

Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

9*H*-Carbazole-9-carbothioic dithioperoxyanhydride

Nesimi Uludağ, Murat Ateş, Nagihan Çaylak Delibaş, Ömer Celik and Tuncer Hökelek Nagihan Çaylak Delibaş, Ömer Celik Nagihan Çaylak Delibaş, Delibaş, Nagihan Çaylak Delibaş, D

^aDepartment of Chemistry, Namık Kemal University, 59030 Değirmenaltı, Tekirdağ, Turkey, ^bDepartment of Physics, Sakarya University, 54187 Esentepe, Sakarya, Turkey, ^cDepartment of Physics, Dicle University, 21280 Sur, Diyarbakır, Turkey, and ^dDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey Correspondence e-mail: merzifon@hacettepe.edu.tr

Received 10 April 2013; accepted 16 April 2013

Key indicators: single-crystal X-ray study; T = 294 K; mean $\sigma(C-C) = 0.007$ Å; R factor = 0.072; wR factor = 0.156; data-to-parameter ratio = 28.3.

The whole molecule of the title compound, $C_{26}H_{16}N_2S_4$, is generated by twofold rotational symmetry. The carbazole skeleton is nearly planar [maximum deviation = 0.054 (5) Å]. In the crystal, aromatic π - π stacking is observed between parallel carbazole ring systems of adjacent molecules, the shortest centroid–centroid distances between pyrrole and benzene rings being 3.948 (3) and 3.751 (3) Å.

Related literature

For tetrahydrocarbazole systems present in the framework of a number of indole-type alkaloids of biological interest, see: Saxton (1983). For related structures, see: Hökelek *et al.* (1994, 1998, 1999); Patir *et al.* (1997); Hökelek & Patir (1999). For hole-transporting mobility of charge carriers, see: Cloutet *et al.* (1999). For photoluminescence efficiencies, see: Zhenhong *et al.* (2006). For electroluminescent applications, see: Tirapattur *et al.* (2003). For photoactive devices, see: Taoudi *et al.* (2001). For sensors and rechargable batteries, see: Saraswathi *et al.* (1999). For electrochromic displays, see: Sarac *et al.* (2000).

Experimental

Crystal data

 $C_{26}H_{16}N_2S_4$ V = 1062.79 (7) Å³ $M_r = 484.69$ Z = 2 Orthorhombic, $P22_12_1$ Mo $K\alpha$ radiation $\alpha = 3.9207$ (2) Å $\mu = 0.47 \text{ mm}^{-1}$ b = 14.9355 (4) Å T = 294 K c = 18.1494 (5) Å $0.35 \times 0.15 \times 0.10 \text{ mm}$

Data collection

Bruker Kappa APEXII CCD areadetector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2005) $T_{\min} = 0.920, \ T_{\max} = 0.954$ 5384 measured reflections 4100 independent reflections 2471 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.036$

Refinement

 $\begin{array}{lll} R[F^2>2\sigma(F^2)]=0.072 & \Delta\rho_{\rm max}=0.35~{\rm e~\mathring{A}^{-3}} \\ wR(F^2)=0.156 & \Delta\rho_{\rm min}=-0.47~{\rm e~\mathring{A}^{-3}} \\ S=1.41 & {\rm Absolute~structure:~Flack~(1983)}, \\ 4100~{\rm reflections} & 1548~{\rm Friedel~pairs} \\ 145~{\rm parameters} & {\rm Flack~parameter:~0.04~(18)} \\ {\rm H-atom~parameters~constrained} \end{array}$

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012); software used to prepare material for publication: *WinGX* (Farrugia, 2012) and *PLATON* (Spek, 2009).

The authors are indebted to Dicle University Scientific and Technological Applied and Research Center, Diyarbakır, Turkey, for use of the X-ray diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2587).

References

Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Cloutet, E., Yammine, P., Ades, D. & Siove, A. (1999). Synth. Met. 102, 1302–1303.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Hökelek, T., Gündüz, H., Patır, S. & Uludağ, N. (1998). *Acta Cryst.* C**54**, 1297–1299.

Hökelek, T. & Patır, S. (1999). Acta Cryst. C55, 675-677.

Hökelek, T., Patır, S., Gülce, A. & Okay, G. (1994). *Acta Cryst.* C**50**, 450–453. Hökelek, T., Patır, S. & Uludağ, N. (1999). *Acta Cryst.* C**55**, 114–116.

Patir, S., Okay, G., Gülce, A., Salih, B. & Hökelek, T. (1997). J. Heterocycl. Chem. 34, 1239–1242.

Sarac, A. S., Yavuz, O. & Sezer, E. (2000). Polymer, 41, 839-847.

Saraswathi, R., Gerard, M. & Malhotra, B. D. (1999). J. Appl. Polym. Sci. 74, 145–150.

Saxton, J. E. (1983). Editor. Heterocyclic Compounds Vol. 25, The Monoterpenoid Indole Alkaloids, chs. 8 and 11. New York: Wiley.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Taoudi, H., Bernede, J. C., Del Valle, M. A., Bonnet, A. & Morsli, M. (2001). *J. Mater. Sci.* **36**, 631–634.

Tirapattur, S., Belletete, M., Drolet, N., Leclerc, M. & Durocher, G. (2003). Chem. Phys. Lett. 370, 799–804.

Zhenhong, W., Jingkun, X., Guangming, N., Yukou, D. & Shouzhi, P. (2006). *J. Electroanal. Chem.* **589**, 112–119.

supporting information

Acta Cryst. (2013). E69, o771 [https://doi.org/10.1107/S1600536813010349]

9H-Carbazole-9-carbothioic dithioperoxyanhydride

Nesimi Uludağ, Murat Ateş, Nagihan Çaylak Delibaş, Ömer Çelik and Tuncer Hökelek

S1. Comment

Tetrahydrocarbazole systems are present in the framework of a number of indole-type alkaloids of biological interest (Saxton, 1983). The structures of tricyclic, tetracyclic and pentacyclic ring systems with dithiolane and other substituents of the tetrahydrocarbazole core, have been reported previously (Hökelek *et al.*, 1994; Patır *et al.*, 1997; Hökelek *et al.*, 1998; Hökelek *et al.*, 1999; Hökelek & Patır, 1999). Substituted carbazole based monomers exhibit good electroactive and photoactive properties which make them the most promising candidates for hole transporting mobility of charge carriers (Cloutet *et al.*, 1999) and photoluminescence efficiencies (Zhenhong *et al.*, 2006). Carbazole based heterocyclic polymer systems can be chemically or electrochemically polymerized to yield materials with interesting properties with a number of applications, such as electroluminescent (Tirapattur *et al.*, 2003), photoactive devices (Taoudi *et al.*, 2001), sensors and rechargable batteries (Saraswathi *et al.*, 1999) and electrochromic displays (Sarac *et al.*, 2000). The title compound, (I), may be considered as a synthetic precursor of tetracyclic indole alkaloids of biological interests. The present study was undertaken to ascertain its crystal structure.

The asymmetric unit of the title compound contains one half of the molecule, the whole molecule being generated by two-fold rotational symmetry (Fig. 1). It consists of a carbazole skeleton with a dithioperoxyanhydride group, where the bond lengths and angles are within normal ranges, and generally agree with those in the previously reported compounds (Hökelek *et al.*, 1994; Patır *et al.*, 1997; Hökelek *et al.*, 1998; Hökelek *et al.*, 1999; Hökelek & Patır, 1999) in all of which atom N9 is substituted.

An examination of the deviations from the mean planes through individual rings shows that rings A (C1-C4/C4a/C9a), B (C4a/C5a/C8a/N9/C9a) and C (C5a/C5-C8/C8a) are planar [symmetry code: (a) x, -y+1, -z]. The carbazole skeleton, containing rings A, B and C is also nearly coplanar [maximum deviation of -0.054 (5) Å for atom C8] with dihedral angles of A/B = 3.80 (15), A/C = 3.74 (17) and B/C = 3.21 (16) °. Atoms S1, S2 and C10 are displaced by 1.4738 (13), -0.5052 (15) and 0.2107 (42) Å from the mean plane of the carbazole skeleton.

In the crystal, molecules are stacked nearly parallel to (110) [Fig. 2]. The π - π contacts between the pyrrole and benzene rings, Cg1—Cg2ⁱ and Cg1···Cg3ⁱⁱ [symmetry codes: (i) x + 1, y, z; (ii) x - 1, y, z; where Cg1, Cg2 and Cg3 are centroids of the rings A (C1-C4/C4a/C9a), B (C4a/C5a/C8a/N9/C9a) and C (C5a/C5-C8/C8a), respectively] may stabilize the structure, with centroid-centroid distances of 3.948 (3) and 3.751 (3) Å, respectively.

S2. Experimental

Carbazole (0.80 g, 5 mmol) was added to a suspension of KOH (0.28 g, 20 mmol) in DMSO (20 ml) under vigorous stirring. The reaction mixture was stirred overnight at room temperature under O_2 . Carbon disulfide (0.40 g, 5 mmol) was added drop wise, and then the mixture stirred for 10 h at room temperature. The resultant reaction mixture was poured into a large amount of deionized water. The solid obtained was filtered and purified by recrystallization from diethyl ether [yield: 1.30 g, 50%], yielding rod-shaped orange crystals.

S3. Refinement

The C-bound H-atoms were positioned geometrically and treated as riding atoms: C—H = 0.93 Å with $U_{iso}(H) = 1.2U_{eq}(C)$.

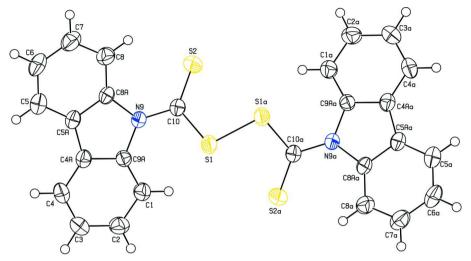


Figure 1

The molecular structure of the title molecule, with atom numbering [symmetry code: (a) x, -y+1, -z]. Displacement ellipsoids are drawn at the 50% probability level

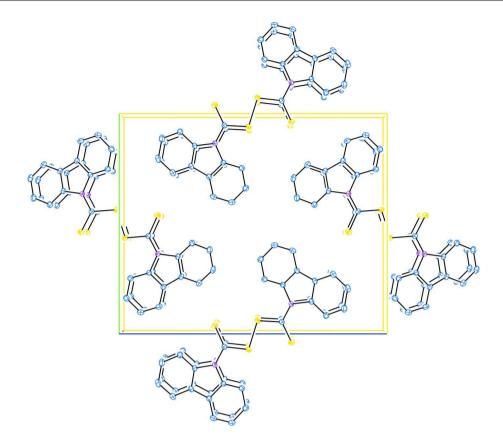


Figure 2

A view along the c-axis of the crystal packing of the title compound (a-axis horizontal; b-axis vertical). Hydrogen atoms have been omitted for clarity.

9H-Carbazole-9-carbothioic dithioperoxyanhydride

Crystal data

 $C_{26}H_{16}N_{2}S_{4}$ $M_{r} = 484.69$ Orthorhombic, $P22_{1}2_{1}$ Hall symbol: P 2bc 2 a = 3.9207 (2) Å b = 14.9355 (4) Å c = 18.1494 (5) Å V = 1062.79 (7) Å³ Z = 2

Data collection

Bruker Kappa APEXII CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (SADABS; Bruker, 2005) $T_{\min} = 0.920$, $T_{\max} = 0.954$

F(000) = 500 $D_x = 1.514 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2694 reflections $\theta = 6.2-28.7^{\circ}$ $\mu = 0.47 \text{ mm}^{-1}$ T = 294 KRod, orange $0.35 \times 0.15 \times 0.10 \text{ mm}$

5384 measured reflections 4100 independent reflections 2471 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.036$ $\theta_{\text{max}} = 35.1^{\circ}, \ \theta_{\text{min}} = 6.0^{\circ}$ $h = -6 \rightarrow 6$ $k = -23 \rightarrow 10$ $l = -27 \rightarrow 18$

Refinement

Refinement on F^2

Least-squares matrix: full

 $R[F^2 > 2\sigma(F^2)] = 0.072$

 $wR(F^2) = 0.156$

S = 1.41

4100 reflections

145 parameters

0 restraints

Primary atom site location: structure-invariant

direct methods

Secondary atom site location: difference Fourier

map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

 $w = 1/[\sigma^2(F_0^2) + (0.P)^2 + 0.892P]$ where $P = (F_0^2 + 2F_c^2)/3$

 $(\Delta/\sigma)_{\rm max} < 0.001$

 $\Delta \rho_{\text{max}} = 0.35 \text{ e Å}^{-3}$

 $\Delta \rho_{\min} = -0.47 \text{ e Å}^{-3}$

Absolute structure: Flack (1983), 1548 Friedel

pairs

Absolute structure parameter: 0.04 (18)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	y	Z	$U_{ m iso}$ */ $U_{ m eq}$
S1	0.3301 (3)	0.43540 (7)	0.01656 (7)	0.0393 (3)
S2	0.0207 (4)	0.53764 (7)	0.14312 (8)	0.0452 (3)
C1	-0.0287 (13)	0.2527 (3)	0.0425 (3)	0.0379 (10)
H1	-0.0916	0.2958	0.0082	0.046*
C2	-0.0674 (12)	0.1620(3)	0.0281 (3)	0.0446 (12)
H2	-0.1545	0.1440	-0.0172	0.054*
C3	0.0206 (17)	0.0976 (3)	0.0796 (3)	0.0511 (13)
H3	-0.0077	0.0374	0.0683	0.061*
C4	0.1490 (13)	0.1216 (3)	0.1470 (3)	0.0466 (12)
H4	0.2048	0.0781	0.1817	0.056*
C4A	0.1946 (11)	0.2119 (3)	0.1629 (2)	0.0335 (10)
C5	0.4408 (13)	0.2274 (3)	0.2947 (3)	0.0437 (12)
H5	0.4660	0.1664	0.3034	0.052*
C5A	0.3077 (12)	0.2574 (3)	0.2285 (2)	0.0337 (10)
C6	0.5352 (14)	0.2884(3)	0.3473 (3)	0.0489 (13)
H6	0.6241	0.2686	0.3920	0.059*
C7	0.4988 (16)	0.3796 (3)	0.3344 (3)	0.0493 (13)
H7	0.5621	0.4200	0.3709	0.059*
C8	0.3715 (13)	0.4114 (3)	0.2690(3)	0.0436 (12)
H8	0.3502	0.4726	0.2606	0.052*
C8A	0.2759 (11)	0.3501(3)	0.2160(2)	0.0313 (9)
N9	0.1597 (9)	0.3628 (2)	0.1418 (2)	0.0331 (8)
C9A	0.1079 (10)	0.2763 (3)	0.1103 (3)	0.0306 (10)

supporting information

	0.1482 (1	1) 0.44	142 (3)	0.1066 (2)	0.0316 (9)	
1tomic	displacement para	meters (Ų)				
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0498 (6)	0.0332 (5)	0.0351 (6)	0.0087 (5)	0.0081 (6)	0.0058 (5)
S2	0.0588 (7)	0.0339 (5)	0.0428 (7)	0.0065 (6)	0.0051 (7)	-0.0033(5)
C1	0.042(2)	0.035(2)	0.037(3)	0.001(2)	-0.004(2)	0.0022 (19)
22	0.050(3)	0.042(2)	0.042(3)	-0.002(2)	-0.008(2)	-0.007(2)
C3	0.070(4)	0.031(2)	0.052(3)	-0.001(3)	-0.003(3)	-0.002(2)
C4	0.060(3)	0.032(2)	0.048 (3)	0.003(2)	-0.004(3)	0.009(2)
AA	0.033(2)	0.036(2)	0.032(3)	0.0024 (18)	0.003(2)	0.0052 (18)
25	0.045 (3)	0.047 (3)	0.038(3)	0.002(2)	-0.001(2)	0.010(2)
5A	0.032(2)	0.039(2)	0.029(3)	0.0000 (19)	0.003(2)	0.0060 (19)
6	0.048 (3)	0.067(3)	0.031(3)	-0.004(3)	-0.008(3)	0.012(3)
7	0.054(3)	0.060(3)	0.034(3)	-0.013 (3)	-0.003 (3)	0.000(2)
28	0.053 (3)	0.043 (2)	0.035(3)	-0.010 (2)	-0.003 (2)	-0.001 (2)
8A	0.029(2)	0.038(2)	0.027(2)	-0.0021 (17)	0.0025 (18)	0.0039 (18)
19	0.0412 (19)	0.0308 (16)	0.0272 (19)	-0.0019(15)	-0.002(2)	0.0029 (16)
29A	0.032(2)	0.0288 (19)	0.031(2)	-0.0005 (15)	0.0008 (18)	0.0013 (18)
10	0.031(2)	0.033(2)	0.031(2)	-0.0012(17)	0.0003 (19)	0.0034 (18)
S1—S1 S1—C1		2.021 (2 1.787 (4	·	C5—H5 C5A—C4A		9300 941 (6)
	0	,	4)		1.4	
1—C1	0	1.787 (4	k) k)	C5A—C4A	1.4 1.3	41 (6)
1—C1 2—C1 C1—C9	0 0 9A	1.787 (4 1.624 (4	(a) (b) (b)	C5A—C4A C5A—C5	1.4 1.3 1.4	441 (6) 884 (6)
1—C1 2—C1 51—C9 51—H	0 0 9A 1	1.787 (4 1.624 (4 1.387 (6	(a) (b) (b)	C5A—C4A C5A—C5 C5A—C8A	1.4 1.3 1.4 0.9	141 (6) 184 (6) 109 (6)
1—C1 2—C1 21—C9 21—H2 22—C1	0 0 9A 1	1.787 (4 1.624 (4 1.387 (6 0.9300	(a) (b) (b) (c) (d)	C5A—C4A C5A—C5 C5A—C8A C6—H6	1.4 1.3 1.4 0.9 1.3	441 (6) 884 (6) 409 (6) 9300
1—C1 2—C1 21—C9 21—H 22—C1 22—C3	0 0 9A 1 1	1.787 (4 1.624 (4 1.387 (6 0.9300 1.388 (6	(a) (b) (c) (d) (d) (d)	C5A—C4A C5A—C5 C5A—C8A C6—H6 C7—C6	1.4 1.3 1.4 0.9 1.3 1.3	441 (6) 884 (6) 409 (6) 9300 990 (7)
1—C1 2—C1 51—C9 51—H 52—C1 52—C3	0 0 9A 1 1 3 2	1.787 (4 1.624 (4 1.387 (6 0.9300 1.388 (6 1.384 (7	(a) (b) (c) (d) (d) (d)	C5A—C4A C5A—C5 C5A—C8A C6—H6 C7—C6 C7—C8	1.4 1.3 1.4 0.9 1.3 1.3 0.9	441 (6) 884 (6) 409 (6) 9300 990 (7) 673 (7) 9300 9300
1—C1 2—C1 21—C9 21—H 22—C3 22—C3 22—H 23—H 24—C3	0 0 0 9A 1 1 3 2 3 3	1.787 (4 1.624 (4 1.387 (6 0.9300 1.388 (6 1.384 (7 0.9300	6) 6) 6) 6)	C5A—C4A C5A—C5 C5A—C8A C6—H6 C7—C6 C7—C8 C7—H7	1.4 1.3 1.4 0.9 1.3 1.3 0.9	441 (6) 884 (6) 809 (6) 8300 890 (7) 873 (7)
1—C1 2—C1 11—C9 11—H 12—C3 12—C3 12—C3 12—H 23—H 24—C3 14—C3 14—H	0 0 9A 1 1 3 2 3 3 4	1.787 (4 1.624 (4 1.387 (6 0.9300 1.388 (6 1.384 (7 0.9300 0.9300 1.371 (7 0.9300	(a) (b) (c) (d) (d) (d)	C5A—C4A C5A—C5 C5A—C8A C6—H6 C7—C6 C7—C8 C7—H7 C8—H8 C8A—C8	1.4 1.3 1.4 0.9 1.3 1.3 0.9 0.9	441 (6) 884 (6) 409 (6) 9300 990 (7) 673 (7) 9300 9300
1—C1 2—C1 21—C2 21—H 22—C2 22—C2 22—H 23—H 24—C3 24—C3	0 0 0 9A 1 1 1 3 2 3 3 4 CC4	1.787 (4 1.624 (4 1.387 (6 0.9300 1.388 (6 1.384 (7 0.9300 0.9300 1.371 (7 0.9300 1.391 (6	(a) (b) (b) (c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d	C5A—C4A C5A—C5 C5A—C8A C6—H6 C7—C6 C7—C8 C7—H7 C8—H8 C8A—C8 N9—C8A	1.4 1.3 1.4 0.9 1.3 1.3 0.9 0.9 1.3 1.4	441 (6) 484 (6) 409 (6) 4300 490 (7) 473 (7) 4300 480 (6) 433 (6) 428 (5)
1—C1 2—C1 C1—C9 C1—H C2—C2 C2—C3 C2—H2 C3—H2 C4—C3 C4—C4 C4A—C4A—C4A—C4A—C4A—C4A—C4A—C4A—C4A—C4A—	0 0 0 9A 1 1 3 2 3 3 3 4 C4 C9A	1.787 (4 1.624 (4 1.387 (6 0.9300 1.388 (6 1.384 (7 0.9300 0.9300 1.371 (7 0.9300 1.391 (6 1.397 (6	(a) (b) (b) (c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d	C5A—C4A C5A—C5 C5A—C8A C6—H6 C7—C6 C7—C8 C7—H7 C8—H8 C8A—C8	1.4 1.3 1.4 0.9 1.3 1.3 0.9 0.9 1.3 1.4	441 (6) 684 (6) 609 (6) 6300 690 (7) 673 (7) 6300 6300 680 (6) 633 (6)
1—C1 2—C1 11—C9 11—H 12—C1 12—C1 12—H 13—H 14—C3 14—H 14A—(14A—(14A—(14A—(14A—(14A—(14A—(14A—(0 0 0 9A 1 1 3 2 3 3 3 4 C4 C9A	1.787 (4 1.624 (4 1.387 (6 0.9300 1.388 (6 1.384 (7 0.9300 0.9300 1.371 (7 0.9300 1.391 (6	(a) (b) (b) (c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d	C5A—C4A C5A—C5 C5A—C8A C6—H6 C7—C6 C7—C8 C7—H7 C8—H8 C8A—C8 N9—C8A	1.4 1.3 1.4 0.9 1.3 1.3 0.9 0.9 1.3 1.4	441 (6) 484 (6) 409 (6) 4300 490 (7) 473 (7) 4300 480 (6) 433 (6) 428 (5)
1—C1 2—C1 2—C1 1—H 22—C3 22—C3 22—H2 23—H2 44—C3 44—C3 44—C3 44—C3	0 0 0 0 0 1 1 1 3 2 3 3 4 C4 C9A 6	1.787 (4 1.624 (4 1.387 (6 0.9300 1.388 (6 1.384 (7 0.9300 0.9300 1.371 (7 0.9300 1.391 (6 1.397 (6	(15)	C5A—C4A C5A—C5 C5A—C8A C6—H6 C7—C6 C7—C8 C7—H7 C8—H8 C8A—C8 N9—C8A N9—C9A N9—C10	1.4 1.3 1.4 0.9 1.3 1.3 0.9 0.9 1.3 1.4 1.4	441 (6) 484 (6) 409 (6) 4300 490 (7) 473 (7) 4300 480 (6) 433 (6) 428 (5)
1—C1 2—C1 1—C2 1—H 2—C2 2—C3 2—H2 4—C3 4—C3 4—H4 4A—C5 5—C6	0 0 0 0 0 1 1 1 3 2 3 3 3 4 C4 C9A 6	1.787 (4 1.624 (4 1.387 (6 0.9300 1.388 (6 1.384 (7 0.9300 0.9300 1.371 (7 0.9300 1.397 (6 1.370 (7	(15)	C5A—C4A C5A—C5 C5A—C8A C6—H6 C7—C6 C7—C8 C7—H7 C8—H8 C8A—C8 N9—C8A N9—C9A N9—C10 C5—C6—C7 C5—C6—H6	1.4 1.3 1.4 0.9 1.3 1.3 0.9 0.9 1.3 1.4 1.4	441 (6) 484 (6) 409 (6) 4300 490 (7) 473 (7) 4300 480 (6) 433 (6) 428 (5) 475 (5)
1—C1 2—C1 11—C9 11—H 12—C1 12—C1 12—C1 13—H 13—H 14—C3 14—H 14A—C1 14A—C	0 0 0 0 0 1 1 1 3 2 3 3 4 C4 C9A 6 5 1—S1 ⁱ 1—H1 C1—C2	1.787 (4 1.624 (4 1.387 (6 0.9300 1.388 (6 1.384 (7 0.9300 0.9300 1.371 (7 0.9300 1.397 (6 1.370 (7 101.63 (121.4 117.2 (4	(15)	C5A—C4A C5A—C5 C5A—C8A C6—H6 C7—C6 C7—C8 C7—H7 C8—H8 C8A—C8 N9—C8A N9—C9A N9—C10 C5—C6—C7 C5—C6—H6 C7—C6—H6	1.4 1.3 1.4 0.9 1.3 1.3 0.9 0.9 1.3 1.4 1.4 1.3	441 (6) 684 (6) 699 (6) 6300 690 (7) 673 (7) 6300 6300 6300 630 (6) 633 (6) 6428 (5) 675 (5) 60.4 (5) 69.8
1—C1 2—C1 2—C1 21—H 22—C2 22—C2 23—H 24—C3 24—H 24—C3 24—H 25—C6 210—S	0 0 0 0 0 1 1 1 3 2 3 3 4 C4 C9A 6 5 1—S1 [†] 1—H1 C1—C2 C1—H1	1.787 (4 1.624 (4 1.387 (6 0.9300 1.388 (6 1.384 (7 0.9300 0.9300 1.371 (7 0.9300 1.397 (6 1.370 (7 101.63 (1 121.4 117.2 (4 121.4	(15)	C5A—C4A C5A—C5 C5A—C8A C6—H6 C7—C6 C7—C8 C7—H7 C8—H8 C8A—C8 N9—C8A N9—C9A N9—C10 C5—C6—C7 C5—C6—H6 C7—C6—H6 C7—C6—H6	1.4 1.3 1.4 0.9 1.3 1.3 0.9 0.9 1.3 1.4 1.4 1.3	141 (6) 184 (6) 109 (6) 1300 190 (7) 173 (7) 1300 1300 180 (6) 133 (6) 128 (5) 175 (5) 10.4 (5) 19.8 19.8 19.2
1—C1 2—C1 2—C1 C1—H C2—C3 C2—C3 C2—H C3—H C4—C3 C4—C3 C4—C4 C5—C0 C10—S C2—C1 C3—C1	0 0 0 0 0 1 1 1 1 3 2 3 3 4 C4 C9A 6 5 1—S1 ⁱ 1—H1 C1—C2 C1—H1 2—H2	1.787 (4 1.624 (4 1.387 (6 0.9300 1.388 (6 1.384 (7 0.9300 0.9300 1.371 (7 0.9300 1.397 (6 1.370 (7 101.63 (1 121.4 117.2 (4 121.4 119.2	(15)	C5A—C4A C5A—C5 C5A—C8A C6—H6 C7—C6 C7—C8 C7—H7 C8—H8 C8A—C8 N9—C8A N9—C9A N9—C10 C5—C6—C7 C5—C6—H6 C7—C6—H6 C7—C6—H6 C6—C7—H7 C8—C7—C6	1.4 1.3 1.4 0.9 1.3 1.3 0.9 0.9 1.3 1.4 1.4 1.3	141 (6) 184 (6) 109 (6) 1300 190 (7) 173 (7) 1300 180 (6) 183 (6) 128 (5) 175 (5) 10.4 (5) 19.8 19.8 19.2 1.5 (5)
1—C1 2—C1 2—C1 2—C1 2—C1 2—C1 2—C1 2—C1	10 10 10 11 11 13 13 13 14 14 15 16 16 16 17 17 18 18 18 18 18 18 18 18 18 18	1.787 (4 1.624 (4 1.387 (6 0.9300 1.388 (6 1.384 (7 0.9300 0.9300 1.371 (7 0.9300 1.397 (6 1.370 (7 101.63 (1 121.4 117.2 (4 121.4 119.2 121.6 (5	(15) (15) (15)	C5A—C4A C5A—C5 C5A—C8A C6—H6 C7—C6 C7—C8 C7—H7 C8—H8 C8A—C8 N9—C8A N9—C9A N9—C10 C5—C6—C7 C5—C6—H6 C7—C6—H6 C7—C6—H6 C6—C7—H7 C8—C7—C6 C8—C7—H7	1.4 1.3 1.4 0.9 1.3 1.3 0.9 0.9 1.3 1.4 1.4 1.3	141 (6) 184 (6) 190 (6) 1300 190 (7) 173 (7) 1300 1300 1300 133 (6) 128 (5) 175 (5) 10.4 (5) 19.8 19.8 19.2 1.5 (5) 19.2
1—C1 2—C1 11—C2 11—H 12—C1 12—C1 12—C1 12—C1 13—H 14—C3 14—H 14A—C1 14A—	00 00 00 11 11 13 22 33 34 44 C4 C9A 65 51—S1 ¹ 1—H1 C1—C2 C1—H1 2—H2 2—C1 2—H2	1.787 (4 1.624 (4 1.387 (6 0.9300 1.388 (6 1.384 (7 0.9300 1.371 (7 0.9300 1.397 (6 1.370 (7 101.63 (1 121.4 117.2 (4 121.4 119.2 121.6 (5 119.2	(15) (15) (15)	C5A—C4A C5A—C5 C5A—C8A C6—H6 C7—C6 C7—C8 C7—H7 C8—H8 C8A—C8 N9—C8A N9—C9A N9—C10 C5—C6—C7 C5—C6—H6 C7—C6—H6 C6—C7—H7 C8—C7—C6 C8—C7—H7 C8—C7—C6 C8—C7—H7 C7—C8—C8A	1.4 1.3 1.4 0.9 1.3 1.3 0.9 0.9 1.3 1.4 1.4 1.3 12 119 119 119	141 (6) 184 (6) 190 (6) 1300 1300 1300 1300 1300 1300 1300 133 (6) 128 (5) 175 (5) 10.4 (5) 19.8 19.8 19.2 1.5 (5) 19.2 19.2 19.2
1—C1 2—C1 2—C1 C1—C2 C1—H C2—C2 C2—C2 C3—H C3—H C4—C3 C4—C3 C4—C4 C4A—C2	10 10 10 11 11 13 13 13 14 14 15 16 16 16 17 17 18 18 18 18 18 18 18 18 18 18	1.787 (4 1.624 (4 1.387 (6 0.9300 1.388 (6 1.384 (7 0.9300 0.9300 1.371 (7 0.9300 1.397 (6 1.370 (7 101.63 (1 121.4 117.2 (4 121.4 119.2 121.6 (5	(15) (15) (15)	C5A—C4A C5A—C5 C5A—C8A C6—H6 C7—C6 C7—C8 C7—H7 C8—H8 C8A—C8 N9—C8A N9—C9A N9—C10 C5—C6—C7 C5—C6—H6 C7—C6—H6 C7—C6—H6 C6—C7—H7 C8—C7—C6 C8—C7—H7	1.4 1.3 1.4 0.9 1.3 1.3 0.9 0.9 1.3 1.4 1.4 1.3 12 119 119 119 12 119 119	141 (6) 184 (6) 190 (6) 1300 190 (7) 173 (7) 1300 1300 1300 133 (6) 128 (5) 175 (5) 10.4 (5) 19.8 19.8 19.2 1.5 (5) 19.2

Acta Cryst. (2013). E**69**, o771

supporting information

C4—C3—H3	119.6	C5A—C8A—N9	108.1 (4)
C3—C4—C4A	119.0 (4)	C8—C8A—N9	130.8 (4)
C3—C4—H4	120.5	C8—C8A—C5A	121.0 (4)
C4A—C4—H4	120.5	C9A—N9—C8A	107.5 (3)
C4—C4A—C5A	131.9 (4)	C10—N9—C8A	124.4 (3)
C4—C4A—C9A	119.7 (4)	C10—N9—C9A	127.5 (4)
C9A—C4A—C5A	108.3 (4)	C1—C9A—N9	129.8 (4)
C5A—C5—H5	120.3	C1—C9A—C4A	121.7 (4)
C6—C5—C5A	119.5 (4)	C4A—C9A—N9	108.4 (4)
C6—C5—H5	120.3	S2—C10—S1	124.0(2)
C5—C5A—C4A	132.9 (4)	N9—C10—S1	110.3 (3)
C5—C5A—C8A	119.4 (4)	N9—C10—S2	125.4 (3)
C8A—C5A—C4A	107.6 (4)		
S1 ⁱ —S1—C10—S2	1.3 (3)	C4A—C5A—C8A—N9	-2.8(5)
S1 ⁱ —S1—C10—N9	-173.6 (3)	C4A—C5A—C8A—C8	-178.8(4)
C2—C1—C9A—C4A	-1.7(7)	C5—C5A—C8A—N9	175.2 (4)
C2—C1—C9A—N9	-176.2(5)	C5—C5A—C8A—C8	-0.8(7)
C3—C2—C1—C9A	1.1 (7)	C8—C7—C6—C5	-0.6(9)
C1—C2—C3—C4	0.2 (9)	C6—C7—C8—C8A	0.7(8)
C4A—C4—C3—C2	-0.9(9)	N9—C8A—C8—C7	-175.0(5)
C5A—C4A—C4—C3	176.9 (5)	C5A—C8A—C8—C7	0.0(7)
C9A—C4A—C4—C3	0.3 (7)	C9A—N9—C8A—C5A	2.3 (5)
C4—C4A—C9A—C1	1.1 (7)	C9A—N9—C8A—C8	177.8 (5)
C4—C4A—C9A—N9	176.6 (4)	C10—N9—C8A—C5A	-169.8(4)
C5A—C4A—C9A—C1	-176.3 (4)	C10—N9—C8A—C8	5.7 (7)
C5A—C4A—C9A—N9	-0.8(5)	C8A—N9—C9A—C1	174.1 (4)
C5A—C5—C6—C7	-0.2(8)	C8A—N9—C9A—C4A	-0.9(5)
C5—C5A—C4A—C4	7.6 (10)	C10—N9—C9A—C1	-14.1(7)
C5—C5A—C4A—C9A	-175.4 (5)	C10—N9—C9A—C4A	170.9 (4)
C8A—C5A—C4A—C4	-174.7(5)	C8A—N9—C10—S1	132.7 (4)
C8A—C5A—C4A—C9A	2.2 (5)	C8A—N9—C10—S2	-42.1 (6)
C4A—C5A—C5—C6	178.3 (5)	C9A—N9—C10—S1	-37.7(5)
C8A—C5A—C5—C6	0.9 (7)	C9A—N9—C10—S2	147.4 (4)

Symmetry code: (i) x, -y+1, -z.

Acta Cryst. (2013). E**69**, o771