supplementary materials


su2584 scheme

Acta Cryst. (2013). E69, o812    [ doi:10.1107/S1600536813011288 ]

(E)-3-[4-(Difluoromethoxy)-3-hydroxyphenyl]-1-phenylprop-2-en-1-one

T. Srinivasan, G. Senthilkumar, K. Neelakandan, H. Manikandan and D. Velmurugan

Abstract top

In the title compound, C16H12F2O3, the plane of the phenyl ring makes a dihedral angle of 3.22 (8)° with that of the benzene ring. The molecule has an E conformation about the C=C bond. In the crystal, molecules are linked via pairs of O-H...O hydrogen bonds, forming inversion dimers which are further consolidated by a pair of C-H...O hydrogen bonds. The dimers are linked via C-H...O hydrogen bonds, forming columns along the b-axis direction.

Comment top

Chalcones are a major classes of natural products with widespread distribution in fruits, vegetables, spices, tea and soy based foodstuff and have recently been the subject of great interest for their interesting pharmacological activities (Di Carlo et al., 1999). Chalcones and flavonoids have been reported to be anti-tuberculosis agents (Lin et al., 2002). Against this background and in order to obtain detailed information on molecular conformations in the solid state of similar compounds, we report herein on the synthesis and crystal structure of the title compound.

In the title compound, Fig. 1, the phenyl ring (C2-C7) makes a dihedral angle of 3.22 (8)° with the benzene ring (C11-C16). The hydroxyl oxygen atom, O2, deviates by -0.0243 (12) Å from the benzene ring mean plane.

In the crystal, molecules are linked via a pair of O-H···O hydrogen bonds forming inversion dimers which are further consolidated by a pair of C-H···O hydrogen bonds (Fig. 2 and Table 1). The dimers are linked via C-H···O hydrogen bonds forming columns along the b axis direction (Table 1).

Related literature top

For the biological activity of chalcones, see: Di Carlo et al. (1999); Lin et al. (2002). For a related structure, see: Ranjith et al. (2010).

Experimental top

A mixture of 3-hydroxy-4-difluoromethoxybezaldehyde (2 mmol), acetophenone (2 mmol) and sodiumhydroxide (2 mmol) in ethanol were placed in a conical flask and exposed to ultrasound irradiation. The reaction mixture was monitored by TLC. After completion of the reaction, the mixture was acidified with dilute HCl and kept in the fridge overnight. The product that separated out was washed with distilled water and recrystallized from ethanol [Yield = 96%; M.p. = 409-411 K]. Colourless block-like crystals, suitable for X-ray diffraction analysis, were obtained by slow evaporation of a solution of the title compound in hexane at room temperature.

Refinement top

H atoms were placed in calculated positions, with O-H = 0.82 Å and C—H = 0.93-0.98 Å, and refined in a riding model with Uiso(H) = 1.5Ueq(O) and = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the b axis. Hydrogen bonds are shown as dashed lines (see Table 1 for details; H-atoms not involved in hydrogen bonding have been omitted for clarity).
(E)-3-[4-(Difluoromethoxy)-3-hydroxyphenyl]-1-phenylprop-2-en-1-one top
Crystal data top
C16H12F2O3F(000) = 600
Mr = 290.26Dx = 1.445 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3328 reflections
a = 17.1880 (11) Åθ = 1.4–28.3°
b = 4.1124 (3) ŵ = 0.12 mm1
c = 19.6699 (13) ÅT = 293 K
β = 106.289 (4)°Block, colourless
V = 1334.54 (16) Å30.30 × 0.25 × 0.20 mm
Z = 4
Data collection top
Bruker SMART APEXII area-detector
diffractometer
3328 independent reflections
Radiation source: fine-focus sealed tube2456 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω and φ scansθmax = 28.3°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 2221
Tmin = 0.966, Tmax = 0.977k = 55
12412 measured reflectionsl = 2623
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0528P)2 + 0.3218P]
where P = (Fo2 + 2Fc2)/3
3328 reflections(Δ/σ)max < 0.001
191 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C16H12F2O3V = 1334.54 (16) Å3
Mr = 290.26Z = 4
Monoclinic, P21/nMo Kα radiation
a = 17.1880 (11) ŵ = 0.12 mm1
b = 4.1124 (3) ÅT = 293 K
c = 19.6699 (13) Å0.30 × 0.25 × 0.20 mm
β = 106.289 (4)°
Data collection top
Bruker SMART APEXII area-detector
diffractometer
3328 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2456 reflections with I > 2σ(I)
Tmin = 0.966, Tmax = 0.977Rint = 0.028
12412 measured reflectionsθmax = 28.3°
Refinement top
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.120Δρmax = 0.21 e Å3
S = 1.03Δρmin = 0.18 e Å3
3328 reflectionsAbsolute structure: ?
191 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. #========================================================================= # 8. Refinement Data #========================================================================= Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.58013 (9)0.9403 (4)0.34909 (8)0.0501 (4)
H10.55530.73230.33050.060*
C20.57744 (8)1.0801 (3)0.23416 (7)0.0408 (3)
C30.52043 (8)0.8962 (3)0.18585 (7)0.0406 (3)
C40.53484 (8)0.8222 (4)0.12164 (7)0.0421 (3)
H40.49690.70010.08850.051*
C50.60481 (7)0.9264 (3)0.10571 (7)0.0399 (3)
C60.66097 (8)1.1133 (4)0.15554 (7)0.0459 (3)
H60.70781.18720.14570.055*
C70.64685 (9)1.1882 (4)0.21944 (8)0.0478 (3)
H70.68431.31200.25270.057*
C80.61704 (8)0.8271 (4)0.03816 (7)0.0443 (3)
H80.57630.69900.00940.053*
C90.67854 (8)0.8960 (4)0.01260 (7)0.0471 (3)
H90.72031.02750.03880.057*
C100.68243 (8)0.7696 (4)0.05624 (7)0.0434 (3)
C110.75269 (8)0.8529 (3)0.08315 (7)0.0429 (3)
C120.75121 (10)0.7547 (4)0.15079 (8)0.0587 (4)
H120.70620.64410.17850.070*
C130.81561 (11)0.8191 (5)0.17761 (9)0.0662 (5)
H130.81430.74880.22290.079*
C140.88160 (10)0.9868 (5)0.13757 (10)0.0655 (5)
H140.92471.03260.15600.079*
C150.88416 (10)1.0869 (5)0.07064 (10)0.0710 (5)
H150.92911.19970.04350.085*
C160.81987 (9)1.0202 (4)0.04329 (8)0.0576 (4)
H160.82191.08850.00220.069*
O10.56344 (6)1.1715 (2)0.29861 (5)0.0490 (3)
O20.45380 (6)0.7923 (3)0.20384 (5)0.0547 (3)
H20.42530.68300.17150.082*
O30.62832 (6)0.5935 (3)0.09091 (6)0.0615 (3)
F10.65995 (7)0.9098 (4)0.37665 (6)0.1057 (5)
F20.55249 (7)1.0449 (3)0.40166 (5)0.0779 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0568 (8)0.0515 (8)0.0449 (7)0.0069 (7)0.0190 (6)0.0019 (6)
C20.0461 (7)0.0362 (7)0.0401 (6)0.0061 (6)0.0120 (5)0.0010 (5)
C30.0368 (6)0.0450 (7)0.0406 (6)0.0024 (6)0.0120 (5)0.0022 (6)
C40.0366 (6)0.0507 (8)0.0384 (6)0.0055 (6)0.0097 (5)0.0029 (6)
C50.0374 (6)0.0424 (7)0.0404 (6)0.0006 (5)0.0116 (5)0.0038 (5)
C60.0398 (7)0.0487 (8)0.0508 (8)0.0063 (6)0.0153 (6)0.0009 (6)
C70.0480 (7)0.0440 (8)0.0486 (7)0.0067 (6)0.0090 (6)0.0057 (6)
C80.0409 (7)0.0521 (8)0.0406 (7)0.0057 (6)0.0124 (5)0.0000 (6)
C90.0429 (7)0.0560 (9)0.0441 (7)0.0083 (6)0.0150 (6)0.0016 (6)
C100.0395 (7)0.0498 (8)0.0419 (7)0.0032 (6)0.0128 (5)0.0042 (6)
C110.0420 (7)0.0457 (8)0.0436 (7)0.0005 (6)0.0165 (5)0.0058 (6)
C120.0577 (9)0.0730 (11)0.0498 (8)0.0128 (8)0.0224 (7)0.0035 (8)
C130.0730 (11)0.0793 (12)0.0581 (9)0.0036 (10)0.0377 (8)0.0019 (9)
C140.0554 (9)0.0719 (11)0.0814 (12)0.0000 (8)0.0394 (9)0.0111 (10)
C150.0479 (9)0.0908 (14)0.0791 (12)0.0185 (9)0.0258 (8)0.0072 (10)
C160.0483 (8)0.0727 (11)0.0551 (8)0.0111 (8)0.0200 (7)0.0068 (8)
O10.0638 (6)0.0415 (5)0.0433 (5)0.0093 (5)0.0178 (4)0.0050 (4)
O20.0452 (5)0.0768 (8)0.0471 (5)0.0116 (5)0.0214 (4)0.0088 (5)
O30.0530 (6)0.0835 (8)0.0511 (6)0.0251 (6)0.0199 (5)0.0131 (6)
F10.0658 (7)0.1779 (15)0.0725 (7)0.0482 (8)0.0180 (5)0.0333 (8)
F20.0913 (8)0.0979 (8)0.0562 (6)0.0185 (6)0.0402 (5)0.0023 (5)
Geometric parameters (Å, º) top
C1—F21.3250 (16)C8—H80.9300
C1—F11.3322 (18)C9—C101.4693 (19)
C1—O11.3461 (18)C9—H90.9300
C1—H10.9800C10—O31.2244 (16)
C2—C71.378 (2)C10—C111.4880 (17)
C2—C31.3830 (19)C11—C161.383 (2)
C2—O11.4063 (16)C11—C121.384 (2)
C3—O21.3589 (15)C12—C131.379 (2)
C3—C41.3873 (18)C12—H120.9300
C4—C51.3925 (17)C13—C141.372 (3)
C4—H40.9300C13—H130.9300
C5—C61.3974 (19)C14—C151.368 (3)
C5—C81.4605 (18)C14—H140.9300
C6—C71.380 (2)C15—C161.385 (2)
C6—H60.9300C15—H150.9300
C7—H70.9300C16—H160.9300
C8—C91.3223 (18)O2—H20.8200
F2—C1—F1105.47 (13)C8—C9—C10121.50 (13)
F2—C1—O1107.31 (12)C8—C9—H9119.3
F1—C1—O1110.42 (14)C10—C9—H9119.3
F2—C1—H1111.1O3—C10—C9119.92 (12)
F1—C1—H1111.1O3—C10—C11120.23 (12)
O1—C1—H1111.1C9—C10—C11119.85 (12)
C7—C2—C3121.35 (12)C16—C11—C12118.51 (13)
C7—C2—O1118.71 (12)C16—C11—C10122.99 (13)
C3—C2—O1119.88 (12)C12—C11—C10118.50 (13)
O2—C3—C2118.64 (12)C13—C12—C11120.78 (15)
O2—C3—C4123.15 (12)C13—C12—H12119.6
C2—C3—C4118.20 (12)C11—C12—H12119.6
C3—C4—C5121.55 (12)C14—C13—C12120.00 (16)
C3—C4—H4119.2C14—C13—H13120.0
C5—C4—H4119.2C12—C13—H13120.0
C4—C5—C6118.80 (12)C15—C14—C13120.14 (15)
C4—C5—C8118.20 (12)C15—C14—H14119.9
C6—C5—C8122.99 (12)C13—C14—H14119.9
C7—C6—C5119.88 (12)C14—C15—C16120.01 (16)
C7—C6—H6120.1C14—C15—H15120.0
C5—C6—H6120.1C16—C15—H15120.0
C2—C7—C6120.21 (13)C11—C16—C15120.55 (15)
C2—C7—H7119.9C11—C16—H16119.7
C6—C7—H7119.9C15—C16—H16119.7
C9—C8—C5128.35 (13)C1—O1—C2114.90 (10)
C9—C8—H8115.8C3—O2—H2109.5
C5—C8—H8115.8
C7—C2—C3—O2178.98 (13)C8—C9—C10—C11179.99 (14)
O1—C2—C3—O23.68 (19)O3—C10—C11—C16172.66 (15)
C7—C2—C3—C40.0 (2)C9—C10—C11—C166.6 (2)
O1—C2—C3—C4177.37 (12)O3—C10—C11—C126.5 (2)
O2—C3—C4—C5178.42 (13)C9—C10—C11—C12174.29 (14)
C2—C3—C4—C50.5 (2)C16—C11—C12—C130.7 (3)
C3—C4—C5—C60.8 (2)C10—C11—C12—C13178.48 (15)
C3—C4—C5—C8177.55 (13)C11—C12—C13—C141.1 (3)
C4—C5—C6—C70.7 (2)C12—C13—C14—C150.9 (3)
C8—C5—C6—C7177.60 (14)C13—C14—C15—C160.3 (3)
C3—C2—C7—C60.2 (2)C12—C11—C16—C150.1 (3)
O1—C2—C7—C6177.53 (12)C10—C11—C16—C15179.00 (16)
C5—C6—C7—C20.2 (2)C14—C15—C16—C110.1 (3)
C4—C5—C8—C9179.68 (15)F2—C1—O1—C2170.69 (12)
C6—C5—C8—C91.4 (3)F1—C1—O1—C274.84 (16)
C5—C8—C9—C10178.56 (14)C7—C2—O1—C1101.79 (16)
C8—C9—C10—O30.8 (2)C3—C2—O1—C180.80 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O3i0.821.962.7722 (16)172
C4—H4···O3i0.932.483.1940 (19)134
C1—H1···O1ii0.982.403.3022 (19)152
Symmetry codes: (i) x+1, y+1, z; (ii) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O3i0.821.962.7722 (16)172
C4—H4···O3i0.932.483.1940 (19)134
C1—H1···O1ii0.982.403.3022 (19)152
Symmetry codes: (i) x+1, y+1, z; (ii) x, y1, z.
Acknowledgements top

The authors thanks the TBI X-ray facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection. TS and DV thank the UGC (SAP–CAS) for the departmental facilties. TS also thanks the DST Inspire program for financial assistance.

references
References top

Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Di Carlo, G., Mascolo, N., Izzo, A. A. & Capasso, F. (1999). Life Sci. 65, 337–353.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Lin, Y. M., Zhou, Y., Flavin, M. T., Zhou, L. M., Nie, W. & Chen, F. C. (2002). Bioorg. Med. Chem. 10, 2795–2802.

Ranjith, S., Thirunarayanan, A., Raja, S., Rajakumar, P. & SubbiahPandi, A. (2010). Acta Cryst. E66, o2261–o2262.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.