supplementary materials


sj5314 scheme

Acta Cryst. (2013). E69, o701-o702    [ doi:10.1107/S1600536813009367 ]

N-[4-Acetyl-5-(4-fluorophenyl)-4,5-dihydro-1,3,4-thiadiazol-2-yl]acetamide

H. D. Kavitha, S. B. Marganakop, R. R. Kamble, K. R. Roopashree and H. C. Devarajegowda

Abstract top

The title molecule, C12H12FN3O2S, shows a short intramolecular S...O contact of 2.682 (18) Å. The dihedral angle between the thiadiazole ring and the benzene ring is 86.82 (11)°. In the crystal, N-H...O and C-H...O hydrogen bonds generate an R21(6) graph-set motif between adjacent molecules. Pairs of futher C-H...O hydrogen bonds form inversion dimers with R22(8) ring motifs. These combine to generate a three-dimensional network and stack the molecules along the b axis.

Comment top

1,3,4-Thiadiazole derivatives are of great importance to chemists as well as biologists as they are found in a large variety of naturally occurring compounds and also pharmacologically potent molecules. These derivatives are known to exhibit a broad spectrum of activities including antiproliferative, antituberculosis, anti-inflammatory, anticancer and antimicrobial activities (Matysiak et al., 2006; Kumar et al., 2012; Oruç et al., 2004; Kadi et al., 2007; Noolvi et al., 2011; Matysiak & Opolski, 2006; Marganakop et al., 2012).

The asymmetric unit of the structure of N-[4-Acetyl-5-(4-fluorophenyl)-4,5-dihydro-1,3,4-thiadiazol-2-yl] -acetamide is shown in Fig. 1 and exhibits a short intramolecular S2···O3 contact of 2.682 (18) Å. The dihedral angle between the thiadiazole ring (S2/N6/N7/C14/C15) and the benzene ring (C8–C13) is 86.82 (11)°. In the structure, all bond lengths and angles are within normal ranges (Zhang, 2009).

In the crystal, the N5—H5···O4 and C17—H17A···O4 hydrogen bonds (Table 1) link adjacent molecules forming rings with an R12(6) graph-set motif (Bernstein et al., 1995). The crystal structure is further stabilized by other intermolecular C—H···O hydrogen bonds, (Table 1), that generate inversion dimers with R22(8) ring motifs. The overall crystal packing components generate a three-dimensional network, stacking molecules along the b axis, (Fig. 2).

Related literature top

For biological applications of 1,3,4-thiadiazole derivatives, see: Matysiak & Opolski (2006); Kumar et al. (2012); Oruç et al. (2004); Kadi et al. (2007); Noolvi et al. (2011); Matysiak et al. (2006); Marganakop et al. (2012). For a related structure, see: Zhang (2009). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

A mixture of p-fluorobenzaldehyde (0.005 mole), and thiosemicarbazide (0.005 mole) was refluxed in ethanol (10 ml) and acetic acid (2 drops), after completion of the reaction the resulting pale yellow powder was filtered, dried and crystallized in ethanol to obtain (E)-1-(4-fluoro benzylidene)thiosemicarbazide, which was further heated at 80–90°C for about 4 hrs and the reaction mixture was cooled to room temperature and poured into ice cold water. The precipitate obtained was filtered off, washed with water, dried and purified by crystallization in aqueous alcohol (80%, v/v) to yield pale yellow crystals of N– [4-acetyl-5-(4-fluorophenyl)-4,5-dihydro-[1,3,4]thiadiazol-2-yl]- acetamide. Yield: (70%), m. p: 490 K.

Refinement top

All H atoms were positioned at calculated positions, N—H = 0.86 Å, C—H = 0.93 Å for aromatic H, C—H = 0.98 Å for methine H and C—H = 0.96 Å for methyl H and refined using a riding model with Uiso(H) = 1.5Ueq(C) for methyl H and Uiso(H) = 1.2Ueq(C, N) for aromatic, methine and amide H.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. Packing of the molecule in the unit cell.
N-[4-Acetyl-5-(4-fluorophenyl)-4,5-dihydro-1,3,4-thiadiazol-2-yl]acetamide top
Crystal data top
C12H12FN3O2SF(000) = 584
Mr = 281.31Dx = 1.402 Mg m3
Monoclinic, P21/cMelting point: 490 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 9.5061 (6) ÅCell parameters from 2352 reflections
b = 11.2152 (7) Åθ = 2.2–25.0°
c = 12.7752 (7) ŵ = 0.26 mm1
β = 101.823 (4)°T = 296 K
V = 1333.11 (14) Å3Plate, colourless
Z = 40.24 × 0.20 × 0.12 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2352 independent reflections
Radiation source: fine-focus sealed tube2035 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ω and φ scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
h = 1111
Tmin = 0.770, Tmax = 1.000k = 1312
11372 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0619P)2 + 0.7142P]
where P = (Fo2 + 2Fc2)/3
2352 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C12H12FN3O2SV = 1333.11 (14) Å3
Mr = 281.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.5061 (6) ŵ = 0.26 mm1
b = 11.2152 (7) ÅT = 296 K
c = 12.7752 (7) Å0.24 × 0.20 × 0.12 mm
β = 101.823 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2352 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
2035 reflections with I > 2σ(I)
Tmin = 0.770, Tmax = 1.000Rint = 0.024
11372 measured reflectionsθmax = 25.0°
Refinement top
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.121Δρmax = 0.42 e Å3
S = 1.07Δρmin = 0.34 e Å3
2352 reflectionsAbsolute structure: ?
172 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Experimental. Spectroscopic data IR (KBr); 3233, 2799, 1646, 1626, 1H NMR (300 MHz, CDCl3, δ p.p.m.): 2.11 (s, 3H, CH3 of NHCOCH3), 2.24 (s, 3H, CH3 of –NCOCH3), 4.70 (s, 1H, C—H of C5—H), 6.85–7.10 (m, 4H, Ar—H), 11.77 (s, 1H, NHCO), MS (m/z, 70 eV); 282 (M+1, 20), 239 (26), 204 (100).

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.11204 (19)0.1673 (2)0.41894 (18)0.1026 (7)
S20.32591 (7)0.09255 (5)0.09191 (4)0.0449 (2)
O30.2686 (2)0.01822 (15)0.09810 (14)0.0665 (5)
O40.56411 (17)0.11842 (14)0.42490 (13)0.0472 (4)
N50.3591 (2)0.14036 (15)0.03899 (13)0.0407 (4)
H50.38260.21270.05710.049*
N60.45429 (18)0.08120 (15)0.21164 (13)0.0367 (4)
N70.46451 (18)0.01994 (15)0.27693 (14)0.0374 (4)
C80.0057 (3)0.1564 (3)0.3747 (2)0.0626 (7)
C90.0942 (3)0.2522 (2)0.3768 (2)0.0558 (6)
H90.07500.32390.40760.067*
C100.2141 (2)0.2394 (2)0.33124 (17)0.0441 (5)
H100.27680.30320.33210.053*
C110.2413 (2)0.13353 (19)0.28503 (16)0.0372 (5)
C120.1473 (3)0.0389 (2)0.2839 (2)0.0551 (6)
H120.16450.03270.25200.066*
C130.0287 (3)0.0497 (3)0.3296 (3)0.0677 (8)
H130.03400.01400.32970.081*
C140.3719 (2)0.12171 (18)0.23621 (16)0.0375 (5)
H140.42830.19530.24900.045*
C150.3864 (2)0.05435 (18)0.11717 (16)0.0358 (5)
C160.2973 (3)0.1186 (2)0.06565 (17)0.0453 (5)
C170.2681 (3)0.2264 (2)0.1344 (2)0.0604 (7)
H17A0.29940.29610.09250.091*
H17B0.31920.22060.19170.091*
H17C0.16690.23210.16350.091*
C180.5596 (2)0.02706 (18)0.37069 (16)0.0363 (5)
C190.6546 (3)0.0775 (2)0.40480 (18)0.0478 (6)
H19A0.63400.13890.35150.072*
H19B0.63770.10740.47160.072*
H19C0.75330.05360.41340.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0620 (10)0.1312 (19)0.1269 (17)0.0023 (11)0.0478 (11)0.0189 (15)
S20.0679 (4)0.0285 (3)0.0365 (3)0.0074 (2)0.0066 (3)0.0035 (2)
O30.1095 (15)0.0395 (10)0.0444 (9)0.0104 (10)0.0014 (9)0.0058 (8)
O40.0573 (9)0.0333 (8)0.0485 (9)0.0053 (7)0.0049 (7)0.0088 (7)
N50.0608 (11)0.0261 (9)0.0339 (9)0.0035 (8)0.0064 (8)0.0009 (7)
N60.0464 (10)0.0272 (9)0.0352 (9)0.0023 (7)0.0055 (7)0.0024 (7)
N70.0465 (10)0.0263 (9)0.0373 (9)0.0032 (7)0.0038 (7)0.0032 (7)
C80.0439 (13)0.082 (2)0.0635 (16)0.0081 (13)0.0142 (12)0.0031 (15)
C90.0545 (14)0.0586 (16)0.0519 (14)0.0122 (12)0.0057 (11)0.0124 (12)
C100.0479 (12)0.0374 (12)0.0440 (12)0.0021 (9)0.0022 (9)0.0049 (10)
C110.0425 (11)0.0306 (11)0.0355 (10)0.0022 (9)0.0007 (8)0.0009 (8)
C120.0569 (14)0.0389 (13)0.0706 (17)0.0043 (11)0.0157 (12)0.0055 (12)
C130.0537 (15)0.0634 (18)0.089 (2)0.0146 (13)0.0225 (14)0.0058 (16)
C140.0481 (11)0.0247 (10)0.0381 (11)0.0007 (9)0.0051 (9)0.0005 (8)
C150.0451 (11)0.0272 (10)0.0352 (11)0.0004 (9)0.0083 (9)0.0008 (8)
C160.0603 (14)0.0361 (12)0.0377 (11)0.0047 (10)0.0060 (10)0.0030 (10)
C170.0867 (18)0.0469 (15)0.0405 (13)0.0070 (13)0.0036 (12)0.0061 (11)
C180.0389 (10)0.0315 (11)0.0387 (11)0.0051 (8)0.0082 (8)0.0007 (9)
C190.0494 (13)0.0440 (14)0.0452 (13)0.0053 (10)0.0014 (10)0.0028 (10)
Geometric parameters (Å, º) top
F1—C81.359 (3)C10—C111.374 (3)
S2—C151.753 (2)C10—H100.9300
S2—C141.835 (2)C11—C121.386 (3)
O3—C161.211 (3)C11—C141.505 (3)
O4—C181.233 (3)C12—C131.376 (4)
N5—C161.368 (3)C12—H120.9300
N5—C151.374 (3)C13—H130.9300
N5—H50.8600C14—H140.9800
N6—C151.283 (3)C16—C171.487 (3)
N6—N71.399 (2)C17—H17A0.9600
N7—C181.347 (3)C17—H17B0.9600
N7—C141.470 (3)C17—H17C0.9600
C8—C91.361 (4)C18—C191.490 (3)
C8—C131.365 (4)C19—H19A0.9600
C9—C101.389 (3)C19—H19B0.9600
C9—H90.9300C19—H19C0.9600
C15—S2—C1488.91 (9)N7—C14—S2102.66 (13)
C16—N5—C15124.35 (18)C11—C14—S2112.67 (14)
C16—N5—H5117.8N7—C14—H14109.1
C15—N5—H5117.8C11—C14—H14109.1
C15—N6—N7109.31 (17)S2—C14—H14109.1
C18—N7—N6122.01 (17)N6—C15—N5120.17 (19)
C18—N7—C14120.85 (17)N6—C15—S2118.48 (16)
N6—N7—C14117.06 (16)N5—C15—S2121.34 (15)
F1—C8—C9118.6 (3)O3—C16—N5121.5 (2)
F1—C8—C13118.1 (3)O3—C16—C17123.5 (2)
C9—C8—C13123.3 (2)N5—C16—C17115.0 (2)
C8—C9—C10117.8 (2)C16—C17—H17A109.5
C8—C9—H9121.1C16—C17—H17B109.5
C10—C9—H9121.1H17A—C17—H17B109.5
C11—C10—C9120.8 (2)C16—C17—H17C109.5
C11—C10—H10119.6H17A—C17—H17C109.5
C9—C10—H10119.6H17B—C17—H17C109.5
C10—C11—C12119.2 (2)O4—C18—N7119.26 (19)
C10—C11—C14119.87 (19)O4—C18—C19122.74 (19)
C12—C11—C14120.9 (2)N7—C18—C19118.00 (18)
C13—C12—C11120.7 (2)C18—C19—H19A109.5
C13—C12—H12119.6C18—C19—H19B109.5
C11—C12—H12119.6H19A—C19—H19B109.5
C8—C13—C12118.1 (3)C18—C19—H19C109.5
C8—C13—H13120.9H19A—C19—H19C109.5
C12—C13—H13120.9H19B—C19—H19C109.5
N7—C14—C11114.02 (17)
C15—N6—N7—C18162.76 (18)C12—C11—C14—N753.9 (3)
C15—N6—N7—C1414.0 (2)C10—C11—C14—S2117.30 (19)
F1—C8—C9—C10179.9 (2)C12—C11—C14—S262.6 (2)
C13—C8—C9—C100.5 (4)C15—S2—C14—N715.35 (14)
C8—C9—C10—C110.5 (4)C15—S2—C14—C11107.73 (16)
C9—C10—C11—C120.1 (3)N7—N6—C15—N5178.19 (17)
C9—C10—C11—C14180.0 (2)N7—N6—C15—S20.2 (2)
C10—C11—C12—C130.8 (4)C16—N5—C15—N6174.9 (2)
C14—C11—C12—C13179.4 (2)C16—N5—C15—S26.8 (3)
F1—C8—C13—C12179.5 (3)C14—S2—C15—N610.22 (18)
C9—C8—C13—C120.1 (5)C14—S2—C15—N5168.13 (18)
C11—C12—C13—C80.7 (4)C15—N5—C16—O34.0 (4)
C18—N7—C14—C1181.0 (2)C15—N5—C16—C17175.6 (2)
N6—N7—C14—C11102.1 (2)N6—N7—C18—O4179.87 (18)
C18—N7—C14—S2156.79 (16)C14—N7—C18—O43.2 (3)
N6—N7—C14—S220.1 (2)N6—N7—C18—C190.6 (3)
C10—C11—C14—N7126.2 (2)C14—N7—C18—C19177.34 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5···O4i0.861.962.815 (2)171
C10—H10···O3ii0.932.583.267 (3)131
C17—H17A···O4i0.962.463.316 (3)148
C19—H19B···O4iii0.962.553.335 (3)139
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5···O4i0.861.962.815 (2)171.00
C10—H10···O3ii0.932.583.267 (3)131.00
C17—H17A···O4i0.962.463.316 (3)148.00
C19—H19B···O4iii0.962.553.335 (3)139.00
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x+1, y, z+1.
Acknowledgements top

The authors thank the Universities Sophisticated Instrumental Centre, Karnatak University, Dharwad, for the X-ray data collection.

references
References top

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.

Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Kadi, A. A., El-Brollosy, N. R., Al-Deeb, O. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2007). Eur. J. Med. Chem. 42, 235–242.

Kumar, D. N., Kumar, M., Noel, B. & Shah, K. (2012). Eur. J. Med. Chem. 55, 432–438.

Marganakop, S. B., Kamble, R. R., Taj, T. & Kariduraganvar, M. Y. (2012). Med. Chem. Res. 21, 185–191.

Matysiak, J., Nasulewicz, A., Peiczyńska, M., Świtalska, M., Jarozewicz, I. & Opolski, A. (2006). Eur. J. Med. Chem. 41, 475–482.

Matysiak, J. & Opolski, A. (2006). Bioorg. Med. Chem. 14, 4483–4489.

Noolvi, M. N., Patel, H. M., Singh, N., Gadad, A. K., Cameotra, S. S. & Badiger, A. (2011). Eur. J. Med. Chem. 46, 4411–4418.

Oruç, E. E., Rollas, S., Kkandemirli, F., Shvets, N. & Dimoglo, A. S. (2004). J. Med. Chem. 47, 6760–6767.

Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (2008). Acta Cryst. A 64, 112–122.

Zhang, G.-Y. (2009). Acta Cryst. E 65, o2138.