organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(4-Methoxybenzyl)-1,5-benzo­thiazepin-4(5H)-one

aDepartment of Organic Chemistry, University of Madras, Maraimalai Campus, Chennai 600 025, India, bDepartment of Chemistry, Pondicherry University, Puducherry 605 014, India, cDepartment of Physics, Sri Balaji Chokkalingam Engineering College, Arni, Thiruvannamalai 632 317, India, and dDepartment of Physics, Thanthai Periyar Government Institute of Technology, Vellore 632 002, India
*Correspondence e-mail: smurugavel27@gmail.com

(Received 31 March 2013; accepted 4 April 2013; online 10 April 2013)

In the title compound, C17H15NO2S, the thia­zepine ring adopts a slightly distorted twist-boat conformation. The dihedral angle between the mean plane of the benzo­thia­zepin ring system and the benzene ring is 65.7 (1)°. In the crystal, pairs of N—H⋯O hydrogen bonds link inversion-related mol­ecules into dimers, generating R22(8) ring motifs. These dimers are further linked by C—H⋯π and ππ inter­actions [inter-centroid distance between the benzene rings of the benzo­thia­zepine unit = 3.656 (3) Å] into a three-dimensional supra­molecular network.

Related literature

For background to the biology of thia­zepin derivatives and for a related structure, see: Bakthadoss et al. (2013[Bakthadoss, M., Selvakumar, R., Manikandan, N. & Murugavel, S. (2013). Acta Cryst. E69, o562-o563.]). For ring-puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C17H15NO2S

  • Mr = 297.36

  • Triclinic, [P \overline 1]

  • a = 7.678 (5) Å

  • b = 9.612 (5) Å

  • c = 10.860 (5) Å

  • α = 77.208 (5)°

  • β = 74.117 (4)°

  • γ = 81.522 (5)°

  • V = 748.5 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 293 K

  • 0.23 × 0.21 × 0.15 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.951, Tmax = 0.968

  • 18449 measured reflections

  • 5363 independent reflections

  • 3676 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.134

  • S = 1.05

  • 5363 reflections

  • 191 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C3–C7 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.86 2.02 2.860 (2) 167
C17—H17BCgii 0.96 2.96 3.561 (3) 122
Symmetry codes: (i) -x, -y+1, -z; (ii) x+1, y+1, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, U. S. A.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, U. S. A.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, U. S. A.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012)[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]; software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The background to the biology of thiazepin derivatives and a related structure have been described recently (Bakthadoss et al., 2013). In view of this biological importance, the crystal structure of the title compound has been carried out and the results are presented here.

Fig. 1. shows a displacement ellipsoid plot of (I), with the atom numbering scheme. The seven membered thiazepine ring (N1/S1/C1/C2/C7/C8/C9) adopts slightly distorted twist-boat conformation as indicated by puckering parameters (Cremer & Pople, 1975) QT = 0.9884 (11) Å, φ2 = 357.9 (1)° and φ3 = 355.6 (3)°. The dihedral angle between the benzothiazepin ring system and the benzene ring is 65.7 (1) (1)°. The atom O1 deviates by -0.458 (1) Å from the least-squares plane of the thiazepin ring. The sum of angles at N1 atom of the thiazepin ring (359.90) is in accordance with sp2 hybridization. The geometric parameters of the title molecule agree well with those reported for a similar structure (Bakthadoss et al., 2013).

In the crystal, molecules are linked by N1—H1A···O1 hydrogen bonds into cylic centrosymmetric R22(8) dimers (Fig. 2 and Table 1). These dimers are further linked by C17—H17B···Cgii (Table 1; Symmetry code:(ii) = 1 + x, 1 + y, z) hydrogen bonds and ππ interactions between benzothiazepine benzene rings with Cg···Cgiii = 3.656 (3) Å (Symmetry code:(iii) = -x, 1 - y, 1 - z) forming a three-dimensional supramolecular network (Fig. 3; Cg is the centroid of the C2–C7 benzene ring).

Related literature top

For background to the biology of thiazepin derivatives and for a related structure, see: Bakthadoss et al. (2013). For ring-puckering parameters, see: Cremer & Pople (1975).

Experimental top

A mixture of (Z)-methyl 2-(bromomethyl)-3-(4-methoxyphenyl)acrylate 2 mmol) and o-aminothiophenol (2 mmol) in the presence of potassium tert-butoxide (4.8 mmol) in dry THF (10 ml) was stirred at room temperature for 1 h. After the completion of the reaction as indicated by TLC, the reaction mixture was concentrated and the resulting crude mass was diluted with water (20 ml) and extracted with ethyl acetate (3 x 20 ml). The organic layer was washed with brine (2 x 20 ml) and dried over anhydrous sodium sulfate. It was then concentrated to successfully provide the crude final product ((Z)-3-(4-methoxybenzyl)benzo[b][1,4]thiazepin-4(5H)-one). This was purified by column chromatography on silica gel with ethylacetate/hexane 1:19 as eluent to afford the title compound in good yield (45%). Single crystals suitable for X-ray diffraction were obtained by slow evaporation of an ethylacetate solution at room temperature.

Refinement top

All the H atoms were positioned geometrically and constrained to ride on their parent atom with C—H = 0.93–0.97 Å and N—H = 0.86 Å, and with Uiso(H)=1.5Ueq for methyl H atoms and 1.2Ueq(C) for other H atoms.

Structure description top

The background to the biology of thiazepin derivatives and a related structure have been described recently (Bakthadoss et al., 2013). In view of this biological importance, the crystal structure of the title compound has been carried out and the results are presented here.

Fig. 1. shows a displacement ellipsoid plot of (I), with the atom numbering scheme. The seven membered thiazepine ring (N1/S1/C1/C2/C7/C8/C9) adopts slightly distorted twist-boat conformation as indicated by puckering parameters (Cremer & Pople, 1975) QT = 0.9884 (11) Å, φ2 = 357.9 (1)° and φ3 = 355.6 (3)°. The dihedral angle between the benzothiazepin ring system and the benzene ring is 65.7 (1) (1)°. The atom O1 deviates by -0.458 (1) Å from the least-squares plane of the thiazepin ring. The sum of angles at N1 atom of the thiazepin ring (359.90) is in accordance with sp2 hybridization. The geometric parameters of the title molecule agree well with those reported for a similar structure (Bakthadoss et al., 2013).

In the crystal, molecules are linked by N1—H1A···O1 hydrogen bonds into cylic centrosymmetric R22(8) dimers (Fig. 2 and Table 1). These dimers are further linked by C17—H17B···Cgii (Table 1; Symmetry code:(ii) = 1 + x, 1 + y, z) hydrogen bonds and ππ interactions between benzothiazepine benzene rings with Cg···Cgiii = 3.656 (3) Å (Symmetry code:(iii) = -x, 1 - y, 1 - z) forming a three-dimensional supramolecular network (Fig. 3; Cg is the centroid of the C2–C7 benzene ring).

For background to the biology of thiazepin derivatives and for a related structure, see: Bakthadoss et al. (2013). For ring-puckering parameters, see: Cremer & Pople (1975).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing displacement ellipsoids at the 30% probability level. H atoms are presented as a small spheres of arbitrary radii.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound showing N—H···O intermolecular hydrogen bonds (dotted lines) generating an R22(8) centrosymmetric dimer. [Symmetry code: (i) -x, 1 - y, -z]. Hydrogen atoms not included in hydrogen bonding are omitted for clarity.
[Figure 3] Fig. 3. View of three-dimensional supramolecular network. The N—H···O, C—H···π and ππ interactions are shown as blue, red and green dashed lines, respectively. Cg is the centroid of the (C2···C7) benzene ring.[Symmetry code: (i) -x, 1 - y, -z; (ii) 1 + x, 1 + y, z; (iii) -x, 1 - y, 1 - z]. Hydrogen atoms not included in hydrogen bonding are omitted for clarity.
3-(4-Methoxybenzyl)-1,5-benzothiazepin-4(5H)-one top
Crystal data top
C17H15NO2SZ = 2
Mr = 297.36F(000) = 312
Triclinic, P1Dx = 1.319 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.678 (5) ÅCell parameters from 5471 reflections
b = 9.612 (5) Åθ = 2.0–32.6°
c = 10.860 (5) ŵ = 0.22 mm1
α = 77.208 (5)°T = 293 K
β = 74.117 (4)°Block, colourless
γ = 81.522 (5)°0.23 × 0.21 × 0.15 mm
V = 748.5 (7) Å3
Data collection top
Bruker APEXII CCD
diffractometer
5363 independent reflections
Radiation source: fine-focus sealed tube3676 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 10.0 pixels mm-1θmax = 32.6°, θmin = 2.0°
ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1414
Tmin = 0.951, Tmax = 0.968l = 1516
18449 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0608P)2 + 0.1157P]
where P = (Fo2 + 2Fc2)/3
5363 reflections(Δ/σ)max = 0.002
191 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C17H15NO2Sγ = 81.522 (5)°
Mr = 297.36V = 748.5 (7) Å3
Triclinic, P1Z = 2
a = 7.678 (5) ÅMo Kα radiation
b = 9.612 (5) ŵ = 0.22 mm1
c = 10.860 (5) ÅT = 293 K
α = 77.208 (5)°0.23 × 0.21 × 0.15 mm
β = 74.117 (4)°
Data collection top
Bruker APEXII CCD
diffractometer
5363 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3676 reflections with I > 2σ(I)
Tmin = 0.951, Tmax = 0.968Rint = 0.027
18449 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.134H-atom parameters constrained
S = 1.05Δρmax = 0.28 e Å3
5363 reflectionsΔρmin = 0.33 e Å3
191 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.42839 (17)0.53284 (13)0.19547 (13)0.0389 (3)
H10.51740.57380.21520.047*
C20.18042 (19)0.35576 (13)0.34697 (13)0.0404 (3)
C30.1350 (2)0.29642 (16)0.47950 (15)0.0552 (4)
H30.22680.25900.52170.066*
C40.0434 (3)0.29249 (19)0.54865 (16)0.0639 (5)
H40.07200.25110.63680.077*
C50.1794 (2)0.34965 (18)0.48779 (16)0.0595 (4)
H50.30040.34660.53470.071*
C60.1378 (2)0.41157 (16)0.35764 (14)0.0475 (3)
H60.23070.45140.31720.057*
C70.04227 (17)0.41513 (13)0.28606 (12)0.0366 (3)
C80.19209 (16)0.56421 (13)0.07296 (12)0.0344 (2)
C90.32623 (15)0.61867 (13)0.12345 (11)0.0336 (2)
C100.34837 (18)0.77722 (14)0.07485 (14)0.0415 (3)
H10A0.37540.79680.01960.050*
H10B0.23360.83100.10660.050*
C110.49498 (17)0.83050 (13)0.11561 (13)0.0377 (3)
C120.45462 (19)0.90507 (15)0.21596 (14)0.0452 (3)
H120.33380.92280.26010.054*
C130.5907 (2)0.95475 (16)0.25307 (15)0.0504 (3)
H130.56071.00520.32100.060*
C140.76966 (19)0.92861 (14)0.18852 (15)0.0456 (3)
C150.81273 (19)0.85446 (15)0.08668 (16)0.0497 (3)
H150.93350.83720.04230.060*
C160.67642 (19)0.80638 (15)0.05125 (15)0.0462 (3)
H160.70660.75670.01720.055*
C170.8784 (3)1.0769 (2)0.2951 (3)0.0859 (7)
H17A0.80261.15640.26090.129*
H17B0.99071.10940.29530.129*
H17C0.81711.03620.38250.129*
N10.07583 (14)0.47009 (12)0.15072 (10)0.0391 (2)
H1A0.01140.43820.11140.047*
O10.18656 (13)0.60841 (11)0.04169 (9)0.0456 (2)
O20.91500 (16)0.97189 (13)0.21607 (13)0.0668 (3)
S10.41037 (5)0.34901 (4)0.25677 (4)0.05008 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0361 (6)0.0382 (6)0.0460 (7)0.0061 (5)0.0172 (5)0.0053 (5)
C20.0500 (7)0.0328 (6)0.0419 (7)0.0089 (5)0.0177 (6)0.0033 (5)
C30.0772 (11)0.0465 (8)0.0470 (8)0.0166 (7)0.0288 (8)0.0044 (6)
C40.0900 (13)0.0610 (9)0.0383 (8)0.0249 (9)0.0106 (8)0.0002 (7)
C50.0627 (10)0.0624 (9)0.0476 (9)0.0190 (8)0.0023 (7)0.0097 (7)
C60.0440 (7)0.0525 (8)0.0460 (8)0.0094 (6)0.0091 (6)0.0090 (6)
C70.0424 (6)0.0363 (6)0.0346 (6)0.0104 (5)0.0117 (5)0.0070 (5)
C80.0328 (6)0.0381 (6)0.0352 (6)0.0030 (4)0.0122 (5)0.0083 (5)
C90.0315 (5)0.0364 (5)0.0351 (6)0.0053 (4)0.0111 (5)0.0064 (4)
C100.0415 (7)0.0381 (6)0.0480 (7)0.0074 (5)0.0196 (6)0.0017 (5)
C110.0377 (6)0.0320 (5)0.0441 (7)0.0069 (5)0.0140 (5)0.0018 (5)
C120.0401 (7)0.0446 (7)0.0500 (8)0.0056 (5)0.0076 (6)0.0108 (6)
C130.0590 (9)0.0453 (7)0.0532 (8)0.0077 (6)0.0170 (7)0.0168 (6)
C140.0458 (7)0.0337 (6)0.0629 (9)0.0073 (5)0.0253 (6)0.0037 (6)
C150.0358 (7)0.0471 (7)0.0667 (10)0.0037 (5)0.0121 (6)0.0132 (7)
C160.0424 (7)0.0462 (7)0.0535 (8)0.0048 (5)0.0114 (6)0.0169 (6)
C170.0936 (15)0.0580 (10)0.138 (2)0.0058 (10)0.0690 (14)0.0361 (12)
N10.0399 (5)0.0479 (6)0.0349 (5)0.0135 (5)0.0146 (4)0.0064 (4)
O10.0453 (5)0.0596 (6)0.0358 (5)0.0154 (4)0.0168 (4)0.0019 (4)
O20.0591 (7)0.0568 (6)0.1027 (10)0.0091 (5)0.0422 (7)0.0231 (6)
S10.0448 (2)0.03683 (18)0.0684 (3)0.00032 (13)0.02330 (17)0.00078 (15)
Geometric parameters (Å, º) top
C1—C91.3292 (18)C10—C111.5061 (18)
C1—S11.7565 (15)C10—H10A0.9700
C1—H10.9300C10—H10B0.9700
C2—C71.3881 (19)C11—C121.3758 (19)
C2—C31.392 (2)C11—C161.388 (2)
C2—S11.7688 (17)C12—C131.395 (2)
C3—C41.372 (3)C12—H120.9300
C3—H30.9300C13—C141.375 (2)
C4—C51.370 (3)C13—H130.9300
C4—H40.9300C14—O21.3721 (17)
C5—C61.375 (2)C14—C151.386 (2)
C5—H50.9300C15—C161.378 (2)
C6—C71.389 (2)C15—H150.9300
C6—H60.9300C16—H160.9300
C7—N11.4124 (17)C17—O21.415 (2)
C8—O11.2337 (16)C17—H17A0.9600
C8—N11.3474 (16)C17—H17B0.9600
C8—C91.4935 (16)C17—H17C0.9600
C9—C101.5170 (18)N1—H1A0.8600
C9—C1—S1125.87 (10)C9—C10—H10B108.6
C9—C1—H1117.1H10A—C10—H10B107.6
S1—C1—H1117.1C12—C11—C16117.91 (12)
C7—C2—C3119.01 (14)C12—C11—C10121.68 (12)
C7—C2—S1120.68 (11)C16—C11—C10120.41 (12)
C3—C2—S1120.27 (12)C11—C12—C13121.51 (13)
C4—C3—C2120.83 (15)C11—C12—H12119.2
C4—C3—H3119.6C13—C12—H12119.2
C2—C3—H3119.6C14—C13—C12119.54 (13)
C5—C4—C3119.96 (15)C14—C13—H13120.2
C5—C4—H4120.0C12—C13—H13120.2
C3—C4—H4120.0O2—C14—C13124.88 (14)
C4—C5—C6120.22 (16)O2—C14—C15115.39 (13)
C4—C5—H5119.9C13—C14—C15119.73 (12)
C6—C5—H5119.9C16—C15—C14119.91 (13)
C5—C6—C7120.46 (15)C16—C15—H15120.0
C5—C6—H6119.8C14—C15—H15120.0
C7—C6—H6119.8C15—C16—C11121.40 (13)
C2—C7—C6119.49 (13)C15—C16—H16119.3
C2—C7—N1122.61 (12)C11—C16—H16119.3
C6—C7—N1117.72 (12)O2—C17—H17A109.5
O1—C8—N1119.75 (10)O2—C17—H17B109.5
O1—C8—C9118.99 (11)H17A—C17—H17B109.5
N1—C8—C9121.26 (11)O2—C17—H17C109.5
C1—C9—C8122.57 (11)H17A—C17—H17C109.5
C1—C9—C10122.99 (11)H17B—C17—H17C109.5
C8—C9—C10114.20 (10)C8—N1—C7130.70 (10)
C11—C10—C9114.61 (10)C8—N1—H1A114.6
C11—C10—H10A108.6C7—N1—H1A114.6
C9—C10—H10A108.6C14—O2—C17117.51 (14)
C11—C10—H10B108.6C1—S1—C299.41 (6)
C7—C2—C3—C41.9 (2)C9—C10—C11—C1678.58 (16)
S1—C2—C3—C4175.66 (12)C16—C11—C12—C130.3 (2)
C2—C3—C4—C51.1 (2)C10—C11—C12—C13179.73 (13)
C3—C4—C5—C60.3 (3)C11—C12—C13—C140.2 (2)
C4—C5—C6—C70.9 (2)C12—C13—C14—O2180.00 (14)
C3—C2—C7—C61.28 (18)C12—C13—C14—C150.6 (2)
S1—C2—C7—C6176.27 (10)O2—C14—C15—C16179.96 (13)
C3—C2—C7—N1176.30 (11)C13—C14—C15—C160.5 (2)
S1—C2—C7—N11.25 (16)C14—C15—C16—C110.0 (2)
C5—C6—C7—C20.1 (2)C12—C11—C16—C150.4 (2)
C5—C6—C7—N1175.17 (12)C10—C11—C16—C15179.84 (13)
S1—C1—C9—C86.64 (19)O1—C8—N1—C7172.86 (12)
S1—C1—C9—C10179.39 (10)C9—C8—N1—C76.0 (2)
O1—C8—C9—C1134.74 (14)C2—C7—N1—C851.01 (19)
N1—C8—C9—C146.39 (18)C6—C7—N1—C8133.88 (14)
O1—C8—C9—C1039.71 (16)C13—C14—O2—C1714.9 (2)
N1—C8—C9—C10139.16 (12)C15—C14—O2—C17164.55 (16)
C1—C9—C10—C110.45 (19)C9—C1—S1—C257.47 (14)
C8—C9—C10—C11174.88 (11)C7—C2—S1—C158.98 (11)
C9—C10—C11—C12102.00 (15)C3—C2—S1—C1123.50 (11)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C3–C7 benzene ring.
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.862.022.860 (2)167
C17—H17B···Cgii0.962.963.561 (3)122
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC17H15NO2S
Mr297.36
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.678 (5), 9.612 (5), 10.860 (5)
α, β, γ (°)77.208 (5), 74.117 (4), 81.522 (5)
V3)748.5 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.23 × 0.21 × 0.15
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.951, 0.968
No. of measured, independent and
observed [I > 2σ(I)] reflections
18449, 5363, 3676
Rint0.027
(sin θ/λ)max1)0.758
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.134, 1.05
No. of reflections5363
No. of parameters191
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.33

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C3–C7 benzene ring.
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.862.022.860 (2)166.8
C17—H17B···Cgii0.962.963.561 (3)122.0
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z.
 

Footnotes

Additional correspondence author, e-mail: bhakthadoss@yahoo.com.

Acknowledgements

The authors thank Dr Babu Vargheese, SAIF, IIT, Madras, India, for his help with the data collection.

References

First citationBakthadoss, M., Selvakumar, R., Manikandan, N. & Murugavel, S. (2013). Acta Cryst. E69, o562–o563.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, U. S. A.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds