[Journal logo]

Volume 69 
Part 5 
Page o665  
May 2013  

Received 19 March 2013
Accepted 1 April 2013
Online 5 April 2013

Key indicators
Single-crystal X-ray study
T = 93 K
Mean [sigma](C-C) = 0.003 Å
R = 0.032
wR = 0.078
Data-to-parameter ratio = 15.4
Details
Open access

2-Methyl-3-(10H-phenothiazin-10-yl)buta-1,3-diene-1,1,4,4-tetracarbonitrile

aDepartment of Material Science and Chemistry, Wakayama University, Sakaedani, Wakayama 640-8510, Japan
Correspondence e-mail: okuno@center.wakayama-u.ac.jp

In the title compound, C21H11N5S, the phenothiazine unit has a butterfly structure, and the central six-membered ring adopts a boat conformation. The dihedral angle between the benzene rings is 127.64 (6)°, which is smaller than those reported for similar compounds because of the steric repulsion between the phenothiazine and its tetracyano-1,3-butadiene substituent. The dicyanovinyl groups are almost orthogonal to one another, making a dihedral angle of 80.58 (6)°. In the crystal, the molecules are aligned along the b axis. Four kinds of weak C-H...N interactions are recognized, one of which connects the molecules into a one-dimensional array and the remaining three link these arrays.

Related literature

For applications of tetracyano-1,3-butadienes in photonics and non-linear optics, see: Faupel et al. (2007[Faupel, F., Dimitrakopoulos, C., Kahn, A. & Wöll, C. (2007). Chem. Rev. 107, 923-1386.]). For the preparation and structure of 10-(prop-1-yn-1-yl)-10H-phenothiazine, see: Zaugg et al. (1958[Zaugg, H. E., Sweett, L. R. & Stone, G. R. (1958). J. Org. Chem. 23, 1389-1390.]); Umezono & Okuno (2012[Umezono, S. & Okuno, T. (2012). Acta Cryst. E68, o2790.]). For the structures of other related N-substituted phenothiazines, see: Chu & Van der Helm (1974[Chu, S. S. C. & Van der Helm, D. (1974). Acta Cryst. B30, 2489-2490.], 1975[Chu, S. S. C. & Van der Helm, D. (1975). Acta Cryst. B31, 1179-1183.]); Tokunaga & Okuno (2012[Tokunaga, E. & Okuno, T. (2012). Acta Cryst. E68, o3369.]).

[Scheme 1]

Experimental

Crystal data
  • C21H11N5S

  • Mr = 365.41

  • Monoclinic, P 21

  • a = 10.217 (3) Å

  • b = 7.848 (3) Å

  • c = 11.369 (3) Å

  • [beta] = 97.316 (4)°

  • V = 904.2 (5) Å3

  • Z = 2

  • Mo K[alpha] radiation

  • [mu] = 0.19 mm-1

  • T = 93 K

  • 0.10 × 0.10 × 0.05 mm

Data collection
  • Rigaku Saturn724+ diffractometer

  • 7524 measured reflections

  • 3753 independent reflections

  • 3494 reflections with F2 > 2[sigma](F2)

  • Rint = 0.022

Refinement
  • R[F2 > 2[sigma](F2)] = 0.032

  • wR(F2) = 0.078

  • S = 1.04

  • 3753 reflections

  • 244 parameters

  • 1 restraint

  • H-atom parameters constrained

  • [Delta][rho]max = 0.21 e Å-3

  • [Delta][rho]min = -0.25 e Å-3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1526 Friedel pairs

  • Flack parameter: 0.01 (6)

Table 1
Hydrogen-bond geometry (Å, °)

D-H...A D-H H...A D...A D-H...A
C15-H15B...N4i 0.98 2.65 3.186 (3) 114
C2-H2...N5ii 0.95 2.59 3.352 (3) 137
C10-H10...N2iii 0.95 2.70 3.413 (3) 133
C8-H8...N2iv 0.95 2.62 3.480 (3) 151
Symmetry codes: (i) x, y+1, z; (ii) [-x, y-{\script{1\over 2}}, -z+1]; (iii) [-x+1, y-{\script{1\over 2}}, -z]; (iv) [-x+1, y+{\script{1\over 2}}, -z].

Data collection: CrystalClear (Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]).


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5308 ).


Acknowledgements

This work was supported by Research for Promoting Technological Seeds from the Japan Science and Technology Agency (JST).

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  [CrossRef] [details]
Chu, S. S. C. & Van der Helm, D. (1974). Acta Cryst. B30, 2489-2490.  [CrossRef] [details] [ISI]
Chu, S. S. C. & Van der Helm, D. (1975). Acta Cryst. B31, 1179-1183.  [CrossRef] [details] [ISI]
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.  [ISI] [CrossRef] [ChemPort] [details]
Faupel, F., Dimitrakopoulos, C., Kahn, A. & Wöll, C. (2007). Chem. Rev. 107, 923-1386.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.  [CrossRef] [details]
Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.
Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [ChemPort] [details]
Tokunaga, E. & Okuno, T. (2012). Acta Cryst. E68, o3369.  [CSD] [CrossRef] [details]
Umezono, S. & Okuno, T. (2012). Acta Cryst. E68, o2790.  [CSD] [CrossRef] [details]
Zaugg, H. E., Sweett, L. R. & Stone, G. R. (1958). J. Org. Chem. 23, 1389-1390.  [CrossRef] [ChemPort]


Acta Cryst (2013). E69, o665  [ doi:10.1107/S1600536813008799 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.