[Journal logo]

Volume 69 
Part 5 
Pages o750-o751  
May 2013  

Received 17 March 2013
Accepted 5 April 2013
Online 17 April 2013

Key indicators
Single-crystal X-ray study
T = 293 K
Mean [sigma](C-C) = 0.004 Å
R = 0.045
wR = 0.114
Data-to-parameter ratio = 17.5
Details
Open access

(1S,3'S,3a'R,6'S)-6'-(2-Chlorophenyl)-3'-[(2R,3S)-1-(4-methoxyphenyl)-4-oxo-3-phenylazetidin-2-yl]-2-oxo-3',3'a,4',6'-tetrahydro-2H,2'H-spiro[acenaphthylene-1,1'-pyrrolo[1,2-c][1,3]thiazole]-2',2'-dicarbonitrile

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
Correspondence e-mail: shirai2011@gmail.com

The molecular conformation of the title compound, C41H29ClN4O3S, is stabilized by intramolecular C-H...O and C-H...Cl hydrogen bonds. The thiazole ring adopts an envelope conformation with the N atom as the flap, while the pyrrolidine ring has a twisted conformation on the N-C bond involving the spiro C atom. The [beta] lactam ring makes dihedral angles of 39.74 (15) and 16.21 (16)° with the mean planes of the thiazole and pyrrolidine rings, respectively. The thiazole ring mean plane makes dihedral angles of 23.79 (13) and 70.88 (13) ° with the pyrrolidine and cyclopentane rings, respectively, while the pyrrolidine ring makes a dihedral angle of 85.63 (13)° with the cyclopentane ring. The O atom attached to the [beta] lactam ring deviates from its mean plane by 0.040 (2) Å, while the O atom attached to the cyclopentane ring deviates from its mean plane by 0.132 (2) Å. In the crystal, molecules are linked by C-H...O hydrogen bonds, forming chains along [010], and C-H...[pi] and [pi]-[pi] interactions [centroid-centroid distance = 3.6928 (17) Å].

Related literature

For general background to [beta]-lactams, see: Banik & Becker (2000[Banik, B. K. & Becker, F. F. (2000). Tetrahedron Lett. 41, 6551-6554.]); Brakhage (1998[Brakhage, A. A. (1998). Microbiol. Mol. Biol. Rev. 62, 547-585.]). For a related structure, see: Sundaramoorthy et al. (2012[Sundaramoorthy, S., Rajesh, R., Raghunathan, R. & Velmurugan, D. (2012). Acta Cryst. E68, o2200-o2201.]).

[Scheme 1]

Experimental

Crystal data
  • C41H29ClN4O3S

  • Mr = 693.19

  • Monoclinic, P 21

  • a = 10.7611 (5) Å

  • b = 14.3742 (7) Å

  • c = 11.6657 (6) Å

  • [beta] = 110.107 (3)°

  • V = 1694.50 (14) Å3

  • Z = 2

  • Mo K[alpha] radiation

  • [mu] = 0.22 mm-1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker SMART APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.937, Tmax = 0.957

  • 15747 measured reflections

  • 7910 independent reflections

  • 5429 reflections with I > 2[sigma](I)

  • Rint = 0.034

Refinement
  • R[F2 > 2[sigma](F2)] = 0.045

  • wR(F2) = 0.114

  • S = 1.00

  • 7910 reflections

  • 452 parameters

  • 1 restraint

  • H-atom parameters constrained

  • [Delta][rho]max = 0.24 e Å-3

  • [Delta][rho]min = -0.28 e Å-3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 3527 Friedel pairs

  • Flack parameter: -0.05 (5)

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C10-C15 ring.

D-H...A D-H H...A D...A D-H...A
C18-H18...O3 0.98 2.36 2.961 (2) 119
C20-H20...Cl1 0.98 2.54 3.095 (2) 116
C19-H19A...O1i 0.97 2.54 3.467 (3) 159
C35-H35...Cg1ii 0.93 2.83 3.523 (4) 133
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+1]; (ii) x-1, y, z-1.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2576 ).


Acknowledgements

SK, TS and DV thank the TBI X-ray facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection. SK thanks the DST-PURSE for a Junior Research Fellowship and TS thanks the DST for an Inspire fellowship. The UGC (SAP-CAS) is acknowleged for the departmental facilities.

References

Banik, B. K. & Becker, F. F. (2000). Tetrahedron Lett. 41, 6551-6554.  [ISI] [CrossRef] [ChemPort]
Brakhage, A. A. (1998). Microbiol. Mol. Biol. Rev. 62, 547-585.  [ISI] [ChemPort] [PubMed]
Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.  [ISI] [CrossRef] [ChemPort] [details]
Flack, H. D. (1983). Acta Cryst. A39, 876-881.  [CrossRef] [details]
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [ChemPort] [details]
Spek, A. L. (2009). Acta Cryst. D65, 148-155.  [ISI] [CrossRef] [ChemPort] [details]
Sundaramoorthy, S., Rajesh, R., Raghunathan, R. & Velmurugan, D. (2012). Acta Cryst. E68, o2200-o2201.  [CSD] [CrossRef] [ChemPort] [details]


Acta Cryst (2013). E69, o750-o751   [ doi:10.1107/S1600536813009276 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.