6)	1.99 (6) 1.64 (8) 2.06 (8) 1.91 (6)	2.608 (6) 2.647 (5) 2.807 (6) 2.766 (7)	128 (5) 147 (7) 162 (8) 162 (6)

Symmetry code: (i) $-x + \frac{3}{2}, -y + \frac{3}{2}, z - \frac{1}{2}$.

Data collection: *XSCANS* (Siemens, 1994); cell refinement: *XSCANS*; data reduction: *XSCANS*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009); software used to prepare material for publication: *OLEX2*.

We acknowledge the financial support of the NSF (CHE 9214027) and ACS–PRF (23961-ACl). PMB acknowledges an ACS–PRF undergraduate summer fellowship. Funds for the purchase of the diffractometer used in this work were provided by the Commonwealth of Virginia.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2474).

References

Bergmeister, J. J., Hanson, B. E. & Merola, J. S. (1990). *Inorg. Chem.* 29, 4831–4833.

Boyer, P. M., Roy, C. P. & Merola, J. S. (1996). Inorg. Chim. Acta, 245, 7-15.

Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.

Ferraris, G. & Franchini-Angela, M. (1972). Acta Cryst. B28, 3572-3583.

Luo, X. L., Schulte, G. K. & Crabtree, R. H. (1990). *Inorg. Chem.* 29, 682–686. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). *Acta Cryst.* A24, 351– 359.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Siemens (1994). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Zaitsev, A. B., Gruber, S., Pluss, P. A., Pregosin, P. S., Verlos, L. F. & Worle, M. (2008). J. Am. Chem. Soc. 130, 11604–11605.

supporting information

Acta Cryst. (2013). E**69**, m259–m260 [https://doi.org/10.1107/S160053681300860X]

Aquabis(4-methylbenzenesulfonato- κO)(η^5 -pentamethylcyclo-pentadienyl)rhodium(III) monohydrate

Christopher P. Roy, Pauline M. Boyer and Joseph S. Merola

S1. Comment

The title compound adds to the body of organometallic compounds with water as a ligand. The empirically discovered requirement that water attached to metals must also be hydrogen-bonded either intermolecularly or intramolecularly still holds with this complex where the bonded water is H-bonded both intramolecularly to a sulfate oxygen and intermolecularly to a lattice water molecule. The hydrogen bonding creates a helical motif that runs parallel to the *c*-axis.

S2. Experimental

The title compound was prepared in a manner analogous to our previously reported carboxylate compounds using $[(C_5Me_5)RhCl_2]_2$ and silver tosylate. (Boyer *et al.*, 1996).

S3. Refinement

1. Fixed U_{iso} At 1.2 times of: H23 of C23, H13 of C13, H12 of C12, H19 of C19, H15 of C15, H16 of C16, H22 of C22, H20 of C20 At 1.5 times of: {H6A,H6B,H6C} of C6, {H17A,H17B,H17C} of C17, {H24A,H24B,H24C} of C24, {H8A, H8B,H8C} of C8, {H7C,H7D,H7E} of C7, {H9A,H9B,H9C} of C9, {H10A,H10B,H10C} of C10 2.a Aromatic/amide H refined with riding coordinates: C12(H12), C13(H13), C15(H15), C16(H16), C19(H19), C20(H20), C22(H22), C23(H23) 2.b Idealized Me refined as rotating group: C6(H6A,H6B,H6C), C7(H7C,H7D,H7E), C8(H8A,H8B,H8C), C9(H9A,H9B,H9C), C10(H10A, H10B,H10C), C17(H17A,H17B,H17C), C24(H24A,H24B,H24C)

Figure 1

An ellipsoid plot (30% probability) view of the title compound.

Figure 2

A view of the hydrogen-bonded helical chain that propagates parallel to the *c*-axis.

Aquabis(4-methylbenzenesulfonato- κO)(η^5 -pentamethylcyclopentadienyl)rhodium(III) monohydrate

Crystal data

 $[Rh(C_{10}H_{15})(C_{7}H_{7}O_{3}S)_{2}(H_{2}O)] \cdot H_{2}O$ $M_{r} = 616.53$ Orthorhombic, *Pbcn* a = 23.550 (8) Å b = 18.814 (7) Å c = 12.114 (5) Å V = 5367 (3) Å³ Z = 8F(000) = 2544

Data collection

Siemens P4 diffractometer Radiation source: fine-focus sealed tube Graphite monochromator profile data from $\theta/2\theta$ scans Absorption correction: ψ scan (North *et al.*, 1968) $T_{\min} = 0.00, T_{\max} = 0.881$ 4738 measured reflections

Refinement

Refinement on F^2 HydrogenLeast-squares matrix: fullneighbol $R[F^2 > 2\sigma(F^2)] = 0.038$ H atoms to $wR(F^2) = 0.086$ and conS = 1.03 $w = 1/[\sigma^2(T_{12})]$ 4738 reflectionswhere T_{12} 340 parameters $(\Delta/\sigma)_{max} = 0$ 1 restraint $\Delta\rho_{max} = 0$ Primary atom site location: structure-invariant $\Delta\rho_{min} = -0$ direct methodsExtinctionSecondary atom site location: difference Fourier2008),mapExtinction

 $D_x = 1.526 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 50 reflections $\theta = 2-25^{\circ}$ $\mu = 0.84 \text{ mm}^{-1}$ T = 295 KPrism, clear orange $0.4 \times 0.4 \times 0.4 \text{ mm}$

4738 independent reflections 3297 reflections with $I > 2\sigma(I)$ $R_{int} = 0.000$ $\theta_{max} = 25.0^{\circ}, \ \theta_{min} = 2.2^{\circ}$ $h = 0 \rightarrow 28$ $k = -22 \rightarrow 0$ $I = 0 \rightarrow 14$ 3 standard reflections every 200 reflections intensity decay: 0(1)

Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0322P)^2 + 3.4175P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.38 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.29 \text{ e } \text{Å}^{-3}$ Extinction correction: *SHELXL97* (Sheldrick, 2008), Fc*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.00052 (6)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Rh1	0.666388 (12)	0.645607 (15)	0.50870 (2)	0.03433 (11)
S1	0.65268 (5)	0.82532 (6)	0.52292 (9)	0.0465 (3)
S2	0.62414 (6)	0.60927 (6)	0.25074 (9)	0.0538 (3)

01	0.62955 (11)	0.75207 (14)	0.5237 (2)	0.0451 (7)
O2	0.63499 (15)	0.86471 (18)	0.6196 (3)	0.0677 (10)
O3	0.71402 (13)	0.82661 (17)	0.5072 (3)	0.0635 (9)
04	0.63324 (16)	0.65843 (16)	0.3441 (2)	0.0660 (10)
05	0.67723 (16)	0.57892 (19)	0.2134 (3)	0.0802 (11)
06	0.58036 (17)	0.55830(19)	0.2723(3)	0.0822 (11)
07	0.74332 (15)	0.6962(2)	0.4484(3)	0.0604 (9)
H7A	0.736(2)	0.681(3)	0.384(5)	0.09(2)*
H7R	0.730(2) 0.730(3)	0.001(3) 0.753(4)	0.301(3) 0.442(6)	0.09(2) 0.17(3)*
08	0.7836(2)	0.6195 (3)	0.112(0) 0.2870(4)	0.17(5)
18D	0.7030(2)	0.632(4)	0.2370(4)	0.0000(10) 0.13(3)*
HSE	0.302(3)	0.032(4)	0.253(0)	0.13(3)
	0.734(3)	0.002(3)	0.232(3)	0.09(2)
C1	0.0755(2) 0.71567(10)	0.5551(2) 0.5702(2)	0.5370(3)	0.0510(12)
C2 C2	0.71307(19)	0.5705(2)	0.5985(4)	0.0303(11)
C3	0.08878(19)	0.0195(2)	0.6720(3)	0.0470(11)
C4	0.62904 (18)	0.6102(2)	0.0390 (3)	0.0482(11)
05	0.618/(2)	0.5592 (2)	0.5754 (4)	0.0512 (12)
C6	0.6836 (3)	0.4/84 (3)	0.4526 (4)	0.097 (2)
H6A	0.7128	0.4937	0.4027	0.146*
H6B	0.6493	0.4697	0.4122	0.146*
H6C	0.6954	0.4355	0.4889	0.146*
C7	0.7786 (2)	0.5599 (4)	0.5867 (5)	0.097 (2)
H7C	0.7981	0.6007	0.6154	0.145*
H7D	0.7879	0.5539	0.5101	0.145*
H7E	0.7899	0.5183	0.6271	0.145*
C8	0.7184 (3)	0.6679 (3)	0.7509 (4)	0.0870 (19)
H8A	0.7038	0.7153	0.7424	0.130*
H8B	0.7584	0.6677	0.7358	0.130*
H8C	0.7119	0.6520	0.8251	0.130*
C9	0.5840 (3)	0.6498 (3)	0.7230 (5)	0.098 (2)
H9A	0.5486	0.6468	0.6841	0.147*
H9B	0.5950	0.6987	0.7303	0.147*
H9C	0.5799	0.6290	0.7949	0.147*
C10	0.5612(2)	0.5339 (3)	0.5388 (5)	0.091 (2)
H10A	0.5641	0.5131	0.4666	0.136*
H10B	0.5354	0.5733	0.5366	0.136*
H10C	0.5474	0.4989	0.5899	0.136*
C11	0.62207 (17)	0.8673(2)	0.4062(3)	0.0427(10)
C12	0.6297 (2)	0.9397(2)	0.3923 (4)	0.0576 (12)
H12	0.6498	0.9656	0.4446	0.069*
C13	0.6074 (2)	0.9732(3)	0.3013 (4)	0.0639 (14)
H13	0.6128	1 0219	0 2931	0.077*
C14	0.5773(2)	0.9366(3)	0.2217(4)	0.0554(12)
C15	0.5711(2)	0.8643(2)	0.2261(4)	0.0551(12)
H15	0 5512	0.8383	0 1834	0.068*
C16	0.59347 (19)	0.8292 (2)	0.1057	0.0510 (11)
H16	0.52977 (12)	0.0292 (2)	0.3237 (1)	0.061*
C17	0.5672	0.735 (3)	0.3336 0.1226 (A)	0.001
$\cup 1/$	0.3322 (2)	0.2733 (3)	0.1220 (4)	0.0034(10)

supporting information

H17A	0.5754	0.9641	0.0589	0.125*
H17B	0.5509	1.0238	0.1358	0.125*
H17C	0.5145	0.9561	0.1098	0.125*
C18	0.59902 (19)	0.6660 (2)	0.1437 (3)	0.0475 (11)
C19	0.63637 (19)	0.7094 (3)	0.0871 (4)	0.0543 (12)
H19	0.6749	0.7080	0.1035	0.065*
C20	0.6164 (2)	0.7548 (3)	0.0061 (4)	0.0591 (12)
H20	0.6419	0.7834	-0.0323	0.071*
C21	0.5590 (2)	0.7586 (3)	-0.0189 (4)	0.0584 (12)
C22	0.5227 (2)	0.7139 (3)	0.0370 (4)	0.0575 (13)
H22	0.4842	0.7148	0.0200	0.069*
C23	0.54202 (19)	0.6675 (2)	0.1184 (3)	0.0519 (12)
H23	0.5167	0.6379	0.1553	0.062*
C24	0.5368 (3)	0.8104 (3)	-0.1051 (4)	0.0871 (19)
H24A	0.5559	0.8024	-0.1739	0.131*
H24B	0.5437	0.8583	-0.0809	0.131*
H24C	0.4967	0.8034	-0.1147	0.131*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U ²²	<i>U</i> ³³	U^{12}	U^{13}	U^{23}
Rh1	0.03743 (17)	0.03487 (17)	0.03068 (16)	0.00144 (14)	-0.00110 (14)	0.00030 (14)
S 1	0.0509 (6)	0.0401 (5)	0.0485 (6)	0.0032 (5)	-0.0098 (5)	-0.0090 (5)
S2	0.0766 (8)	0.0486 (7)	0.0362 (6)	0.0044 (6)	-0.0117 (6)	-0.0066 (5)
01	0.0436 (16)	0.0396 (16)	0.0522 (17)	0.0031 (12)	-0.0028 (13)	0.0010 (13)
O2	0.092 (3)	0.060 (2)	0.0503 (18)	0.0172 (19)	-0.0182 (18)	-0.0173 (16)
O3	0.0477 (17)	0.0533 (18)	0.090 (2)	-0.0023 (15)	-0.0137 (18)	-0.0075 (19)
O4	0.113 (3)	0.049 (2)	0.0358 (16)	0.0138 (19)	-0.0241 (17)	-0.0100 (14)
05	0.097 (3)	0.080 (3)	0.064 (2)	0.035 (2)	-0.008(2)	-0.0091 (19)
O6	0.118 (3)	0.070 (2)	0.059 (2)	-0.027 (2)	-0.018 (2)	0.0126 (18)
07	0.054 (2)	0.055 (2)	0.072 (2)	-0.0047 (17)	0.0159 (19)	0.0070 (19)
08	0.087 (3)	0.119 (4)	0.063 (3)	0.008 (3)	0.025 (3)	-0.002 (3)
C1	0.084 (4)	0.029 (2)	0.040 (2)	0.010 (2)	-0.006 (2)	0.0060 (17)
C2	0.051 (3)	0.054 (3)	0.047 (2)	0.009 (2)	-0.007 (2)	0.015 (2)
C3	0.058 (3)	0.049 (3)	0.034 (2)	-0.010 (2)	-0.007 (2)	0.0047 (19)
C4	0.051 (3)	0.053 (3)	0.040 (2)	0.004 (2)	0.014 (2)	0.014 (2)
C5	0.055 (3)	0.052 (3)	0.047 (3)	-0.015 (2)	-0.011 (2)	0.017 (2)
C6	0.184 (7)	0.049 (3)	0.058 (3)	0.022 (4)	-0.008 (4)	-0.006 (3)
C7	0.059 (4)	0.129 (6)	0.102 (5)	0.037 (4)	0.003 (3)	0.030 (4)
C8	0.126 (5)	0.081 (4)	0.054 (3)	-0.043 (4)	-0.034 (3)	0.008 (3)
C9	0.103 (5)	0.116 (5)	0.075 (4)	0.048 (4)	0.046 (4)	0.023 (4)
C10	0.080 (4)	0.096 (4)	0.097 (4)	-0.043 (3)	-0.039 (3)	0.044 (4)
C11	0.043 (2)	0.036 (2)	0.049 (2)	-0.0010 (19)	0.0031 (19)	-0.0045 (19)
C12	0.062 (3)	0.047 (3)	0.064 (3)	-0.008(2)	-0.006 (2)	-0.010 (2)
C13	0.074 (4)	0.043 (3)	0.074 (3)	-0.002(3)	0.007 (3)	0.014 (3)
C14	0.051 (3)	0.065 (3)	0.050 (3)	0.002 (3)	0.008 (2)	0.011 (2)
C15	0.066 (3)	0.057 (3)	0.049 (3)	0.001 (2)	-0.011 (2)	-0.003 (2)
C16	0.063 (3)	0.034 (2)	0.055 (3)	-0.003 (2)	-0.010(2)	-0.008(2)

supporting information

C17	0.086 (4)	0.091 (4)	0.073 (4)	-0.006 (3)	0.000 (3)	0.034 (3)
C18	0.059 (3)	0.054 (3)	0.029 (2)	0.002 (2)	-0.006 (2)	-0.0066 (19)
C19	0.045 (3)	0.070 (3)	0.047 (3)	-0.002 (2)	-0.006 (2)	-0.004 (2)
C20	0.065 (3)	0.069 (3)	0.043 (3)	-0.008 (2)	-0.002 (2)	0.004 (2)
C21	0.077 (3)	0.060 (3)	0.038 (2)	0.008 (3)	-0.008 (2)	-0.003 (2)
C21	0.077 (3)	0.060 (3)	0.038 (2)	0.008 (3)	$\begin{array}{c} -0.008 (2) \\ -0.014 (2) \\ -0.001 (2) \\ -0.021 (3) \end{array}$	-0.003 (2)
C22	0.052 (3)	0.073 (3)	0.047 (3)	0.009 (3)		-0.015 (2)
C23	0.055 (3)	0.061 (3)	0.040 (2)	-0.007 (2)		-0.008 (2)
C24	0.112 (5)	0.091 (4)	0.059 (3)	0.018 (4)		0.010 (3)

Geometric parameters (Å, °)

Rh1—O1	2.190 (3)	C8—H8B	0.9600	
Rh1—O4	2.155 (3)	C8—H8C	0.9600	
Rh1—O7	2.173 (3)	С9—Н9А	0.9600	
Rh1—C1	2.113 (4)	C9—H9B	0.9600	
Rh1—C2	2.129 (4)	С9—Н9С	0.9600	
Rh1—C3	2.106 (4)	C10—H10A	0.9600	
Rh1—C4	2.135 (4)	C10—H10B	0.9600	
Rh1—C5	2.135 (4)	C10—H10C	0.9600	
S1—01	1.482 (3)	C11—C12	1.384 (6)	
S1—O2	1.447 (3)	C11—C16	1.377 (6)	
S1—O3	1.457 (3)	C12—H12	0.9300	
S1—C11	1.773 (4)	C12—C13	1.373 (6)	
S2—O4	1.476 (3)	C13—H13	0.9300	
S2—O5	1.447 (4)	C13—C14	1.382 (6)	
S2—O6	1.432 (4)	C14—C15	1.380 (6)	
S2—C18	1.781 (4)	C14—C17	1.507 (6)	
O7—H7A	0.85 (5)	C15—H15	0.9300	
O7—H7B	1.11 (8)	C15—C16	1.386 (6)	
O8—H8D	0.77 (8)	C16—H16	0.9300	
O8—H8E	0.88 (6)	C17—H17A	0.9600	
C1—C2	1.410 (6)	C17—H17B	0.9600	
C1—C5	1.439 (6)	C17—H17C	0.9600	
C1-C6	1.498 (6)	C18—C19	1.382 (6)	
C2—C3	1.431 (6)	C18—C23	1.377 (6)	
C2—C7	1.501 (6)	C19—H19	0.9300	
C3—C4	1.425 (6)	C19—C20	1.384 (6)	
C3—C8	1.495 (6)	C20—H20	0.9300	
C4—C5	1.422 (6)	C20—C21	1.387 (7)	
C4—C9	1.506 (6)	C21—C22	1.377 (7)	
C5-C10	1.501 (6)	C21—C24	1.523 (6)	
С6—Н6А	0.9600	C22—H22	0.9300	
С6—Н6В	0.9600	C22—C23	1.394 (6)	
С6—Н6С	0.9600	C23—H23	0.9300	
С7—Н7С	0.9600	C24—H24A	0.9600	
C7—H7D	0.9600	C24—H24B	0.9600	
С7—Н7Е	0.9600	C24—H24C	0.9600	
C8—H8A	0.9600			

O4—Rh1—O1	80.25 (11)	C1—C6—H6B	109.5
O4—Rh1—O7	86.66 (15)	C1—C6—H6C	109.5
O7—Rh1—O1	87.57 (13)	H6A—C6—H6B	109.5
C1—Rh1—O1	156.42 (15)	H6A—C6—H6C	109.5
C1—Rh1—O4	106.75 (14)	H6B—C6—H6C	109.5
C1—Rh1—O7	114.93 (17)	С2—С7—Н7С	109.5
C1—Rh1—C2	38.81 (17)	C2—C7—H7D	109.5
C1—Rh1—C4	65.50 (17)	С2—С7—Н7Е	109.5
C1—Rh1—C5	39.60 (17)	H7C—C7—H7D	109.5
C2—Rh1—O1	141.46 (15)	H7C—C7—H7E	109.5
C2—Rh1—O4	138.06 (15)	H7D—C7—H7E	109.5
C2—Rh1—O7	90.48 (16)	C3—C8—H8A	109.5
C2—Rh1—C4	65.18 (17)	C3—C8—H8B	109.5
C2—Rh1—C5	65.60 (17)	C3—C8—H8C	109.5
C3—Rh1—O1	103.66 (15)	H8A—C8—H8B	109.5
C3—Rh1—O4	170.43 (15)	H8A—C8—H8C	109.5
C3—Rh1—O7	102.12 (16)	H8B—C8—H8C	109.5
C3—Rh1—C1	66.24 (16)	С4—С9—Н9А	109.5
C3—Rh1—C2	39.49 (16)	C4—C9—H9B	109.5
C3—Rh1—C4	39.27 (16)	С4—С9—Н9С	109.5
C3—Rh1—C5	66.26 (16)	H9A—C9—H9B	109.5
C4—Rh1—O1	92.95 (14)	Н9А—С9—Н9С	109.5
C4—Rh1—O4	132.68 (17)	H9B—C9—H9C	109.5
C4—Rh1—O7	140.18 (17)	C5—C10—H10A	109.5
C4—Rh1—C5	38.89 (17)	C5—C10—H10B	109.5
C5—Rh1—O1	117.19 (16)	C5—C10—H10C	109.5
C5—Rh1—O4	104.17 (15)	H10A—C10—H10B	109.5
C5—Rh1—O7	154.07 (17)	H10A—C10—H10C	109.5
O1—S1—C11	105.65 (18)	H10B—C10—H10C	109.5
O2—S1—O1	111.4 (2)	C12—C11—S1	118.9 (3)
O2—S1—O3	112.5 (2)	C16—C11—S1	121.6 (3)
O2—S1—C11	107.48 (19)	C16—C11—C12	119.4 (4)
O3—S1—O1	112.37 (17)	C11—C12—H12	120.0
O3—S1—C11	107.0 (2)	C13—C12—C11	120.0 (4)
O4—S2—C18	103.32 (18)	C13—C12—H12	120.0
O5—S2—O4	111.2 (2)	С12—С13—Н13	119.1
O5—S2—C18	107.2 (2)	C12—C13—C14	121.8 (4)
O6—S2—O4	112.6 (2)	C14—C13—H13	119.1
O6—S2—O5	114.5 (2)	C13—C14—C17	121.9 (5)
O6—S2—C18	107.1 (2)	C15—C14—C13	117.2 (4)
S1—O1—Rh1	134.78 (17)	C15—C14—C17	120.9 (5)
S2—O4—Rh1	133.72 (19)	C14—C15—H15	119.0
Rh1—O7—H7A	89 (4)	C14—C15—C16	122.0 (4)
Rh1—O7—H7B	102 (4)	C16—C15—H15	119.0
H7A—O7—H7B	102 (5)	C11—C16—C15	119.5 (4)
H8D—O8—H8E	101 (6)	C11—C16—H16	120.3
C2—C1—Rh1	71.2 (2)	C15—C16—H16	120.3
	× /		

C2—C1—C5	108.4 (4)	С14—С17—Н17А	109.5
C2—C1—C6	125.4 (5)	C14—C17—H17B	109.5
C5—C1—Rh1	71.0 (2)	C14—C17—H17C	109.5
C5—C1—C6	126.1 (5)	H17A—C17—H17B	109.5
C6—C1—Rh1	127.0 (3)	H17A—C17—H17C	109.5
C1-C2-Rh1	70.0 (2)	H17B—C17—H17C	109.5
C1—C2—C3	108.5 (4)	C19—C18—S2	120.2 (3)
C1—C2—C7	126.0 (5)	C23—C18—S2	119.9 (4)
C3—C2—Rh1	69.4 (2)	C23—C18—C19	119.9 (4)
C3—C2—C7	125.4 (5)	C18—C19—H19	120.0
C7—C2—Rh1	125.3 (3)	C18—C19—C20	120.0 (4)
C2—C3—Rh1	71.1 (2)	С20—С19—Н19	120.0
C2—C3—C8	125.9 (5)	С19—С20—Н20	119.4
C4—C3—Rh1	71.5 (2)	C19—C20—C21	121.1 (5)
C4—C3—C2	107.1 (4)	C21—C20—H20	119.4
C4—C3—C8	127.0 (5)	C20—C21—C24	121.2 (5)
C8—C3—Rh1	125.0 (3)	C22—C21—C20	117.9 (4)
C3—C4—Rh1	69.3 (2)	C22—C21—C24	120.9 (5)
C3—C4—C9	125.5 (5)	C21—C22—H22	119.1
C5-C4-Rh1	70.6 (2)	C21—C22—C23	121.8 (4)
C5—C4—C3	109.0 (4)	C23—C22—H22	119.1
C5—C4—C9	125.4 (5)	C18—C23—C22	119.2 (4)
C9—C4—Rh1	124.9 (3)	С18—С23—Н23	120.4
C1C5Rh1	69.4 (2)	С22—С23—Н23	120.4
C1C5C10	127.6 (5)	C21—C24—H24A	109.5
C4—C5—Rh1	70.6 (2)	C21—C24—H24B	109.5
C4—C5—C1	106.9 (4)	C21—C24—H24C	109.5
C4—C5—C10	125.5 (5)	H24A—C24—H24B	109.5
C10C5Rh1	127.2 (3)	H24A—C24—H24C	109.5
C1—C6—H6A	109.5	H24B—C24—H24C	109.5

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H…A	D···· A	D—H···A
07—H7 <i>A</i> ···O8	0.85 (5)	1.99 (6)	2.608 (6)	128 (5)
O7—H7 <i>B</i> ···O3	1.11 (8)	1.64 (8)	2.647 (5)	147 (7)
O8—H8D···O2 ⁱ	0.77 (8)	2.06 (8)	2.807 (6)	162 (8)
O8—H8 <i>E</i> …O5	0.88 (6)	1.91 (6)	2.766 (7)	162 (6)

Symmetry code: (i) -x+3/2, -y+3/2, z-1/2.