organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Z)-3-(2-Amino­anilino)-1-phenyl­but-2-en-1-one

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and bDepartment of Inorganic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: shirai2011@gmail.com

(Received 2 April 2013; accepted 18 April 2013; online 24 April 2013)

In the title compound, C16H16N2O, the phenyl and 2-amino­phenyl rings are almost perpendicular to one another, with a dihedral angle of 82.77 (8)°. There is an intra­molecular N—H⋯O hydrogen bond in the mol­ecule. In the crystal, mol­ecules are linked via N—H⋯O hydrogen bonds forming chains along [001]. There are also C—H⋯π inter­actions present, linking the chains to form a three-dimensional structure.

Related literature

For the biological activity of chalcones, see: Di Carlo et al. (1999[Di Carlo, G., Mascolo, N., Izzo, A. A. & Capasso, F. (1999). Life Sci. 65, 337-353.]); Lin et al. (2002[Lin, Y. M., Zhou, Y., Flavin, M. T., Zhou, L. M., Nie, W. & Chen, F. C. (2002). Bioorg. Med. Chem. 10, 2795-2802.]). For a related chalcone structure, see: Ranjith et al. (2010[Ranjith, S., Thirunarayanan, A., Raja, S., Rajakumar, P. & SubbiahPandi, A. (2010). Acta Cryst. E66, o2261-o2262.]).

[Scheme 1]

Experimental

Crystal data
  • C16H16N2O

  • Mr = 252.31

  • Monoclinic, C 2/c

  • a = 15.489 (5) Å

  • b = 16.422 (5) Å

  • c = 11.684 (5) Å

  • β = 110.646 (5)°

  • V = 2781.1 (17) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker SMART APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.977, Tmax = 0.985

  • 18172 measured reflections

  • 4023 independent reflections

  • 2805 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.152

  • S = 1.01

  • 4023 reflections

  • 173 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of ring C1–C6.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O1 0.86 1.95 2.6311 (19) 135
N1—H1A⋯O1i 0.86 2.28 3.001 (2) 142
N1—H1B⋯O1ii 0.86 2.18 3.034 (2) 174
C14—H14⋯Cg1iii 0.93 2.96 3.773 (3) 147
Symmetry codes: (i) [-x+2, y, -z+{\script{1\over 2}}]; (ii) [x, -y, z+{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Chalcones are a major class of natural products with widespread distribution in fruits, vegetables, spices, tea and soy based foodstuff and have recently been the subject of great interest for their interesting pharmacological activities (Di Carlo et al., 1999). Chalcones and flavonoids have been reported to be anti-tuberculosis agents (Lin et al., 2002). Against this background and in order to obtain detailed information on molecular conformations in the solid state of such compounds, an X-ray study of the title compound was carried out.

In the title compound, Fig. 1, the phenyl ring (C1-C6) makes a dihedral angle of 82.77 (8)° with the 2-aminophenyl ring (C11-C16), which shows that they are almost orthogonal to each other. The amine attached with phenyl ring (C11-C16) deviates by 0.0827 (14) Å. There is an intramolecular N-H···O hydrogen bond in the molecule (Table 1 and Fig. 1)

In the crystal, molecules are linked via N–H···O hydrogen bonds forming chains along the c axis direction. There are also C-H···π interactions present linking the chains to form a three-dimensional structure (see Table 1 and Fig. 2).

Related literature top

For the biological activity of chalcones, see: Di Carlo et al. (1999); Lin et al. (2002). For a related chalcone structure, see: Ranjith et al. (2010).

Experimental top

To a solution of 1-benzoylacetone (2 g, 12.3 mmol) in chloroform (25 ml), 1,2-diaminobenzene (1.33 g, 12.3 mmol) in chloroform (25 ml) was added with stirring. The yellow coloured solid product was collected by filtration and washed with water to remove unreacted 1,2-diaminobenzene. The microcrystalline compound was recrystallized from hot chloroform giving yellow crystals of the title compound, suitable for X-ray diffraction analysis, on slow evaporation of the solvent [Yield: 51%; M.p. 382 K].

Refinement top

Hydrogen atoms were placed in calculated positions and refined as riding atoms: N-H = 0.86 Å, C—H = 0.93-0.96 Å, with Uiso(H) = 1.5Ueq(C-methyl) and = 1.2Ueq(N,C) for other H atoms.

Structure description top

Chalcones are a major class of natural products with widespread distribution in fruits, vegetables, spices, tea and soy based foodstuff and have recently been the subject of great interest for their interesting pharmacological activities (Di Carlo et al., 1999). Chalcones and flavonoids have been reported to be anti-tuberculosis agents (Lin et al., 2002). Against this background and in order to obtain detailed information on molecular conformations in the solid state of such compounds, an X-ray study of the title compound was carried out.

In the title compound, Fig. 1, the phenyl ring (C1-C6) makes a dihedral angle of 82.77 (8)° with the 2-aminophenyl ring (C11-C16), which shows that they are almost orthogonal to each other. The amine attached with phenyl ring (C11-C16) deviates by 0.0827 (14) Å. There is an intramolecular N-H···O hydrogen bond in the molecule (Table 1 and Fig. 1)

In the crystal, molecules are linked via N–H···O hydrogen bonds forming chains along the c axis direction. There are also C-H···π interactions present linking the chains to form a three-dimensional structure (see Table 1 and Fig. 2).

For the biological activity of chalcones, see: Di Carlo et al. (1999); Lin et al. (2002). For a related chalcone structure, see: Ranjith et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with atom labelling. The displacement ellipsoids are drawn at the 30% probability level. The intramolecular N-H···O hydrogen bond is shown as a dashed line (see Table 1 for details).
[Figure 2] Fig. 2. A view of the crystal packing of the title compound, showing the N-H···O hydrogen bonds as dashed lines (see Table 1 for details).
(Z)-3-(2-Aminoanilino)-1-phenylbut-2-en-1-one top
Crystal data top
C16H16N2OF(000) = 1072
Mr = 252.31Dx = 1.205 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4023 reflections
a = 15.489 (5) Åθ = 2.3–30.0°
b = 16.422 (5) ŵ = 0.08 mm1
c = 11.684 (5) ÅT = 293 K
β = 110.646 (5)°Block, colourless
V = 2781.1 (17) Å30.30 × 0.25 × 0.20 mm
Z = 8
Data collection top
Bruker SMART APEXII area-detector
diffractometer
4023 independent reflections
Radiation source: fine-focus sealed tube2805 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω and φ scansθmax = 30.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 2121
Tmin = 0.977, Tmax = 0.985k = 2321
18172 measured reflectionsl = 1616
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.050Secondary atom site location: difference Fourier map
wR(F2) = 0.152Hydrogen site location: inferred from neighbouring sites
S = 1.01H-atom parameters constrained
4023 reflections w = 1/[σ2(Fo2) + (0.0752P)2 + 0.9814P]
where P = (Fo2 + 2Fc2)/3
173 parameters(Δ/σ)max = 0.001
Crystal data top
C16H16N2OV = 2781.1 (17) Å3
Mr = 252.31Z = 8
Monoclinic, C2/cMo Kα radiation
a = 15.489 (5) ŵ = 0.08 mm1
b = 16.422 (5) ÅT = 293 K
c = 11.684 (5) Å0.30 × 0.25 × 0.20 mm
β = 110.646 (5)°
Data collection top
Bruker SMART APEXII area-detector
diffractometer
4023 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2805 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 0.985Rint = 0.028
18172 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.050173 parameters
wR(F2) = 0.1520 restraints
S = 1.01H-atom parameters constrained
4023 reflections
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.95043 (6)0.11163 (6)0.08924 (9)0.0464 (3)
N10.88576 (8)0.00321 (8)0.37211 (13)0.0637 (5)
N20.81921 (7)0.11567 (7)0.18340 (10)0.0392 (3)
C10.79279 (8)0.01569 (8)0.31971 (12)0.0410 (4)
C20.73017 (10)0.02773 (9)0.35822 (14)0.0490 (4)
C30.63692 (10)0.01773 (9)0.30190 (15)0.0527 (5)
C40.60208 (9)0.03447 (10)0.20489 (15)0.0546 (5)
C50.66227 (9)0.07806 (9)0.16509 (13)0.0470 (4)
C60.75672 (8)0.07045 (8)0.22326 (11)0.0375 (3)
C70.82154 (8)0.19629 (8)0.17067 (10)0.0356 (3)
C80.75857 (10)0.24833 (9)0.21128 (14)0.0472 (4)
C90.88265 (8)0.23183 (8)0.12356 (11)0.0383 (4)
C100.94545 (8)0.18800 (8)0.08424 (10)0.0362 (3)
C111.00769 (9)0.23272 (8)0.03291 (11)0.0407 (4)
C121.03522 (9)0.31218 (9)0.06381 (13)0.0464 (4)
C131.09525 (11)0.35058 (10)0.01689 (16)0.0580 (5)
C141.12735 (13)0.30984 (12)0.06213 (17)0.0672 (7)
C151.10050 (14)0.23138 (13)0.09387 (18)0.0786 (8)
C161.04137 (12)0.19230 (11)0.04670 (15)0.0624 (6)
H1A0.923100.029300.345700.0760*
H1B0.906900.030800.431500.0760*
H20.752300.064000.423200.0590*
H2A0.859900.088000.165600.0470*
H30.596700.046700.329800.0630*
H40.538700.040400.166400.0650*
H50.639100.112900.098500.0560*
H8A0.696900.244400.152900.0710*
H8B0.778900.303900.217300.0710*
H8C0.759500.230100.289700.0710*
H90.882400.288300.117400.0460*
H121.013200.340400.116900.0560*
H131.113700.404000.039100.0700*
H141.167300.335500.094100.0810*
H151.122200.203900.147900.0940*
H161.024100.138600.068500.0750*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0449 (5)0.0420 (5)0.0611 (6)0.0004 (4)0.0298 (4)0.0034 (4)
N10.0373 (6)0.0634 (9)0.0840 (10)0.0005 (5)0.0135 (6)0.0327 (7)
N20.0351 (5)0.0400 (6)0.0495 (6)0.0026 (4)0.0237 (4)0.0041 (4)
C10.0375 (6)0.0356 (7)0.0518 (7)0.0017 (5)0.0182 (5)0.0021 (5)
C20.0513 (8)0.0400 (7)0.0604 (8)0.0043 (6)0.0255 (6)0.0080 (6)
C30.0473 (7)0.0468 (8)0.0748 (10)0.0095 (6)0.0348 (7)0.0005 (7)
C40.0337 (6)0.0576 (9)0.0748 (10)0.0036 (6)0.0221 (6)0.0007 (7)
C50.0369 (6)0.0525 (8)0.0519 (7)0.0013 (6)0.0160 (6)0.0046 (6)
C60.0348 (6)0.0377 (6)0.0448 (6)0.0015 (5)0.0201 (5)0.0002 (5)
C70.0333 (5)0.0413 (7)0.0335 (5)0.0019 (5)0.0133 (4)0.0015 (5)
C80.0465 (7)0.0465 (8)0.0581 (8)0.0027 (6)0.0304 (6)0.0030 (6)
C90.0404 (6)0.0371 (7)0.0422 (6)0.0013 (5)0.0207 (5)0.0033 (5)
C100.0337 (5)0.0422 (7)0.0343 (5)0.0008 (5)0.0139 (4)0.0005 (5)
C110.0378 (6)0.0504 (8)0.0382 (6)0.0014 (5)0.0186 (5)0.0048 (5)
C120.0467 (7)0.0474 (8)0.0512 (7)0.0013 (6)0.0250 (6)0.0055 (6)
C130.0572 (9)0.0535 (9)0.0714 (10)0.0037 (7)0.0326 (8)0.0115 (7)
C140.0705 (11)0.0736 (12)0.0761 (11)0.0036 (9)0.0490 (9)0.0162 (9)
C150.0961 (14)0.0872 (14)0.0837 (12)0.0094 (11)0.0705 (12)0.0065 (10)
C160.0758 (11)0.0638 (10)0.0667 (10)0.0100 (8)0.0487 (9)0.0088 (8)
Geometric parameters (Å, º) top
O1—C101.2566 (17)C11—C121.381 (2)
N1—C11.367 (2)C12—C131.386 (2)
N2—C61.4224 (18)C13—C141.368 (3)
N2—C71.3342 (18)C14—C151.365 (3)
N1—H1A0.8600C15—C161.382 (3)
N1—H1B0.8600C2—H20.9300
N2—H2A0.8600C3—H30.9300
C1—C21.400 (2)C4—H40.9300
C1—C61.3953 (19)C5—H50.9300
C2—C31.370 (2)C8—H8A0.9600
C3—C41.371 (2)C8—H8B0.9600
C4—C51.380 (2)C8—H8C0.9600
C5—C61.384 (2)C9—H90.9300
C7—C81.494 (2)C12—H120.9300
C7—C91.3809 (19)C13—H130.9300
C9—C101.4108 (19)C14—H140.9300
C10—C111.495 (2)C15—H150.9300
C11—C161.386 (2)C16—H160.9300
C6—N2—C7127.08 (12)C14—C15—C16120.76 (19)
C1—N1—H1A120.00C11—C16—C15120.30 (17)
C1—N1—H1B120.00C1—C2—H2119.00
H1A—N1—H1B120.00C3—C2—H2119.00
C7—N2—H2A117.00C2—C3—H3120.00
C6—N2—H2A116.00C4—C3—H3120.00
N1—C1—C6121.13 (12)C3—C4—H4120.00
C2—C1—C6117.54 (13)C5—C4—H4120.00
N1—C1—C2121.30 (13)C4—C5—H5120.00
C1—C2—C3121.15 (14)C6—C5—H5120.00
C2—C3—C4120.88 (15)C7—C8—H8A109.00
C3—C4—C5119.16 (14)C7—C8—H8B109.00
C4—C5—C6120.69 (13)C7—C8—H8C109.00
N2—C6—C5121.03 (12)H8A—C8—H8B110.00
C1—C6—C5120.50 (12)H8A—C8—H8C109.00
N2—C6—C1118.43 (12)H8B—C8—H8C109.00
N2—C7—C8119.06 (12)C7—C9—H9118.00
N2—C7—C9120.87 (12)C10—C9—H9118.00
C8—C7—C9120.05 (12)C11—C12—H12120.00
C7—C9—C10124.22 (12)C13—C12—H12119.00
C9—C10—C11119.74 (12)C12—C13—H13120.00
O1—C10—C11118.11 (12)C14—C13—H13120.00
O1—C10—C9122.15 (12)C13—C14—H14120.00
C10—C11—C12122.86 (12)C15—C14—H14120.00
C12—C11—C16118.27 (14)C14—C15—H15120.00
C10—C11—C16118.85 (13)C16—C15—H15120.00
C11—C12—C13120.99 (14)C11—C16—H16120.00
C12—C13—C14119.90 (16)C15—C16—H16120.00
C13—C14—C15119.79 (19)
C6—N2—C7—C9175.89 (12)C8—C7—C9—C10179.21 (12)
C7—N2—C6—C1127.15 (14)C7—C9—C10—O10.06 (19)
C7—N2—C6—C555.26 (18)C7—C9—C10—C11179.11 (11)
C6—N2—C7—C85.71 (19)O1—C10—C11—C12154.23 (13)
C6—C1—C2—C31.0 (2)O1—C10—C11—C1624.03 (18)
N1—C1—C6—N22.42 (19)C9—C10—C11—C1226.69 (18)
N1—C1—C6—C5175.19 (13)C9—C10—C11—C16155.06 (13)
N1—C1—C2—C3177.06 (14)C10—C11—C12—C13178.04 (14)
C2—C1—C6—N2179.49 (12)C16—C11—C12—C130.2 (2)
C2—C1—C6—C52.9 (2)C10—C11—C16—C15178.72 (15)
C1—C2—C3—C40.8 (2)C12—C11—C16—C150.4 (2)
C2—C3—C4—C50.9 (2)C11—C12—C13—C140.6 (2)
C3—C4—C5—C61.1 (2)C12—C13—C14—C150.4 (3)
C4—C5—C6—N2179.49 (13)C13—C14—C15—C160.3 (3)
C4—C5—C6—C13.0 (2)C14—C15—C16—C110.6 (3)
N2—C7—C9—C100.83 (19)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of ring C1–C6.
D—H···AD—HH···AD···AD—H···A
N2—H2A···O10.861.952.6311 (19)135
N1—H1A···O1i0.862.283.001 (2)142
N1—H1B···O1ii0.862.183.034 (2)174
C14—H14···Cg1iii0.932.963.773 (3)147
Symmetry codes: (i) x+2, y, z+1/2; (ii) x, y, z+1/2; (iii) x+1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC16H16N2O
Mr252.31
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)15.489 (5), 16.422 (5), 11.684 (5)
β (°) 110.646 (5)
V3)2781.1 (17)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker SMART APEXII area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.977, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
18172, 4023, 2805
Rint0.028
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.152, 1.01
No. of reflections4023
No. of parameters173
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)?, ?

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of ring C1–C6.
D—H···AD—HH···AD···AD—H···A
N2—H2A···O10.861.952.6311 (19)135
N1—H1A···O1i0.862.283.001 (2)142
N1—H1B···O1ii0.862.183.034 (2)174
C14—H14···Cg1iii0.932.963.773 (3)147
Symmetry codes: (i) x+2, y, z+1/2; (ii) x, y, z+1/2; (iii) x+1/2, y+1/2, z1/2.
 

Acknowledgements

TS and DV thank the TBI X-ray facility, CAS in Crystallography and Biophysics, University of Madras, India, for data collection and UGC (SAP-CAS) is acknowledged for departmental facilities. TS thanks DST for the Inspire Fellowship.

References

First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDi Carlo, G., Mascolo, N., Izzo, A. A. & Capasso, F. (1999). Life Sci. 65, 337–353.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLin, Y. M., Zhou, Y., Flavin, M. T., Zhou, L. M., Nie, W. & Chen, F. C. (2002). Bioorg. Med. Chem. 10, 2795–2802.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRanjith, S., Thirunarayanan, A., Raja, S., Rajakumar, P. & SubbiahPandi, A. (2010). Acta Cryst. E66, o2261–o2262.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds