Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

8,15-Dioxa-10,13-diazatetracyclo[14.4.0.0 ${ }^{2,7} .0^{9,14}$]icosa-1(16),2,4,6,$\mathbf{9 (1 4) , 1 0 , 1 2 , 1 7 , 1 9 - n o n a e n e}$

Thothadri Srinivasan, ${ }^{\text {a }}$ Venkatesan Kalpana, ${ }^{\text {b }}$ Perumal Rajakumar ${ }^{\text {b }}$ and Devadasan Velmurugan ${ }^{\text {a* }}$

${ }^{\text {a }}$ Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600025 , India, and ${ }^{\text {b }}$ Department of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
Correspondence e-mail: shirai2011@gmail.com

Received 10 April 2013; accepted 25 April 2013
Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.033 ; w R$ factor $=0.106$; data-to-parameter ratio $=16.3$.

The asymmetric unit of the title compound, $\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}$, contains one half-molecule, the complete molecule being generated by twofold rotation symmetry. The plane of the pyrazine ring forms a dihedral angle of 64.87 (6) ${ }^{\circ}$ with that of the benzene ring, and the planes of the two benzene rings are inclined to one another by 54.20 (6) ${ }^{\circ}$. The O atom deviates from the plane of the benzene ring by 0.1549 (8) \AA. There are no significant intermolecular interactions in the crystal.

Related literature

For applications of the pyrazine ring system in drug development, see: Du et al. (2009); Dubinina et al. (2006); Ellsworth et al. (2007); Mukaiyama et al. (2007). For background to the fluorescence properties of related compounds, see: Kawai et al. (2001); Abdullah (2005) and for their biological activity, see: Seitz et al. (2002); Temple et al. (1970). For a related structure, see: Nasir et al. (2010).

Experimental

Crystal data
$\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}$
$M_{r}=262.26$
Orthorhombic, Pbcn
$a=14.429$ (3) A
$b=10.162$ (2) A
$c=8.3313(18) \AA$

Data collection

Bruker SMART APEXII areadetector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2008)
$T_{\text {min }}=0.972, T_{\text {max }}=0.981$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033$
$w R\left(F^{2}\right)=0.106$
$S=1.03$
1502 reflections
$V=1221.6(4) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
$0.30 \times 0.25 \times 0.20 \mathrm{~mm}$

6082 measured reflections
1502 independent reflections 1226 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.029$

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

The authors thank the TBI X-ray facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection. TS and DV thank the UGC (SAP-CAS) for the departmental facilties. TS also thanks the DST Inspire program for financial assistance.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2586).

References

Abdullah, Z. (2005). Intl J. Chem. Sci. 3, 9-15.
Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Du, X. H., Gustin, D. J., Chen, X. Q., Duquette, J., McGee, L. R., Wang, Z. L., Ebsworth, K., Henne, K., Lemon, B., Ma, J., Miao, S. C., Sabalan, E., Sullivan, T. J., Tonn, G., Collins, T. L. \& Medina, J. C. (2009). Bioorg. Med. Chem. Lett. 19, 5200-5204.
Dubinina, G. G., Platonov, M. O., Golovach, S. M., Borysko, P. O., Tolmachov, A. O. \& Volovenko, Y. M. (2006). Eur. J. Med. Chem. 41, 727-737.

Ellsworth, B. A., Wang, Y., Zhu, Y. H., Pendri, A., Gerritz, S. W., Sun, C. Q., Carlson, K. E., Kang, L. Y., Baska, R. A., Yang, Y. F., Huang, Q., Burford, N. T., Cullen, M. J., Johnghar, S., Behnia, K., Pelleymounter, M. A., Washburn, W. N. \& Ewing, W. R. (2007). Bioorg. Med. Chem. Lett. 17, 39783982.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
Kawai, M., Lee, M. J., Evans, K. O. \& Norlund, T. (2001). J. Fluoresc. 11, 23-32.
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. \& Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.

Mukaiyama, H., Nishimura, T., Kobayashi, S., Ozawa, T., Kamada, N., Komatsu, Y., Kikuchi, S., Oonota, H. \& Kusama, H. (2007). Bioorg. Med. Chem. Lett. 15, 868-885.
Nasir, S. B., Abdullah, Z., Fairuz, Z. A., Ng, S. W. \& Tiekink, E. R. T. (2010). Acta Cryst. E66, 02187.

organic compounds

Seitz, L. E., Suling, W. J. \& Reynolds, R. C. (2002). J. Med. Chem. 45, 56045606.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Temple, C. Jr, Rose, J. D. \& Montgomery, J. A. (1970). J. Med. Chem. 13, $1234-$ 1235.

supporting information

Acta Cryst. (2013). E69, o813-o814 [https://doi.org/10.1107/S1600536813011318]

8,15-Dioxa-10,13-diazatetracyclo-

[14.4.0.0 ${ }^{2,7} .0^{9,14}$]icosa-1(16),2,4,6,9(14),10,12,17,19-nonaene

Thothadri Srinivasan, Venkatesan Kalpana, Perumal Rajakumar and Devadasan Velmurugan

S1. Comment

The pyrazine ring system is a useful structural element in medicinal chemistry and has found broad applications in drug development which can be used as antiproliferative agent (Dubinina et al., 2006), potent CXCR3 antagonists (Du et al., 2009),CB1 antagonists (Ellsworth et al., 2007) and c-Src inhibitory (Mukaiyama et al., 2007). On-going structural studies of heterocyclic N-containing derivatives (Nasir et al., 2010) are motivated by an investigation of their fluorescence properties (Kawai et al., 2001; Abdullah, 2005). Pyrazine derivatives were shown to display antimycobacterial (Seitz et al., 2002) and potential antimalarial (Temple et al., 1970) activities. In view of different applications of this class of compounds, we have undertaken the crystal structure determination of the title compound.

The title compound, Fig. 1, contains one half molecule in the asymmetric unit; the complete molecule is generated by a two-fold rotation axis, about [010]; symmetry code:(i) $-\mathrm{x}+1, \mathrm{y},-\mathrm{z}+1 / 2$.

The central pyrazine ring $\left(\mathrm{C} 1 / \mathrm{N} 1 / \mathrm{C} 2 / \mathrm{C} 1^{\mathrm{i}} / \mathrm{N} 1^{\mathrm{i}} / \mathrm{C} 2^{\mathrm{i}}\right)$ forms a dihedral angle of 64.87 (6) ${ }^{\circ}$ with the phenyl ring (C3-C8). The dihedral angle between the symmetry related phenyl rings (C3-C8) and ($\mathrm{C} 3^{\mathrm{i}}-\mathrm{C} 8^{\mathrm{i}}$) is $54.20(6)^{\circ}$. The deviation of the atom O 1 from the phenyl ring (C3-C8) is 0.1549 (8) \AA.
In the crystal, there are no significant intermolecular interactions present.

S2. Experimental

To a stirred solution of $\mathrm{Cs}_{2} \mathrm{CO}_{3}(15 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(5 \mathrm{~mL})$, was added dropwise independently a solution of corresponding diol (10 mmol) in $\mathrm{CH}_{3} \mathrm{CN}(25 \mathrm{~mL})$ and a solution of 2,3-dichloropyrazine (10 mmol) in $\mathrm{CH}_{3} \mathrm{CN}(25 \mathrm{~mL})$. The reaction mixture was stirred at reflux for 12 h . The reaction mixture was allowed to cool to room temperature and then poured into water $(200 \mathrm{~mL})$, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{X} 100 \mathrm{~mL})$. The combined organic layers were washed with water $(100 \mathrm{~mL})$, brine $(50 \mathrm{~mL})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated and the crude product was purified by column chromatography with CHCl_{3} as an eluent to give the title compound. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a solution of the title compound in hexane at room temperature.

S3. Refinement

The hydrogen atoms were placed in calculated positions and refined in the riding model approximation: $\mathrm{C}-\mathrm{H}=0.93 \AA$ with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Figure 1
The molecular structure of the title molecule, with atom labelling (symmetry code: (a) $-x+1, y,-z+1 / 2$). Displacement ellipsoids are drawn at the 30% probability level.

8,15-Dioxa-10,13-diazatetracyclo[14.4.0.0 $0^{2,7} .0^{9,14}$]icosa-1(16),2,4,6,9(14),10,12,17,19-nonaene

Crystal data

$\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}$
$M_{r}=262.26$
Orthorhombic, Pbcn
Hall symbol: -P 2n 2ab
$a=14.429$ (3) \AA
$b=10.162(2) \AA$
$c=8.3313(18) \AA$
$V=1221.6(4) \AA^{3}$
$Z=4$

Data collection

Bruker SMART APEXII area-detector diffractometer
Radiation source: fine-focus sealed tube Graphite monochromator ω and φ scans
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
$T_{\text {min }}=0.972, T_{\text {max }}=0.981$

$$
F(000)=544
$$

$$
D_{\mathrm{x}}=1.426 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1502 reflections
$\theta=2.5-28.3^{\circ}$
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Block, colourless
$0.30 \times 0.25 \times 0.20 \mathrm{~mm}$

6082 measured reflections

1502 independent reflections
1226 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.029$
$\theta_{\text {max }}=28.3^{\circ}, \theta_{\text {min }}=2.5^{\circ}$
$h=-18 \rightarrow 19$
$k=-5 \rightarrow 13$
$l=-7 \rightarrow 10$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033$
$w R\left(F^{2}\right)=0.106$
$S=1.03$
1502 reflections
92 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map

```
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
\(w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0544 P)^{2}+0.1721 P\right]\)
where \(P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3\)
\((\Delta / \sigma)_{\text {max }}<0.001\)
\(\Delta \rho_{\text {max }}=0.22\) e \(\AA^{-3}\)
\(\Delta \rho_{\text {min }}=-0.13\) e \(\AA^{-3}\)
Extinction correction: SHELXL97 (Sheldrick, 2008), \(\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}\)
Extinction coefficient: 0.012 (3)
```


Special details

Geometry. All esds (except the esd in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R -factor wR and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \operatorname{sigma}\left(\mathrm{~F}^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
C1	$0.53624(10)$	$1.14890(12)$	$0.19682(18)$	$0.0623(4)$
H1	0.5600	1.2289	0.1616	0.075^{*}
C2	$0.53746(8)$	$0.92738(11)$	$0.19677(13)$	$0.0426(3)$
C3	$0.60493(7)$	$0.71770(11)$	$0.24296(13)$	$0.0395(3)$
C4	$0.54878(7)$	$0.61036(10)$	$0.27797(12)$	$0.0390(3)$
C5	$0.58736(8)$	$0.50933(12)$	$0.36919(14)$	$0.0480(3)$
H5	0.5523	0.4349	0.3922	0.058^{*}
C6	$0.67748(9)$	$0.51846(14)$	$0.42609(16)$	$0.0568(4)$
H6	0.7020	0.4509	0.4883	0.068^{*}
C7	$0.73073(8)$	$0.62674(15)$	$0.39094(15)$	$0.0594(4)$
H7	0.7908	0.6328	0.4305	0.071^{*}
C8	$0.69529(8)$	$0.72654(12)$	$0.29713(15)$	$0.0505(3)$
H8	0.7317	0.7989	0.2706	0.061^{*}
N1	$0.57395(7)$	$1.03683(10)$	$0.14200(14)$	$0.0546(3)$
O1	$0.57275(5)$	$0.81298(8)$	$0.13462(9)$	$0.0446(2)$

Atomic displacement parameters (\hat{A}^{2})

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0751(9)$	$0.0430(6)$	$0.0688(9)$	$-0.0077(6)$	$-0.0246(6)$	$0.0065(6)$
C2	$0.0464(6)$	$0.0431(6)$	$0.0383(6)$	$-0.0018(4)$	$-0.0088(4)$	$0.0017(4)$
C3	$0.0383(5)$	$0.0458(5)$	$0.0344(5)$	$0.0021(4)$	$0.0021(4)$	$-0.0019(4)$
C4	$0.0382(5)$	$0.0429(5)$	$0.0357(5)$	$0.0033(4)$	$0.0052(4)$	$-0.0026(4)$

C5	$0.0498(6)$	$0.0476(6)$	$0.0467(6)$	$0.0092(5)$	$0.0103(5)$	$0.0029(5)$
C6	$0.0547(7)$	$0.0697(8)$	$0.0461(6)$	$0.0241(6)$	$0.0024(5)$	$0.0049(6)$
C7	$0.0417(6)$	$0.0870(10)$	$0.0496(7)$	$0.0130(6)$	$-0.0066(5)$	$-0.0073(7)$
C8	$0.0394(6)$	$0.0623(7)$	$0.0497(7)$	$-0.0040(5)$	$-0.0005(5)$	$-0.0078(6)$
N1	$0.0593(6)$	$0.0495(6)$	$0.0548(6)$	$-0.0094(5)$	$-0.0118(5)$	$0.0090(5)$
O1	$0.0486(5)$	$0.0467(4)$	$0.0384(4)$	$-0.0009(3)$	$0.0040(3)$	$0.0041(3)$

Geometric parameters ($A,{ }^{\circ}$)

C1-N1	1.3423 (17)	C4-C5	1.3935 (16)
$\mathrm{C} 1-\mathrm{Cl}^{\text {i }}$	1.371 (3)	C4-C4 ${ }^{\text {i }}$	1.483 (2)
C1-H1	0.9300	C5-C6	1.3871 (17)
C2-N1	1.3124 (15)	C5-H5	0.9300
C2-O1	1.3707 (14)	C6-C7	1.374 (2)
$\mathrm{C} 2-\mathrm{C} 2^{\text {i }}$	1.398 (2)	C6-H6	0.9300
C3-C8	1.3826 (15)	C7-C8	1.3787 (18)
C3-C4	1.3897 (15)	C7-H7	0.9300
C3-O1	1.4029 (13)	C8-H8	0.9300
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 1^{\mathrm{i}}$	121.95 (8)	C6-C5-H5	119.6
N1-C1-H1	119.0	C4-C5-H5	119.6
C1 ${ }^{\text {i }}-\mathrm{C} 1-\mathrm{H} 1$	119.0	C7-C6-C5	120.33 (12)
N1-C2-O1	116.01 (10)	C7-C6-H6	119.8
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 2{ }^{\text {i }}$	122.05 (7)	C5-C6-H6	119.8
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 2{ }^{\text {i }}$	121.79 (6)	C6-C7-C8	120.18 (11)
C8-C3-C4	122.16 (11)	C6-C7-H7	119.9
C8-C3-O1	118.51 (10)	C8-C7-H7	119.9
C4-C3-O1	118.93 (9)	C7-C8-C3	119.14 (11)
C3-C4-C5	117.38 (10)	C7-C8-H8	120.4
C3-C4-C4 ${ }^{\text {i }}$	119.18 (8)	C3-C8-H8	120.4
C5-C4-C4 ${ }^{\text {i }}$	123.41 (8)	C2-N1-C1	115.99 (12)
C6-C5-C4	120.77 (12)	$\mathrm{C} 2-\mathrm{O} 1-\mathrm{C} 3$	117.73 (8)
C8-C3-C4-C5	-0.82 (16)	C4-C3-C8-C7	-0.97 (17)
$\mathrm{O} 1-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	171.84 (9)	$\mathrm{O} 1-\mathrm{C} 3-\mathrm{C} 8-\mathrm{C} 7$	-173.66 (10)
C8-C3-C4-C4 ${ }^{\text {i }}$	177.25 (11)	$\mathrm{O} 1-\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 1$	176.77 (10)
$\mathrm{O} 1-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 4{ }^{\text {i }}$	-10.09 (16)	$\mathrm{C} 2 \mathrm{i}-\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 1$	1.3 (2)
C3-C4-C5-C6	1.84 (16)	$\mathrm{C} 1{ }^{\text {i }}$ - $\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 2$	-0.2 (2)
C4- $\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	-176.15 (12)	N1-C2-O1-C3	126.38 (10)
C4-C5-C6-C7	-1.07 (18)	C2 ${ }^{\text {i }}$ - $\mathrm{C} 2-\mathrm{O} 1-\mathrm{C} 3$	-58.13 (16)
C5-C6-C7-C8	-0.78 (19)	$\mathrm{C} 8-\mathrm{C} 3-\mathrm{O} 1-\mathrm{C} 2$	-86.29 (12)
C6-C7-C8-C3	1.78 (18)	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{O} 1-\mathrm{C} 2$	100.77 (11)

Symmetry code: (i) $-x+1, y,-z+1 / 2$.

