supplementary materials


su2579 scheme

Acta Cryst. (2013). E69, o631    [ doi:10.1107/S1600536813008143 ]

N-[(E)-4-Bromobenzylidene]-3,4-dimethylaniline

L.-X. Sun, L.-Z. Zhu and J.-K. Wang

Abstract top

In the title compound, C15H14BrN, the dihedral angle between the benzene rings is 6.4 (2)° and the molecule has an E conformation about the C=N bond. In the crystal, molecules are linked by C-H...[pi] interactions, forming two-dimensional networks lying parallel to (001).

Comment top

Schiff base ligands have received much attention during past years. They have many pharmaceutical activities, such as antifungal effects (Aziz et al., 2010), radical scavenging activity (Lu et al., 2012), inhibition of enzyme activity (Schmidt et al., 2009), antibacterial activities (Shi et al., 2010). We report herein on the crystal structure of the new title Schiff base compound.

In the title molecule, Fig. 1, the bond lengths (Allen et al., 1987) and angles are normal and comparable to the values observed in similar compounds (Sun et al., 2011a,b; Guo et al., 2011). The dihedral angle between the two aromatic rings in the Schiff base molecule is 6.4 (2) °, indicating that two these rings are approximatively coplanar. The molecule has an E conformation about the C7N1 bond.

In the crystal, molecules are linked by C-H···π interactions (Table 1).

Related literature top

Schiff bases derivatives have many pharmaceutical activities. For their antifungal properties, see: Aziz et al. (2010), for their radical scavenging activity, see: Lu et al. (2012), for their inhibition of enzyme activity, see: Schmidt et al. (2009) and for their antibacterial activity, see: Shi et al. (2010). For related structures, see: Sun et al. (2011a,b); Guo et al. (2011). For standard bond lengths, see: Allen et al. (1987).

Experimental top

A mixture of 4-bromobenzaldehyde (5 mmol), 3,4-dimethylaniline (5 mmol) and methanol (50 ml) was refluxed for 6 h. It was then allowed to cool and was filtered. Recrystallization of the crude product from methanol yielded yellow block-like crystals.

Refinement top

H atoms were positioned geometrically and refined using the riding-model approximation: C—H = 0.93–0.96 Å with Uiso(H) = 1.5Ueq(C-methyl) and = 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with atom labelling. The displacement ellipsoids are drawn at the 50% probability level.
N-[(E)-4-Bromobenzylidene]-3,4-dimethylaniline top
Crystal data top
C15H14BrNF(000) = 1168
Mr = 288.18Dx = 1.461 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 2443 reflections
a = 14.868 (7) Åθ = 2.7–25.5°
b = 6.161 (3) ŵ = 3.11 mm1
c = 28.609 (13) ÅT = 296 K
V = 2621 (2) Å3Block, yellow
Z = 80.22 × 0.19 × 0.14 mm
Data collection top
Bruker APEXII CCD
diffractometer
2445 independent reflections
Radiation source: fine-focus sealed tube1438 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.090
φ and ω scansθmax = 25.5°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1818
Tmin = 0.547, Tmax = 0.670k = 77
17312 measured reflectionsl = 3234
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.148H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0449P)2 + 6.739P]
where P = (Fo2 + 2Fc2)/3
2445 reflections(Δ/σ)max = 0.001
156 parametersΔρmax = 0.55 e Å3
0 restraintsΔρmin = 0.56 e Å3
Crystal data top
C15H14BrNV = 2621 (2) Å3
Mr = 288.18Z = 8
Orthorhombic, PbcnMo Kα radiation
a = 14.868 (7) ŵ = 3.11 mm1
b = 6.161 (3) ÅT = 296 K
c = 28.609 (13) Å0.22 × 0.19 × 0.14 mm
Data collection top
Bruker APEXII CCD
diffractometer
2445 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1438 reflections with I > 2σ(I)
Tmin = 0.547, Tmax = 0.670Rint = 0.090
17312 measured reflectionsθmax = 25.5°
Refinement top
R[F2 > 2σ(F2)] = 0.058H-atom parameters constrained
wR(F2) = 0.148Δρmax = 0.55 e Å3
S = 1.03Δρmin = 0.56 e Å3
2445 reflectionsAbsolute structure: ?
156 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.12941 (5)1.15486 (14)0.55818 (2)0.0821 (3)
N10.1277 (3)0.5957 (7)0.76719 (15)0.0460 (16)
C10.1549 (3)0.7560 (9)0.6734 (2)0.0507 (19)
C20.1579 (4)0.8357 (11)0.6281 (2)0.058 (2)
C30.1256 (3)1.0405 (10)0.62021 (17)0.0460 (19)
C40.0911 (4)1.1681 (10)0.65516 (19)0.0533 (19)
C50.0907 (4)1.0843 (9)0.70019 (19)0.0523 (19)
C60.1210 (3)0.8791 (9)0.70960 (18)0.0417 (17)
C70.1164 (3)0.7919 (9)0.75771 (19)0.0470 (19)
C80.1253 (3)0.5192 (8)0.81399 (16)0.0387 (16)
C90.0878 (3)0.6300 (8)0.85173 (18)0.0430 (17)
C100.0929 (3)0.5490 (9)0.89694 (18)0.0440 (17)
C110.1357 (3)0.3504 (9)0.90483 (19)0.0477 (17)
C120.1714 (3)0.2393 (9)0.8668 (2)0.0477 (19)
C130.1656 (3)0.3213 (8)0.8222 (2)0.0443 (17)
C140.0523 (5)0.6765 (11)0.93710 (19)0.072 (3)
C150.1459 (4)0.2609 (11)0.9540 (2)0.070 (2)
H10.176100.616800.679500.0610*
H20.181300.752600.603900.0690*
H40.068801.306100.648900.0640*
H50.069401.169800.724600.0630*
H70.104500.887600.782100.0560*
H90.058600.761200.846500.0520*
H120.199800.106600.871600.0570*
H130.189100.242500.797300.0530*
H14A0.002200.597600.949800.1080*
H14B0.032000.815100.925900.1080*
H14C0.096800.697500.961000.1080*
H15A0.174000.368000.973500.1050*
H15B0.182500.132600.953200.1050*
H15C0.087700.225700.966400.1050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0956 (5)0.1062 (6)0.0446 (4)0.0111 (5)0.0052 (3)0.0232 (4)
N10.045 (2)0.049 (3)0.044 (3)0.001 (2)0.001 (2)0.000 (2)
C10.049 (3)0.044 (3)0.059 (4)0.009 (3)0.003 (3)0.004 (3)
C20.059 (3)0.067 (5)0.047 (4)0.007 (3)0.000 (3)0.004 (3)
C30.044 (3)0.063 (4)0.031 (3)0.008 (3)0.007 (2)0.009 (3)
C40.065 (3)0.049 (4)0.046 (3)0.002 (3)0.008 (3)0.006 (3)
C50.060 (3)0.052 (4)0.045 (3)0.001 (3)0.001 (3)0.004 (3)
C60.041 (3)0.043 (3)0.041 (3)0.007 (3)0.001 (2)0.001 (2)
C70.052 (3)0.047 (4)0.042 (3)0.003 (3)0.007 (2)0.005 (3)
C80.037 (2)0.041 (3)0.038 (3)0.003 (3)0.002 (2)0.000 (2)
C90.043 (3)0.037 (3)0.049 (3)0.008 (2)0.001 (2)0.004 (3)
C100.041 (3)0.042 (3)0.049 (3)0.004 (3)0.003 (2)0.005 (3)
C110.046 (3)0.047 (3)0.050 (3)0.004 (3)0.004 (3)0.006 (3)
C120.036 (3)0.035 (3)0.072 (4)0.005 (2)0.002 (3)0.006 (3)
C130.042 (3)0.039 (3)0.052 (3)0.000 (2)0.003 (2)0.003 (3)
C140.090 (5)0.076 (5)0.050 (4)0.013 (4)0.004 (3)0.008 (3)
C150.075 (4)0.073 (4)0.061 (4)0.012 (3)0.002 (3)0.017 (3)
Geometric parameters (Å, º) top
Br1—C31.910 (5)C11—C151.519 (8)
N1—C71.250 (7)C12—C131.375 (8)
N1—C81.420 (6)C1—H10.9300
C1—C21.387 (8)C2—H20.9300
C1—C61.379 (8)C4—H40.9300
C2—C31.369 (9)C5—H50.9300
C3—C41.372 (8)C7—H70.9300
C4—C51.388 (8)C9—H90.9300
C5—C61.369 (8)C12—H120.9300
C6—C71.479 (8)C13—H130.9300
C8—C91.394 (7)C14—H14A0.9600
C8—C131.379 (7)C14—H14B0.9600
C9—C101.388 (7)C14—H14C0.9600
C10—C111.398 (8)C15—H15A0.9600
C10—C141.517 (8)C15—H15B0.9600
C11—C121.391 (8)C15—H15C0.9600
C7—N1—C8121.5 (5)C1—C2—H2121.00
C2—C1—C6121.3 (5)C3—C2—H2121.00
C1—C2—C3118.0 (5)C3—C4—H4121.00
Br1—C3—C2118.9 (4)C5—C4—H4121.00
Br1—C3—C4118.5 (4)C4—C5—H5119.00
C2—C3—C4122.6 (5)C6—C5—H5119.00
C3—C4—C5117.7 (5)N1—C7—H7118.00
C4—C5—C6121.7 (5)C6—C7—H7118.00
C1—C6—C5118.7 (5)C8—C9—H9119.00
C1—C6—C7121.1 (5)C10—C9—H9119.00
C5—C6—C7120.2 (5)C11—C12—H12119.00
N1—C7—C6123.2 (5)C13—C12—H12119.00
N1—C8—C9125.3 (4)C8—C13—H13120.00
N1—C8—C13116.3 (4)C12—C13—H13120.00
C9—C8—C13118.4 (5)C10—C14—H14A109.00
C8—C9—C10121.6 (5)C10—C14—H14B109.00
C9—C10—C11119.3 (5)C10—C14—H14C110.00
C9—C10—C14119.9 (5)H14A—C14—H14B109.00
C11—C10—C14120.8 (5)H14A—C14—H14C109.00
C10—C11—C12118.6 (5)H14B—C14—H14C110.00
C10—C11—C15120.9 (5)C11—C15—H15A109.00
C12—C11—C15120.5 (5)C11—C15—H15B109.00
C11—C12—C13121.4 (5)C11—C15—H15C110.00
C8—C13—C12120.7 (5)H15A—C15—H15B109.00
C2—C1—H1119.00H15A—C15—H15C109.00
C6—C1—H1119.00H15B—C15—H15C109.00
C7—N1—C8—C13160.1 (5)C5—C6—C7—N1166.9 (5)
C8—N1—C7—C6178.2 (4)N1—C8—C9—C10176.2 (4)
C7—N1—C8—C918.2 (7)C13—C8—C9—C102.1 (7)
C2—C1—C6—C50.6 (8)N1—C8—C13—C12176.2 (4)
C6—C1—C2—C30.4 (8)C9—C8—C13—C122.3 (7)
C2—C1—C6—C7178.9 (5)C8—C9—C10—C110.8 (7)
C1—C2—C3—Br1179.7 (4)C8—C9—C10—C14179.1 (5)
C1—C2—C3—C40.2 (8)C9—C10—C11—C120.4 (7)
Br1—C3—C4—C5178.6 (4)C9—C10—C11—C15177.5 (5)
C2—C3—C4—C50.9 (8)C14—C10—C11—C12179.7 (5)
C3—C4—C5—C61.9 (9)C14—C10—C11—C152.4 (7)
C4—C5—C6—C11.8 (8)C10—C11—C12—C130.3 (7)
C4—C5—C6—C7177.7 (5)C15—C11—C12—C13177.7 (5)
C1—C6—C7—N112.5 (7)C11—C12—C13—C81.1 (7)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C8–C13 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C9—H9···Cg1i0.932.993.773 (5)143
C12—H12···Cg2ii0.932.773.507 (5)137
Symmetry codes: (i) x, y, z+3/2; (ii) x+1/2, y1/2, z.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C8–C13 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C9—H9···Cg1i0.932.993.773 (5)143
C12—H12···Cg2ii0.932.773.507 (5)137
Symmetry codes: (i) x, y, z+3/2; (ii) x+1/2, y1/2, z.
Acknowledgements top

This project was supported by the Natural Science Foundation of Zhejiang Province of China (grant No. LQ12E01007).

references
References top

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Aziz, A. A. A., Salem, A. N. M., Sayed, M. A. & Aboaly, M. M. (2010). J. Mol. Struct. 1010, 130–138.

Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Guo, Y., Pan, M.-X., Xiang, H., Liu, W.-H. & Song, Z.-C. (2011). Acta Cryst. E67, o1999.

Lu, J., Li, C., Chai, Y.-F., Yang, D.-Y. & Sun, C.-R. (2012). Bioorg. Med. Chem. Lett. 22, 5744–5747.

Schmidt, M. F., El-Dahshan, A., Keller, S. & Rademann, J. (2009). Angew. Chem. Int. Ed. 48, 6346–6349.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Shi, L., Fang, R.-Q., Zhu, Z.-W., Yang, Y., Cheng, K., Zhu, H.-L. & Zhong, W.-Q. (2010). Eur. J. Med. Chem. 45, 4358–4364.

Sun, L.-X., Yu, Y.-D. & Wei, G.-Y. (2011a). Acta Cryst. E67, o1564.

Sun, L.-X., Yu, Y.-D. & Wei, G.-Y. (2011b). Acta Cryst. E67, o1578.