Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

N-[4-Acetyl-5-(4-fluorophenyl)-4,5-dihydro-1,3,4-thiadiazol-2-yl]acetamide

H. D. Kavitha,^a Sheetal B. Marganakop,^b Ravindra R. Kamble,^b K. R. Roopashree^c and H. C. Devarajegowda^{c*}

^aDepartment of Physics, Government Science College, Hassan 573 201, Karnataka, India, ^bDepartment of Studies in Chemistry, Karnataka University, Dharwad 580 003. Karnataka, India, and ^cDepartment of Physics, Yuvaraja's College (Constituent College), University of Mysore, Mysore 570 005, Karnataka, India Correspondence e-mail: devarajegowda@yahoo.com, kamchem9@gmail.com

Received 31 March 2013; accepted 7 April 2013

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.041; wR factor = 0.121; data-to-parameter ratio = 13.7.

The title molecule, C₁₂H₁₂FN₃O₂S, shows a short intramolecular $S \cdots O$ contact of 2.682 (18) Å. The dihedral angle between the thiadiazole ring and the benzene ring is 86.82 (11)°. In the crystal, $N-H \cdots O$ and $C-H \cdots O$ hydrogen bonds generate an $R_2^1(6)$ graph-set motif between adjacent molecules. Pairs of futher C-H···O hydrogen bonds form inversion dimers with $R_2^2(8)$ ring motifs. These combine to generate a three-dimensional network and stack the molecules along the b axis.

Related literature

For biological applications of 1,3,4-thiadiazole derivatives, see: Matysiak & Opolski (2006); Kumar et al. (2012); Oruç et al. (2004); Kadi et al. (2007); Noolvi et al. (2011); Matysiak et al. (2006); Marganakop et al. (2012). For a related structure, see: Zhang (2009). For graph-set notation, see: Bernstein et al. (1995).

11372 measured reflections

 $R_{\rm int} = 0.024$

2352 independent reflections 2035 reflections with $I > 2\sigma(I)$

Experimental

Crystal data

$C_{12}H_{12}FN_3O_2S$	$V = 1333.11 (14) \text{ Å}^3$
$M_r = 281.31$	Z = 4
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 9.5061 (6) Å	$\mu = 0.26 \text{ mm}^{-1}$
b = 11.2152 (7) Å	T = 296 K
c = 12.7752 (7) Å	$0.24 \times 0.20 \times 0.12$ mm
$\beta = 101.823 \ (4)^{\circ}$	

Data collection

Bruker SMART CCD area-detector
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
$T_{\rm min} = 0.770, \ T_{\rm max} = 1.000$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.041$	172 parameters
wR(F ²) = 0.121	H-atom parameters constrained
S = 1.07 2352 reflections	$\Delta \rho_{\rm max} = 0.42 \text{ e } \text{A}^{-3}$ $\Delta \rho_{\rm min} = -0.34 \text{ e } \text{Å}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N5-H5\cdots O4^{i}$	0.86	1.96	2.815 (2)	171
C10−H10···O3 ⁱⁱ	0.93	2.58	3.267 (3)	131
$C17 - H17A \cdots O4^{i}$	0.96	2.46	3.316 (3)	148
C19−H19 <i>B</i> ····O4 ⁱⁱⁱ	0.96	2.55	3.335 (3)	139
Symmetry codes: -x + 1, -y, -z + 1.	(i) $-x + 1$,	$y - \frac{1}{2}, -z + \frac{1}{2};$	(ii) $x, -y +$	$\frac{1}{2}, z + \frac{1}{2};$ (iii)

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97.

The authors thank the Universities Sophisticated Instrumental Centre, Karnatak University, Dharwad, for the X-ray data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5314).

References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Kadi, A. A., El-Brollosy, N. R., Al-Deeb, O. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2007). Eur. J. Med. Chem. 42, 235-242.
- Kumar, D. N., Kumar, M., Noel, B. & Shah, K. (2012). Eur. J. Med. Chem. 55, 432-438.
- Marganakop, S. B., Kamble, R. R., Taj, T. & Kariduraganvar, M. Y. (2012). Med Chem Res 21 185-191.
- Matysiak, J., Nasulewicz, A., Peiczyńska, M., Świtalska, M., Jarozewicz, I. & Opolski, A. (2006). Eur. J. Med. Chem. 41, 475-482.
- Matysiak, J. & Opolski, A. (2006). Bioorg. Med. Chem. 14, 4483-4489.

- Noolvi, M. N., Patel, H. M., Singh, N., Gadad, A. K., Cameotra, S. S. & Badiger, A. (2011). *Eur. J. Med. Chem.* **46**, 4411–4418.
- Oruç, E. E., Rollas, S., Kkandemirli, F., Shvets, N. & Dimoglo, A. S. (2004). J. Med. Chem. 47, 6760–6767.

Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Zhang, G.-Y. (2009). Acta Cryst. E65, 02138.

supporting information

Acta Cryst. (2013). E**69**, o701–o702 [https://doi.org/10.1107/S1600536813009367]

N-[4-Acetyl-5-(4-fluorophenyl)-4,5-dihydro-1,3,4-thiadiazol-2-yl]acetamide

H. D. Kavitha, Sheetal B. Marganakop, Ravindra R. Kamble, K. R. Roopashree and H. C. Devarajegowda

S1. Comment

1,3,4-Thiadiazole derivatives are of great importance to chemists as well as biologists as they are found in a large variety of naturally occurring compounds and also pharmacologically potent molecules. These derivatives are known to exhibit a broad spectrum of activities including antiproliferative, antituberculosis, anti-inflammatory, anticancer and antimicrobial activities (Matysiak *et al.*, 2006; Kumar *et al.*, 2012; Oruç *et al.*, 2004; Kadi *et al.*, 2007; Noolvi *et al.*, 2011; Matysiak & Opolski, 2006; Marganakop *et al.*, 2012).

The asymmetric unit of the structure of *N*-[4-Acetyl-5-(4-fluorophenyl)-4,5-dihydro-1,3,4-thiadiazol-2-yl] -acetamide is shown in Fig. 1 and exhibits a short intramolecular S2···O3 contact of 2.682 (18) Å. The dihedral angle between the thiadiazole ring (S2/N6/N7/C14/C15) and the benzene ring (C8–C13) is 86.82 (11)°. In the structure, all bond lengths and angles are within normal ranges (Zhang, 2009).

In the crystal, the N5—H5···O4 and C17—H17A···O4 hydrogen bonds (Table 1) link adjacent molecules forming rings with an $R^{1}_{2}(6)$ graph-set motif (Bernstein *et al.*, 1995). The crystal structure is further stabilized by other intermolecular C —H···O hydrogen bonds, (Table 1), that generate inversion dimers with $R^{2}_{2}(8)$ ring motifs. The overall crystal packing components generate a three-dimensional network, stacking molecules along the *b* axis, (Fig. 2).

S2. Experimental

A mixture of *p*-fluorobenzaldehyde (0.005 mole), and thiosemicarbazide (0.005 mole) was refluxed in ethanol (10 ml) and acetic acid (2 drops), after completion of the reaction the resulting pale yellow powder was filtered, dried and crystallized in ethanol to obtain (*E*)-1-(4-fluoro benzylidene)thiosemicarbazide, which was further heated at 80–90°C for about 4 hrs and the reaction mixture was cooled to room temperature and poured into ice cold water. The precipitate obtained was filtered off, washed with water, dried and purified by crystallization in aqueous alcohol (80%, *v*/*v*) to yield pale yellow crystals of N– [4-acetyl-5-(4-fluorophenyl)-4,5-dihydro-[1,3,4]thiadiazol-2-yl]- acetamide. Yield: (70%), m. p: 490 K.

S3. Refinement

All H atoms were positioned at calculated positions, N—H = 0.86 Å, C—H = 0.93 Å for aromatic H, C—H = 0.98 Å for methine H and C—H = 0.96 Å for methyl H and refined using a riding model with $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H and $U_{iso}(H) = 1.2U_{eq}(C, N)$ for aromatic, methine and amide H.

Figure 1

The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are shown as spheres of arbitrary radius.

Figure 2 Packing of the molecule in the unit cell.

N-[4-Acetyl-5-(4-fluorophenyl)-4,5-dihydro-1,3,4-thiadiazol-2-yl]acetamide

Crystal data	
$C_{12}H_{12}FN_3O_2S$	$V = 1333.11 (14) Å^3$
$M_r = 281.31$	Z = 4
Monoclinic, $P2_1/c$	F(000) = 584
Hall symbol: -P 2ybc	$D_{\rm x} = 1.402 {\rm ~Mg} {\rm ~m}^{-3}$
a = 9.5061 (6) Å	Melting point: 490 K
b = 11.2152 (7) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
c = 12.7752 (7) Å	Cell parameters from 2352 reflections
$\beta = 101.823 \ (4)^{\circ}$	$\theta = 2.2 - 25.0^{\circ}$

 $\mu = 0.26 \text{ mm}^{-1}$ T = 296 K

Data collection

Bruker SMART CCD area-detector	11372 measured reflections
diffractometer	2352 independent reflections
Radiation source: fine-focus sealed tube	2035 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.024$
ω and φ scans	$\theta_{\rm max} = 25.0^\circ, \theta_{\rm min} = 2.2^\circ$
Absorption correction: multi-scan	$h = -11 \rightarrow 11$
(SADABS; Sheldrick, 2007)	$k = -13 \rightarrow 12$
$T_{\min} = 0.770, \ T_{\max} = 1.000$	$l = -15 \rightarrow 15$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
	-

Plate, colourless

 $0.24 \times 0.20 \times 0.12 \text{ mm}$

Least-squares matrix: full	man
$R[F^2 > 2\sigma(F^2)] = 0.041$	Hydrogen site location: inferred from
$wR(F^2) = 0.121$	neighbouring sites
S = 1.07	H-atom parameters constrained
2352 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0619P)^2 + 0.7142P]$
172 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.42 \text{ e} \text{ Å}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.34 \text{ e } \text{\AA}^{-3}$

Special details

Experimental. Spectroscopic data IR (KBr); 3233, 2799, 1646, 1626, 1H NMR (300 MHz, CDCl3, δ p.p.m.): 2.11 (s, 3H, CH3 of NHCOCH3), 2.24 (s, 3H, CH3 of –NCOCH3), 4.70 (s, 1H, C—H of C5—H), 6.85–7.10 (m, 4H, Ar—H), 11.77 (s, 1H, NHCO), MS (m/z, 70 eV); 282 (M^{+1} , 20), 239 (26), 204 (100).

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional	atomic	coordinates	and	isotropic	or	equivalent	isotropic	displacement	parameters	(Å	²)
				······································		1	······································	I I I I I I I I I I I I I I I I I I I	I ··· ··· ··· ···	1	/

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
F1	-0.11204 (19)	0.1673 (2)	0.41894 (18)	0.1026 (7)	
S2	0.32591 (7)	0.09255 (5)	0.09191 (4)	0.0449 (2)	
03	0.2686 (2)	-0.01822 (15)	-0.09810 (14)	0.0665 (5)	
04	0.56411 (17)	0.11842 (14)	0.42490 (13)	0.0472 (4)	
N5	0.3591 (2)	-0.14036 (15)	0.03899 (13)	0.0407 (4)	
Н5	0.3826	-0.2127	0.0571	0.049*	
N6	0.45429 (18)	-0.08120 (15)	0.21164 (13)	0.0367 (4)	
N7	0.46451 (18)	0.01994 (15)	0.27693 (14)	0.0374 (4)	
C8	0.0057 (3)	0.1564 (3)	0.3747 (2)	0.0626 (7)	
C9	0.0942 (3)	0.2522 (2)	0.3768 (2)	0.0558 (6)	
Н9	0.0750	0.3239	0.4076	0.067*	

C10	0.2141 (2)	0.2394 (2)	0.33124 (17)	0.0441 (5)
H10	0.2768	0.3032	0.3321	0.053*
C11	0.2413 (2)	0.13353 (19)	0.28503 (16)	0.0372 (5)
C12	0.1473 (3)	0.0389 (2)	0.2839 (2)	0.0551 (6)
H12	0.1645	-0.0327	0.2520	0.066*
C13	0.0287 (3)	0.0497 (3)	0.3296 (3)	0.0677 (8)
H13	-0.0340	-0.0140	0.3297	0.081*
C14	0.3719 (2)	0.12171 (18)	0.23621 (16)	0.0375 (5)
H14	0.4283	0.1953	0.2490	0.045*
C15	0.3864 (2)	-0.05435 (18)	0.11717 (16)	0.0358 (5)
C16	0.2973 (3)	-0.1186 (2)	-0.06565 (17)	0.0453 (5)
C17	0.2681 (3)	-0.2264 (2)	-0.1344 (2)	0.0604 (7)
H17A	0.2994	-0.2961	-0.0925	0.091*
H17B	0.3192	-0.2206	-0.1917	0.091*
H17C	0.1669	-0.2321	-0.1635	0.091*
C18	0.5596 (2)	0.02706 (18)	0.37069 (16)	0.0363 (5)
C19	0.6546 (3)	-0.0775 (2)	0.40480 (18)	0.0478 (6)
H19A	0.6340	-0.1389	0.3515	0.072*
H19B	0.6377	-0.1074	0.4716	0.072*
H19C	0.7533	-0.0536	0.4134	0.072*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
F1	0.0620 (10)	0.1312 (19)	0.1269 (17)	0.0023 (11)	0.0478 (11)	-0.0189 (15)
S2	0.0679 (4)	0.0285 (3)	0.0365 (3)	0.0074 (2)	0.0066 (3)	0.0035 (2)
O3	0.1095 (15)	0.0395 (10)	0.0444 (9)	0.0104 (10)	0.0014 (9)	0.0058 (8)
O4	0.0573 (9)	0.0333 (8)	0.0485 (9)	-0.0053 (7)	0.0049 (7)	-0.0088(7)
N5	0.0608 (11)	0.0261 (9)	0.0339 (9)	0.0035 (8)	0.0064 (8)	0.0009 (7)
N6	0.0464 (10)	0.0272 (9)	0.0352 (9)	0.0023 (7)	0.0055 (7)	-0.0024 (7)
N7	0.0465 (10)	0.0263 (9)	0.0373 (9)	0.0032 (7)	0.0038 (7)	-0.0032 (7)
C8	0.0439 (13)	0.082 (2)	0.0635 (16)	0.0081 (13)	0.0142 (12)	-0.0031 (15)
C9	0.0545 (14)	0.0586 (16)	0.0519 (14)	0.0122 (12)	0.0057 (11)	-0.0124 (12)
C10	0.0479 (12)	0.0374 (12)	0.0440 (12)	0.0021 (9)	0.0022 (9)	-0.0049 (10)
C11	0.0425 (11)	0.0306 (11)	0.0355 (10)	0.0022 (9)	0.0007 (8)	0.0009 (8)
C12	0.0569 (14)	0.0389 (13)	0.0706 (17)	-0.0043 (11)	0.0157 (12)	-0.0055 (12)
C13	0.0537 (15)	0.0634 (18)	0.089 (2)	-0.0146 (13)	0.0225 (14)	-0.0058 (16)
C14	0.0481 (11)	0.0247 (10)	0.0381 (11)	0.0007 (9)	0.0051 (9)	0.0005 (8)
C15	0.0451 (11)	0.0272 (10)	0.0352 (11)	0.0004 (9)	0.0083 (9)	0.0008 (8)
C16	0.0603 (14)	0.0361 (12)	0.0377 (11)	0.0047 (10)	0.0060 (10)	0.0030 (10)
C17	0.0867 (18)	0.0469 (15)	0.0405 (13)	0.0070 (13)	-0.0036 (12)	-0.0061 (11)
C18	0.0389 (10)	0.0315 (11)	0.0387 (11)	-0.0051 (8)	0.0082 (8)	-0.0007 (9)
C19	0.0494 (13)	0.0440 (14)	0.0452 (13)	0.0053 (10)	-0.0014 (10)	-0.0028 (10)

Geometric parameters (Å, °)

F1—C8	1.359 (3)	C10—C11	1.374 (3)
S2—C15	1.753 (2)	C10—H10	0.9300

S2—C14	1.835 (2)	C11—C12	1.386 (3)
O3—C16	1.211 (3)	C11—C14	1.505 (3)
O4—C18	1.233 (3)	C12—C13	1.376 (4)
N5—C16	1.368 (3)	C12—H12	0.9300
N5—C15	1.374 (3)	C13—H13	0.9300
N5—H5	0.8600	C14—H14	0.9800
N6—C15	1.283 (3)	C16—C17	1.487 (3)
N6—N7	1.399 (2)	C17—H17A	0.9600
N7—C18	1.347 (3)	C17—H17B	0.9600
N7-C14	1470(3)	C17—H17C	0.9600
C8-C9	1 361 (4)	C18— $C19$	1 490 (3)
C8-C13	1.365 (4)	C19—H19A	0.9600
C9-C10	1.389 (3)	C19—H19B	0.9600
С9—Н9	0.9300	C19 - H19C	0.9600
	0.9500		0.9000
C15—S2—C14	88.91 (9)	N7—C14—S2	102.66 (13)
C16—N5—C15	124.35 (18)	C11—C14—S2	112.67 (14)
C16—N5—H5	117.8	N7—C14—H14	109.1
C15—N5—H5	117.8	C11—C14—H14	109.1
C15—N6—N7	109.31 (17)	S2-C14-H14	109.1
C18—N7—N6	122.01 (17)	N6-C15-N5	120.17 (19)
C18 - N7 - C14	120.85(17)	N6-C15-S2	118 48 (16)
N6—N7—C14	117.06 (16)	N5-C15-S2	121.34 (15)
F1-C8-C9	118.6 (3)	03-C16-N5	121.5(10)
F1 - C8 - C13	118.1(3)	03 - C16 - C17	121.5(2) 123.5(2)
C9 - C8 - C13	1233(2)	N5-C16-C17	1150(2)
C8 - C9 - C10	117 8 (2)	C16—C17—H17A	109.5
С8—С9—Н9	121.1	C16—C17—H17B	109.5
С10—С9—Н9	121.1	H17A - C17 - H17B	109.5
C11—C10—C9	120.8 (2)	C16—C17—H17C	109.5
C11-C10-H10	119.6	H17A - C17 - H17C	109.5
C9-C10-H10	119.6	H17B-C17-H17C	109.5
C10-C11-C12	119.2 (2)	04—C18—N7	119.26 (19)
C10-C11-C14	119.2 (19)	04-C18-C19	122.74 (19)
C12-C11-C14	120.9 (2)	N7-C18-C19	118.00 (18)
C13—C12—C11	120.7(2)	C18—C19—H19A	109.5
C13-C12-H12	119.6	C18—C19—H19B	109.5
C11—C12—H12	119.6	H19A—C19—H19B	109.5
C8-C13-C12	118.1 (3)	C18—C19—H19C	109.5
C8—C13—H13	120.9	H19A—C19—H19C	109.5
C12—C13—H13	120.9	H19B-C19-H19C	109.5
N7-C14-C11	114.02 (17)		107.0
	()		
C15—N6—N7—C18	-162.76 (18)	C12—C11—C14—N7	-53.9 (3)
C15—N6—N7—C14	14.0 (2)	C10-C11-C14-S2	-117.30 (19)
F1-C8-C9-C10	179.9 (2)	C12—C11—C14—S2	62.6 (2)
C13—C8—C9—C10	-0.5 (4)	C15—S2—C14—N7	15.35 (14)
C8—C9—C10—C11	0.5 (4)	C15—S2—C14—C11	-107.73 (16)

C9—C10—C11—C12	0.1 (3)	N7—N6—C15—N5	-178.19 (17)
C9—C10—C11—C14	180.0 (2)	N7—N6—C15—S2	0.2 (2)
C10—C11—C12—C13	-0.8 (4)	C16—N5—C15—S2	-174.9 (2)
C14—C11—C12—C13	179.4 (2)	C14—S2—C15—N6	6.8 (3)
F1—C8—C13—C12	179.5 (3)	C14—S2—C15—N6	-10.22 (18)
C9—C8—C13—C12	-0.1 (5)	C14—S2—C15—N5	168.13 (18)
C11—C12—C13—C8	0.7 (4)	C15—N5—C16—O3	4.0 (4)
C18—N7—C14—C11	-81.0 (2)	C15—N5—C16—C17	-175.6 (2)
N6—N7—C14—C11	102.1 (2)	N6—N7—C18—O4	179.87 (18)
C18—N7—C14—S2	156.79 (16)	C14—N7—C18—O4	3.2 (3)
N6—N7—C14—S2	-20.1 (2)	N6—N7—C18—C19	-0.6 (3)
N6—N7—C14—S2	-20.1 (2)	N6—N7—C18—C19	-0.6 (3)
C10—C11—C14—N7	126.2 (2)	C14—N7—C18—C19	-177.34 (18)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	D—H···A
N5—H5····O4 ⁱ	0.86	1.96	2.815 (2)	171
C10—H10…O3 ⁱⁱ	0.93	2.58	3.267 (3)	131
C17—H17 <i>A</i> ···O4 ⁱ	0.96	2.46	3.316 (3)	148
C19—H19 <i>B</i> ····O4 ⁱⁱⁱ	0.96	2.55	3.335 (3)	139

Symmetry codes: (i) -*x*+1, *y*-1/2, -*z*+1/2; (ii) *x*, -*y*+1/2, *z*+1/2; (iii) -*x*+1, -*y*, -*z*+1.