organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 5| May 2013| Pages o750-o751

(1S,3′S,3a′R,6′S)-6′-(2-Chloro­phen­yl)-3′-[(2R,3S)-1-(4-meth­­oxy­phen­yl)-4-oxo-3-phenyl­azetidin-2-yl]-2-oxo-3′,3′a,4′,6′-tetra­hydro-2H,2′H-spiro­[ace­naphthyl­ene-1,1′-pyrrolo­[1,2-c][1,3]thia­zole]-2′,2′-dicarbo­nitrile

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: shirai2011@gmail.com

(Received 17 March 2013; accepted 5 April 2013; online 17 April 2013)

The mol­ecular conformation of the title compound, C41H29ClN4O3S, is stabilized by intra­molecular C—H⋯O and C—H⋯Cl hydrogen bonds. The thia­zole ring adopts an envelope conformation with the N atom as the flap, while the pyrrolidine ring has a twisted conformation on the N—C bond involving the spiro C atom. The β la­ctam ring makes dihedral angles of 39.74 (15) and 16.21 (16)° with the mean planes of the thia­zole and pyrrolidine rings, respectively. The thia­zole ring mean plane makes dihedral angles of 23.79 (13) and 70.88 (13) ° with the pyrrolidine and cyclo­pentane rings, respectively, while the pyrrolidine ring makes a dihedral angle of 85.63 (13)° with the cyclo­pentane ring. The O atom attached to the β la­ctam ring deviates from its mean plane by 0.040 (2) Å, while the O atom attached to the cyclo­pentane ring deviates from its mean plane by 0.132 (2) Å. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds, forming chains along [010], and C—H⋯π and π-π inter­actions [centroid-centroid distance = 3.6928 (17) Å].

Related literature

For general background to β-la­ctams, see: Banik & Becker (2000[Banik, B. K. & Becker, F. F. (2000). Tetrahedron Lett. 41, 6551-6554.]); Brakhage (1998[Brakhage, A. A. (1998). Microbiol. Mol. Biol. Rev. 62, 547-585.]). For a related structure, see: Sundaramoorthy et al. (2012[Sundaramoorthy, S., Rajesh, R., Raghunathan, R. & Velmurugan, D. (2012). Acta Cryst. E68, o2200-o2201.]).

[Scheme 1]

Experimental

Crystal data
  • C41H29ClN4O3S

  • Mr = 693.19

  • Monoclinic, P 21

  • a = 10.7611 (5) Å

  • b = 14.3742 (7) Å

  • c = 11.6657 (6) Å

  • β = 110.107 (3)°

  • V = 1694.50 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker SMART APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.937, Tmax = 0.957

  • 15747 measured reflections

  • 7910 independent reflections

  • 5429 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.114

  • S = 1.00

  • 7910 reflections

  • 452 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.28 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 3527 Friedel pairs

  • Flack parameter: −0.05 (5)

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C10–C15 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18⋯O3 0.98 2.36 2.961 (2) 119
C20—H20⋯Cl1 0.98 2.54 3.095 (2) 116
C19—H19A⋯O1i 0.97 2.54 3.467 (3) 159
C35—H35⋯Cg1ii 0.93 2.83 3.523 (4) 133
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+1]; (ii) x-1, y, z-1.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The role of β-lactam antibiotics is well known (Banik & Becker, 2000). The most commonly used β-lactam antibiotics for the therapy of infectious diseases are penicillin and cephalosporin (Brakhage, 1998). In view of the potential applications of such compounds we have synthesized the title β-lactam derivative and report herein on its crystal structure.

In the title compound, Fig. 1, the thiazole ring (S1/N2/C18-C20) adopts an envelope conformation with atom N2 as the flap. The pyrrolidine ring (N2/C17/C18/C27/C28) adopts a twisted conformation on bond N2-C27. The β lactam ring (N1/C8/C9/C16) makes a dihedral angle of 39.74 (15)° with the thiazole ring mean plane, and a dihedral angle of 16.21 (16)° with the the pyrrolidine ring mean plane. The β lactam ring makes dihedral angles of 36.83 (16)° and 72.99 (16)° with the methoxy phenyl ring and unsubstituted phenyl ring, respectively. The thiazole ring mean plane makes a dihedral angle of 23.79 (13)° with the pyrrolidine ring mean plane, and a dihedral angle of 70.88 (13)° with the cyclopentane ring (C27/C31/C32/C37/C38) of the acenaphthylen-1(2H)-one ring system. The pyrrolidine ring mean plane is almost normal to the cyclopentane ring with a dihedral angle of 85.62 (13) °. Atom O2 deviates by 0.040 (2) Å from the β lactam ring and O3 deviates by 0.132 (2) Å from the cyclopentane ring. The chlorine atom Cl1 deviates by -0.0427 (8) Å from the phenyl ring to which it is attached.

In the crystal, molecules are linked by C—H···O hydrogen bonds, forming chains along the direction, and C-H···π and π-π interactions [Cg2-Cg3i = 3.6928 (17) Å; Cg2 and Cg3 are the centroids of rings C2-C6 and C32-C37, respectively; symmetry code: -x+1, y-1/2, -z]; see Table 1 and Fig. 2 for details.

Related literature top

For general background to β-lactams, see: Banik & Becker (2000); Brakhage (1998). For a related structure, see: Sundaramoorthy et al. (2012).

Experimental top

A mixture of 2-(2-chlorophenyl)thiazolidine-4-carboxylic acid (1.1 mmol), acenapthenequinone (1.0 mmol) and 2-((1-(4-methoxycyclohexa-2,4-dienyl)-4- oxo-3-phenylazetidin-2-yl)methylene)malononitrile (1.0 mmol) was refluxed in methanol. Completion of the reaction was controlled by TLC. The solvent was removed in vacuo, then the crude product was diluted with chloroform and washed with water followed by brine solution. The organic layer was separated and dried over Na2SO4. The solvent was removed and the crude product was subjected to column chromatography using petroleum ether: ethyl acetate mixture (7:3) as eluent. The pure product was dried, dissolved in ethyl acetate and heated for two minutes. The resulting solution was subjected to crystallization by slow evaporation of the solvent for 48 hours giving colourless block-like crystals.

Refinement top

The atom coordinates correspond to the absolute structure of the molecule in the crystal [Falck parameter = 0.05 (5)]. The H atoms were placed in calculated positions and refined as riding: C—H = 0.93 - 0.97 Å with Uiso(H) = 1.5Ueq(C-methyl) and = 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atom labelling. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the a axis, showing the hydrogen bonds as dashed lines [see Table 1 for details; H-atoms not involved in hydrogen bonds have been excluded for clarity].
(1S,3'S,3a'R,6'S)-6'-(2-Chlorophenyl)-3'-[(2R,3S)-1-(4-methoxyphenyl)-4-oxo-3-phenylazetidin-2-yl]-2-oxo-3',3'a,4',6'-tetrahydro-2H,2'H-spiro[acenaphthylene-1,1'-pyrrolo[1,2-c][1,3]thiazole]-2',2'-dicarbonitrile top
Crystal data top
C41H29ClN4O3SF(000) = 720
Mr = 693.19Dx = 1.359 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 7910 reflections
a = 10.7611 (5) Åθ = 1.9–28.4°
b = 14.3742 (7) ŵ = 0.22 mm1
c = 11.6657 (6) ÅT = 293 K
β = 110.107 (3)°Block, colourless
V = 1694.50 (14) Å30.30 × 0.25 × 0.20 mm
Z = 2
Data collection top
Bruker SMART APEXII area-detector
diffractometer
7910 independent reflections
Radiation source: fine-focus sealed tube5429 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ω and ϕ scansθmax = 28.4°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1414
Tmin = 0.937, Tmax = 0.957k = 1818
15747 measured reflectionsl = 1515
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.114 w = 1/[σ2(Fo2) + (0.0567P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
7910 reflectionsΔρmax = 0.24 e Å3
452 parametersΔρmin = 0.28 e Å3
1 restraintAbsolute structure: Flack (1983), 3527 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.05 (5)
Crystal data top
C41H29ClN4O3SV = 1694.50 (14) Å3
Mr = 693.19Z = 2
Monoclinic, P21Mo Kα radiation
a = 10.7611 (5) ŵ = 0.22 mm1
b = 14.3742 (7) ÅT = 293 K
c = 11.6657 (6) Å0.30 × 0.25 × 0.20 mm
β = 110.107 (3)°
Data collection top
Bruker SMART APEXII area-detector
diffractometer
7910 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
5429 reflections with I > 2σ(I)
Tmin = 0.937, Tmax = 0.957Rint = 0.034
15747 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.114Δρmax = 0.24 e Å3
S = 1.00Δρmin = 0.28 e Å3
7910 reflectionsAbsolute structure: Flack (1983), 3527 Friedel pairs
452 parametersAbsolute structure parameter: 0.05 (5)
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4023 (3)0.4825 (2)0.2806 (3)0.0781 (9)
H1A0.32230.51110.22810.117*
H1B0.38260.42170.30370.117*
H1C0.46420.47740.23820.117*
C20.5027 (3)0.62498 (17)0.3725 (3)0.0566 (7)
C30.5693 (4)0.6716 (2)0.4795 (3)0.0721 (9)
H30.57790.64440.55420.087*
C40.6227 (3)0.75768 (19)0.4766 (3)0.0622 (7)
H40.66720.78880.54900.075*
C50.6102 (2)0.79803 (15)0.3656 (2)0.0455 (6)
C60.5403 (2)0.75252 (16)0.2583 (2)0.0474 (6)
H60.52990.78040.18360.057*
C70.4860 (2)0.66590 (17)0.2615 (3)0.0518 (6)
H70.43850.63550.18940.062*
C80.7964 (2)0.91484 (18)0.4313 (2)0.0551 (7)
C90.7905 (2)0.99648 (17)0.3462 (2)0.0480 (6)
H90.85180.98690.30170.058*
C100.8058 (2)1.09252 (16)0.4000 (2)0.0439 (5)
C110.7753 (2)1.11136 (19)0.5039 (2)0.0542 (6)
H110.74711.06350.54260.065*
C120.7865 (3)1.2002 (2)0.5502 (3)0.0655 (8)
H120.76471.21210.61930.079*
C130.8297 (3)1.2713 (2)0.4947 (3)0.0653 (8)
H130.83671.33130.52600.078*
C140.8622 (3)1.2538 (2)0.3938 (3)0.0590 (7)
H140.89261.30180.35690.071*
C150.8504 (2)1.16505 (18)0.3459 (2)0.0514 (6)
H150.87251.15380.27680.062*
C160.6481 (2)0.95750 (16)0.2704 (2)0.0406 (5)
H160.64420.93200.19130.049*
C170.5310 (2)1.01889 (15)0.2601 (2)0.0391 (5)
H170.54961.05160.33800.047*
C180.3964 (2)0.96917 (16)0.2303 (2)0.0416 (5)
H180.39540.91240.18340.050*
C190.3453 (2)0.9480 (2)0.3343 (2)0.0560 (7)
H19A0.38770.98810.40360.067*
H19B0.36330.88370.36020.067*
C200.1664 (2)1.01221 (18)0.1256 (2)0.0477 (6)
H200.11351.06930.10640.057*
C210.1057 (2)0.94262 (17)0.0232 (2)0.0470 (6)
C220.1457 (3)0.8500 (2)0.0340 (3)0.0614 (7)
H220.20890.82980.10640.074*
C230.0937 (3)0.7875 (2)0.0602 (4)0.0788 (10)
H230.12310.72620.05160.095*
C240.0014 (3)0.8161 (3)0.1668 (3)0.0804 (10)
H240.03710.77380.22990.096*
C250.0440 (3)0.9063 (3)0.1805 (3)0.0721 (9)
H250.10800.92570.25280.087*
C260.0093 (2)0.9688 (2)0.0852 (2)0.0555 (6)
C270.3593 (2)1.07144 (15)0.06371 (19)0.0401 (5)
C280.5037 (2)1.09515 (16)0.1552 (2)0.0401 (5)
C290.6010 (2)1.09509 (18)0.0923 (2)0.0473 (6)
C300.5047 (2)1.18733 (18)0.2100 (2)0.0508 (6)
C310.3687 (2)0.99588 (17)0.0320 (2)0.0421 (5)
C320.2909 (2)1.03007 (18)0.1534 (2)0.0446 (6)
C330.2603 (2)0.9912 (2)0.2675 (2)0.0579 (7)
H330.28880.93170.27770.070*
C340.1841 (3)1.0450 (3)0.3684 (3)0.0714 (9)
H340.16211.02010.44640.086*
C350.1418 (3)1.1323 (3)0.3551 (3)0.0703 (9)
H350.09291.16560.42430.084*
C360.1703 (2)1.1737 (2)0.2392 (2)0.0548 (7)
C370.2469 (2)1.11967 (17)0.1398 (2)0.0437 (6)
C380.2821 (2)1.14927 (16)0.0176 (2)0.0440 (6)
C390.2397 (2)1.23392 (19)0.0068 (3)0.0560 (7)
H390.26001.25450.08680.067*
C400.1637 (3)1.2898 (2)0.0929 (3)0.0665 (8)
H400.13581.34810.07710.080*
C410.1300 (3)1.2612 (2)0.2111 (3)0.0641 (8)
H410.08001.30000.27380.077*
N10.67236 (19)0.88497 (13)0.36479 (17)0.0466 (5)
N20.30451 (17)1.03727 (14)0.15349 (17)0.0429 (4)
N30.5058 (3)1.25734 (17)0.2555 (2)0.0757 (7)
N40.6746 (2)1.0943 (2)0.0429 (2)0.0712 (7)
O10.4578 (2)0.53771 (14)0.3864 (2)0.0816 (7)
O20.8777 (2)0.88497 (14)0.52295 (19)0.0801 (7)
O30.43283 (18)0.92533 (12)0.00412 (16)0.0568 (5)
S10.16802 (7)0.96921 (7)0.27474 (7)0.0761 (3)
Cl10.05283 (7)1.08123 (6)0.10849 (7)0.0774 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0724 (18)0.0524 (18)0.114 (3)0.0146 (15)0.0384 (19)0.0068 (18)
C20.0729 (17)0.0404 (14)0.0678 (19)0.0018 (12)0.0387 (14)0.0052 (13)
C30.122 (3)0.0527 (17)0.0529 (17)0.0003 (17)0.0451 (18)0.0045 (14)
C40.096 (2)0.0501 (16)0.0446 (15)0.0006 (15)0.0291 (14)0.0010 (13)
C50.0540 (13)0.0374 (13)0.0455 (14)0.0106 (10)0.0177 (11)0.0052 (11)
C60.0542 (14)0.0446 (13)0.0431 (14)0.0071 (11)0.0164 (11)0.0058 (11)
C70.0548 (14)0.0453 (14)0.0556 (16)0.0027 (12)0.0192 (12)0.0049 (12)
C80.0527 (14)0.0468 (14)0.0554 (16)0.0136 (11)0.0053 (13)0.0003 (12)
C90.0427 (12)0.0502 (14)0.0496 (14)0.0050 (10)0.0139 (11)0.0034 (11)
C100.0378 (11)0.0432 (13)0.0453 (13)0.0026 (10)0.0075 (10)0.0021 (11)
C110.0584 (15)0.0550 (16)0.0523 (16)0.0059 (12)0.0231 (12)0.0023 (12)
C120.0711 (18)0.072 (2)0.0554 (17)0.0046 (15)0.0238 (15)0.0153 (15)
C130.0623 (16)0.0534 (17)0.074 (2)0.0003 (13)0.0153 (15)0.0119 (15)
C140.0614 (15)0.0515 (16)0.0598 (17)0.0057 (12)0.0150 (13)0.0022 (13)
C150.0498 (14)0.0565 (16)0.0464 (14)0.0051 (12)0.0145 (11)0.0012 (12)
C160.0465 (12)0.0393 (12)0.0363 (11)0.0007 (10)0.0144 (10)0.0009 (10)
C170.0450 (12)0.0396 (12)0.0330 (11)0.0011 (9)0.0137 (10)0.0003 (9)
C180.0463 (12)0.0432 (12)0.0349 (11)0.0019 (10)0.0134 (9)0.0018 (10)
C190.0585 (15)0.0666 (17)0.0456 (14)0.0045 (13)0.0215 (12)0.0100 (13)
C200.0447 (12)0.0564 (15)0.0447 (13)0.0024 (11)0.0186 (10)0.0013 (11)
C210.0391 (11)0.0557 (16)0.0504 (14)0.0065 (10)0.0207 (10)0.0008 (12)
C220.0550 (15)0.0594 (17)0.0718 (19)0.0066 (13)0.0244 (14)0.0004 (15)
C230.0720 (19)0.0641 (19)0.110 (3)0.0079 (16)0.044 (2)0.021 (2)
C240.0647 (18)0.096 (3)0.087 (2)0.0124 (19)0.0346 (18)0.036 (2)
C250.0526 (15)0.105 (3)0.0598 (18)0.0043 (16)0.0212 (14)0.0119 (18)
C260.0386 (12)0.0716 (17)0.0591 (16)0.0035 (12)0.0206 (12)0.0023 (14)
C270.0419 (11)0.0411 (12)0.0367 (12)0.0019 (10)0.0127 (9)0.0049 (10)
C280.0419 (11)0.0400 (12)0.0375 (11)0.0009 (9)0.0125 (9)0.0029 (10)
C290.0453 (12)0.0526 (14)0.0411 (13)0.0048 (11)0.0112 (11)0.0059 (11)
C300.0556 (14)0.0422 (14)0.0481 (15)0.0006 (11)0.0095 (12)0.0009 (12)
C310.0423 (11)0.0440 (13)0.0420 (13)0.0021 (10)0.0169 (10)0.0003 (10)
C320.0366 (11)0.0579 (15)0.0387 (13)0.0083 (10)0.0119 (10)0.0015 (11)
C330.0504 (14)0.0786 (19)0.0439 (14)0.0109 (13)0.0150 (12)0.0078 (14)
C340.0656 (18)0.106 (3)0.0374 (15)0.0122 (18)0.0112 (13)0.0043 (16)
C350.0553 (16)0.103 (3)0.0413 (16)0.0039 (16)0.0025 (13)0.0169 (16)
C360.0354 (12)0.0737 (18)0.0511 (16)0.0025 (12)0.0096 (11)0.0172 (14)
C370.0351 (11)0.0565 (15)0.0362 (13)0.0027 (10)0.0079 (9)0.0069 (11)
C380.0394 (11)0.0470 (14)0.0446 (14)0.0007 (10)0.0133 (10)0.0052 (11)
C390.0517 (13)0.0533 (16)0.0604 (17)0.0119 (12)0.0157 (12)0.0055 (13)
C400.0549 (15)0.0584 (17)0.081 (2)0.0139 (13)0.0165 (15)0.0128 (16)
C410.0448 (14)0.0725 (19)0.068 (2)0.0104 (13)0.0108 (13)0.0285 (16)
N10.0543 (11)0.0395 (10)0.0394 (11)0.0032 (9)0.0078 (9)0.0047 (9)
N20.0412 (10)0.0507 (11)0.0380 (10)0.0032 (8)0.0151 (8)0.0071 (9)
N30.0922 (18)0.0478 (14)0.0749 (17)0.0059 (13)0.0130 (14)0.0066 (13)
N40.0615 (14)0.101 (2)0.0575 (15)0.0105 (14)0.0292 (12)0.0029 (14)
O10.1154 (17)0.0505 (12)0.0911 (17)0.0150 (11)0.0511 (14)0.0024 (11)
O20.0746 (13)0.0640 (12)0.0725 (13)0.0129 (10)0.0121 (11)0.0103 (11)
O30.0695 (11)0.0535 (10)0.0486 (10)0.0109 (9)0.0217 (9)0.0015 (8)
S10.0604 (4)0.1237 (7)0.0530 (4)0.0016 (4)0.0309 (3)0.0097 (4)
Cl10.0530 (4)0.0809 (5)0.0861 (5)0.0059 (4)0.0085 (4)0.0137 (4)
Geometric parameters (Å, º) top
C1—O11.416 (4)C19—H19B0.9700
C1—H1A0.9600C20—N21.453 (3)
C1—H1B0.9600C20—C211.522 (4)
C1—H1C0.9600C20—S11.841 (3)
C2—O11.374 (3)C20—H200.9800
C2—C71.377 (4)C21—C261.383 (3)
C2—C31.381 (4)C21—C221.391 (4)
C3—C41.369 (4)C22—C231.381 (4)
C3—H30.9300C22—H220.9300
C4—C51.382 (4)C23—C241.374 (5)
C4—H40.9300C23—H230.9300
C5—C61.384 (3)C24—C251.366 (5)
C5—N11.419 (3)C24—H240.9300
C6—C71.382 (3)C25—C261.391 (4)
C6—H60.9300C25—H250.9300
C7—H70.9300C26—Cl11.735 (3)
C8—O21.204 (3)C27—N21.452 (3)
C8—N11.362 (3)C27—C381.517 (3)
C8—C91.525 (4)C27—C311.586 (3)
C9—C101.502 (3)C27—C281.590 (3)
C9—C161.584 (3)C28—C301.470 (4)
C9—H90.9800C28—C291.471 (4)
C10—C111.387 (4)C29—N41.128 (3)
C10—C151.386 (4)C30—N31.136 (3)
C11—C121.375 (4)C31—O31.207 (3)
C11—H110.9300C31—C321.460 (3)
C12—C131.373 (4)C32—C331.375 (3)
C12—H120.9300C32—C371.400 (3)
C13—C141.363 (4)C33—C341.412 (4)
C13—H130.9300C33—H330.9300
C14—C151.380 (4)C34—C351.362 (5)
C14—H140.9300C34—H340.9300
C15—H150.9300C35—C361.411 (4)
C16—N11.473 (3)C35—H350.9300
C16—C171.510 (3)C36—C371.404 (3)
C16—H160.9800C36—C411.405 (4)
C17—C181.544 (3)C37—C381.408 (3)
C17—C281.593 (3)C38—C391.364 (4)
C17—H170.9800C39—C401.419 (4)
C18—N21.459 (3)C39—H390.9300
C18—C191.524 (3)C40—C411.363 (4)
C18—H180.9800C40—H400.9300
C19—S11.818 (3)C41—H410.9300
C19—H19A0.9700
O1—C1—H1A109.5C21—C20—S1112.51 (18)
O1—C1—H1B109.5N2—C20—H20108.2
H1A—C1—H1B109.5C21—C20—H20108.2
O1—C1—H1C109.5S1—C20—H20108.2
H1A—C1—H1C109.5C26—C21—C22117.0 (2)
H1B—C1—H1C109.5C26—C21—C20121.5 (2)
O1—C2—C7124.3 (3)C22—C21—C20121.4 (2)
O1—C2—C3115.5 (3)C23—C22—C21121.5 (3)
C7—C2—C3120.2 (2)C23—C22—H22119.3
C4—C3—C2120.5 (3)C21—C22—H22119.3
C4—C3—H3119.7C24—C23—C22119.8 (3)
C2—C3—H3119.7C24—C23—H23120.1
C3—C4—C5119.8 (3)C22—C23—H23120.1
C3—C4—H4120.1C25—C24—C23120.4 (3)
C5—C4—H4120.1C25—C24—H24119.8
C4—C5—C6119.8 (2)C23—C24—H24119.8
C4—C5—N1118.8 (2)C24—C25—C26119.3 (3)
C6—C5—N1121.4 (2)C24—C25—H25120.3
C7—C6—C5120.3 (2)C26—C25—H25120.3
C7—C6—H6119.8C21—C26—C25121.9 (3)
C5—C6—H6119.8C21—C26—Cl1121.6 (2)
C2—C7—C6119.4 (2)C25—C26—Cl1116.5 (2)
C2—C7—H7120.3N2—C27—C38115.48 (19)
C6—C7—H7120.3N2—C27—C31114.61 (18)
O2—C8—N1131.6 (3)C38—C27—C31102.62 (17)
O2—C8—C9135.1 (2)N2—C27—C2897.68 (15)
N1—C8—C993.33 (18)C38—C27—C28117.40 (18)
C10—C9—C8117.5 (2)C31—C27—C28109.55 (17)
C10—C9—C16120.32 (19)C30—C28—C29108.5 (2)
C8—C9—C1684.68 (18)C30—C28—C27110.17 (19)
C10—C9—H9110.7C29—C28—C27111.36 (18)
C8—C9—H9110.7C30—C28—C17108.30 (18)
C16—C9—H9110.7C29—C28—C17114.07 (18)
C11—C10—C15118.3 (2)C27—C28—C17104.34 (17)
C11—C10—C9121.3 (2)N4—C29—C28179.1 (3)
C15—C10—C9120.4 (2)N3—C30—C28178.0 (3)
C12—C11—C10120.6 (3)O3—C31—C32129.0 (2)
C12—C11—H11119.7O3—C31—C27123.7 (2)
C10—C11—H11119.7C32—C31—C27107.3 (2)
C13—C12—C11120.2 (3)C33—C32—C37120.4 (2)
C13—C12—H12119.9C33—C32—C31131.9 (2)
C11—C12—H12119.9C37—C32—C31107.7 (2)
C14—C13—C12119.9 (3)C32—C33—C34117.5 (3)
C14—C13—H13120.0C32—C33—H33121.3
C12—C13—H13120.0C34—C33—H33121.3
C13—C14—C15120.3 (3)C35—C34—C33122.1 (3)
C13—C14—H14119.8C35—C34—H34119.0
C15—C14—H14119.8C33—C34—H34119.0
C14—C15—C10120.6 (3)C34—C35—C36121.8 (3)
C14—C15—H15119.7C34—C35—H35119.1
C10—C15—H15119.7C36—C35—H35119.1
N1—C16—C17113.65 (19)C37—C36—C41116.3 (3)
N1—C16—C986.81 (16)C37—C36—C35115.5 (3)
C17—C16—C9117.27 (19)C41—C36—C35128.1 (3)
N1—C16—H16112.3C32—C37—C36122.7 (2)
C17—C16—H16112.3C32—C37—C38114.1 (2)
C9—C16—H16112.3C36—C37—C38123.1 (2)
C16—C17—C18116.15 (18)C39—C38—C37119.2 (2)
C16—C17—C28113.05 (18)C39—C38—C27132.7 (2)
C18—C17—C28103.56 (16)C37—C38—C27108.0 (2)
C16—C17—H17107.9C38—C39—C40118.2 (3)
C18—C17—H17107.9C38—C39—H39120.9
C28—C17—H17107.9C40—C39—H39120.9
N2—C18—C19105.65 (18)C41—C40—C39122.5 (3)
N2—C18—C17102.28 (17)C41—C40—H40118.8
C19—C18—C17118.71 (19)C39—C40—H40118.8
N2—C18—H18109.9C40—C41—C36120.6 (2)
C19—C18—H18109.9C40—C41—H41119.7
C17—C18—H18109.9C36—C41—H41119.7
C18—C19—S1106.27 (16)C8—N1—C5130.2 (2)
C18—C19—H19A110.5C8—N1—C1695.15 (18)
S1—C19—H19A110.5C5—N1—C16131.75 (18)
C18—C19—H19B110.5C27—N2—C20124.01 (17)
S1—C19—H19B110.5C27—N2—C18108.24 (16)
H19A—C19—H19B108.7C20—N2—C18113.32 (18)
N2—C20—C21118.0 (2)C2—O1—C1117.9 (3)
N2—C20—S1101.24 (15)C19—S1—C2094.89 (12)
O1—C2—C3—C4177.5 (3)C38—C27—C31—O3173.6 (2)
C7—C2—C3—C42.0 (5)C28—C27—C31—O348.2 (3)
C2—C3—C4—C50.2 (5)N2—C27—C31—C32121.17 (19)
C3—C4—C5—C62.0 (4)C38—C27—C31—C324.8 (2)
C3—C4—C5—N1176.7 (3)C28—C27—C31—C32130.26 (18)
C4—C5—C6—C71.7 (4)O3—C31—C32—C335.1 (4)
N1—C5—C6—C7176.9 (2)C27—C31—C32—C33176.6 (2)
O1—C2—C7—C6177.2 (2)O3—C31—C32—C37173.5 (2)
C3—C2—C7—C62.3 (4)C27—C31—C32—C374.9 (2)
C5—C6—C7—C20.4 (4)C37—C32—C33—C340.1 (4)
O2—C8—C9—C1060.2 (4)C31—C32—C33—C34178.3 (2)
N1—C8—C9—C10120.3 (2)C32—C33—C34—C350.2 (4)
O2—C8—C9—C16178.3 (3)C33—C34—C35—C360.9 (5)
N1—C8—C9—C161.25 (19)C34—C35—C36—C371.2 (4)
C8—C9—C10—C1124.6 (3)C34—C35—C36—C41177.7 (3)
C16—C9—C10—C1175.9 (3)C33—C32—C37—C360.3 (4)
C8—C9—C10—C15155.8 (2)C31—C32—C37—C36179.1 (2)
C16—C9—C10—C15103.6 (3)C33—C32—C37—C38178.1 (2)
C15—C10—C11—C121.4 (4)C31—C32—C37—C383.1 (3)
C9—C10—C11—C12178.2 (2)C41—C36—C37—C32178.1 (2)
C10—C11—C12—C130.8 (4)C35—C36—C37—C320.9 (4)
C11—C12—C13—C140.3 (4)C41—C36—C37—C380.5 (3)
C12—C13—C14—C150.8 (4)C35—C36—C37—C38178.6 (2)
C13—C14—C15—C100.3 (4)C32—C37—C38—C39177.2 (2)
C11—C10—C15—C140.8 (3)C36—C37—C38—C390.6 (4)
C9—C10—C15—C14178.8 (2)C32—C37—C38—C270.2 (3)
C10—C9—C16—N1117.7 (2)C36—C37—C38—C27177.6 (2)
C8—C9—C16—N11.16 (17)N2—C27—C38—C3954.2 (3)
C10—C9—C16—C172.6 (3)C31—C27—C38—C39179.6 (3)
C8—C9—C16—C17116.2 (2)C28—C27—C38—C3960.3 (4)
N1—C16—C17—C1858.9 (3)N2—C27—C38—C37122.4 (2)
C9—C16—C17—C18157.94 (19)C31—C27—C38—C373.0 (2)
N1—C16—C17—C28178.40 (17)C28—C27—C38—C37123.2 (2)
C9—C16—C17—C2882.5 (2)C37—C38—C39—C401.4 (4)
C16—C17—C18—N2144.93 (19)C27—C38—C39—C40177.6 (3)
C28—C17—C18—N220.4 (2)C38—C39—C40—C411.2 (4)
C16—C17—C18—C1999.3 (3)C39—C40—C41—C360.1 (4)
C28—C17—C18—C19136.1 (2)C37—C36—C41—C400.7 (4)
N2—C18—C19—S127.0 (2)C35—C36—C41—C40178.2 (3)
C17—C18—C19—S1140.95 (18)O2—C8—N1—C516.2 (5)
N2—C20—C21—C26111.8 (3)C9—C8—N1—C5163.4 (2)
S1—C20—C21—C26130.9 (2)O2—C8—N1—C16178.2 (3)
N2—C20—C21—C2267.5 (3)C9—C8—N1—C161.3 (2)
S1—C20—C21—C2249.8 (3)C4—C5—N1—C845.0 (4)
C26—C21—C22—C231.4 (4)C6—C5—N1—C8133.6 (3)
C20—C21—C22—C23177.9 (3)C4—C5—N1—C16159.3 (3)
C21—C22—C23—C241.2 (5)C6—C5—N1—C1622.1 (4)
C22—C23—C24—C250.7 (5)C17—C16—N1—C8119.8 (2)
C23—C24—C25—C260.4 (5)C9—C16—N1—C81.29 (19)
C22—C21—C26—C251.2 (4)C17—C16—N1—C578.7 (3)
C20—C21—C26—C25178.1 (2)C9—C16—N1—C5162.9 (2)
C22—C21—C26—Cl1178.01 (19)C38—C27—N2—C2048.5 (3)
C20—C21—C26—Cl12.7 (3)C31—C27—N2—C2070.5 (3)
C24—C25—C26—C210.7 (4)C28—C27—N2—C20173.9 (2)
C24—C25—C26—Cl1178.5 (2)C38—C27—N2—C18175.01 (18)
N2—C27—C28—C3083.2 (2)C31—C27—N2—C1866.0 (2)
C38—C27—C28—C3040.8 (3)C28—C27—N2—C1849.7 (2)
C31—C27—C28—C30157.2 (2)C21—C20—N2—C2753.6 (3)
N2—C27—C28—C29156.39 (19)S1—C20—N2—C27176.78 (18)
C38—C27—C28—C2979.6 (3)C21—C20—N2—C1881.0 (3)
C31—C27—C28—C2936.8 (2)S1—C20—N2—C1842.2 (2)
N2—C27—C28—C1732.9 (2)C19—C18—N2—C27171.04 (18)
C38—C27—C28—C17156.9 (2)C17—C18—N2—C2746.2 (2)
C31—C27—C28—C1786.7 (2)C19—C18—N2—C2047.4 (2)
C16—C17—C28—C30124.0 (2)C17—C18—N2—C20172.26 (18)
C18—C17—C28—C30109.5 (2)C7—C2—O1—C16.5 (4)
C16—C17—C28—C293.1 (3)C3—C2—O1—C1173.0 (3)
C18—C17—C28—C29129.6 (2)C18—C19—S1—C204.0 (2)
C16—C17—C28—C27118.66 (19)N2—C20—S1—C1919.93 (18)
C18—C17—C28—C277.9 (2)C21—C20—S1—C19106.93 (19)
N2—C27—C31—O360.4 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C10–C15 ring.
D—H···AD—HH···AD···AD—H···A
C18—H18···O30.982.362.961 (2)119
C20—H20···Cl10.982.543.095 (2)116
C19—H19A···O1i0.972.543.467 (3)159
C35—H35···Cg1ii0.932.833.523 (4)133
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x1, y, z1.

Experimental details

Crystal data
Chemical formulaC41H29ClN4O3S
Mr693.19
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)10.7611 (5), 14.3742 (7), 11.6657 (6)
β (°) 110.107 (3)
V3)1694.50 (14)
Z2
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker SMART APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.937, 0.957
No. of measured, independent and
observed [I > 2σ(I)] reflections
15747, 7910, 5429
Rint0.034
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.114, 1.00
No. of reflections7910
No. of parameters452
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.28
Absolute structureFlack (1983), 3527 Friedel pairs
Absolute structure parameter0.05 (5)

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C10–C15 ring.
D—H···AD—HH···AD···AD—H···A
C18—H18···O30.982.362.961 (2)119
C20—H20···Cl10.982.543.095 (2)116
C19—H19A···O1i0.972.543.467 (3)159
C35—H35···Cg1ii0.932.833.523 (4)133
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x1, y, z1.
 

Acknowledgements

SK, TS and DV thank the TBI X-ray facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection. SK thanks the DST–PURSE for a Junior Research Fellowship and TS thanks the DST for an Inspire fellowship. The UGC (SAP–CAS) is acknowleged for the departmental facilities.

References

First citationBanik, B. K. & Becker, F. F. (2000). Tetrahedron Lett. 41, 6551–6554.  Web of Science CrossRef CAS
First citationBrakhage, A. A. (1998). Microbiol. Mol. Biol. Rev. 62, 547–585.  Web of Science CAS PubMed
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals
First citationSundaramoorthy, S., Rajesh, R., Raghunathan, R. & Velmurugan, D. (2012). Acta Cryst. E68, o2200–o2201.  CSD CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 5| May 2013| Pages o750-o751
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds