Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

L-Histidinium *p*-toluenesulfonate

Srinivasan Muralidharan,^a Perumal Nagapandiselvi,^a Thothadri Srinivasan,^b Rengasamy Gopalakrishnan^a and Devadasan Velmurugan^b*

^aDepartment of Physics, Anna University, Chennai 600 025, India, and ^bCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India Correspondence e-mail: shirai2011@gmail.com

Received 17 April 2013; accepted 24 April 2013

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.038; wR factor = 0.094; data-to-parameter ratio = 17.2.

In the title salt, $C_6H_{10}N_3O_2^+ \cdot C_7H_7O_3S^-$, the imidazole ring makes a dihedral angle of 70.93 (12)° with the plane of the toluene ring. In the crystal, the ions are linked *via* N-H···O and weak C-H···O hydrogen bonds forming two-dimensional networks lying parallel to (001). These networks are linked *via* C-H··· π interactions, forming a three-dimensional structure.

Related literature

For related structures of 4-toluenesulfonate salts, see: Koshima *et al.* (2004); Biradha & Mahata (2005); Sivakumar *et al.* (2012). For the structure of L-histidine, see: Madden *et al.* (1972); Andra *et al.* (2010).

Experimental

Crystal data

 $\begin{array}{l} {\rm C_6H_{10}N_3O_2^+ \cdot C_7H_7O_3S^-} \\ M_r = 327.36 \\ {\rm Orthorhombic, $P2_12_12_1$} \\ a = 5.2700 \ (2) \ {\rm \AA} \\ b = 7.3691 \ (3) \ {\rm \AA} \\ c = 38.2042 \ (14) \ {\rm \AA} \end{array}$

Data collection

Bruker SMART APEXII areadetector diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2008) *T*_{min} = 0.930, *T*_{max} = 0.952 $V = 1483.67 (10) \text{ Å}^{3}$ Z = 4Mo K\alpha radiation $\mu = 0.25 \text{ mm}^{-1}$ T = 293 K $0.30 \times 0.25 \times 0.20 \text{ mm}$

8400 measured reflections 3638 independent reflections 3533 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.022$ Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.038 & \Delta \rho_{max} = 0.22 \text{ e} \text{ Å}^{-3} \\ \omega R(F^2) &= 0.094 & \Delta \rho_{min} = -0.29 \text{ e} \text{ Å}^{-3} \\ S &= 1.20 & \text{Absolute structure: Flack (1983),} \\ 3638 \text{ reflections} & 1479 \text{ Friedel pairs} \\ 212 \text{ parameters} & \text{Flack parameter: } 0.07 (7) \\ \text{H atoms treated by a mixture of independent and constrained refinement} \\ \end{split}$$

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids the C1–C6 and N1/N2/C8–C10 rings, respectively.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1-H1\cdots O2^{i}$	0.86	2.00	2.828 (2)	160
$N2-H2A\cdots O3^{ii}$	0.86	1.89	2.746 (2)	175
$N3-H3B\cdots O4^{iii}$	0.96 (3)	1.80 (3)	2.755 (2)	176 (2)
$N3-H3C \cdot \cdot \cdot O4^{iv}$	0.83 (3)	2.10 (3)	2.896 (2)	161 (2)
$N3-H3D\cdots O3^{i}$	0.92(2)	2.15 (2)	3.000 (2)	153.4 (19)
$C8-H8\cdots O1^{v}$	0.93	2.41	2.967 (3)	118
C9−H9···O5 ^{vi}	0.93	2.47	3.062 (3)	122
$C6-H6\cdots Cg2$	0.93	2.73	3.515 (2)	143
$C8-H8\cdots Cg1^{ii}$	0.93	2.71	3.394 (2)	131

Symmetry codes: (i) x, y - 1, z; (ii) x + 1, y, z; (iii) -x + 2, $y - \frac{1}{2}$, $-z + \frac{1}{2}$; (iv) x - 1, y, z; (v) x + 1, y - 1, z; (vi) -x + 2, $y + \frac{1}{2}$, $-z + \frac{1}{2}$.

Data collection: *APEX2* (Bruker, 2008); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012); software used to prepare material for publication: *SHELXL97* and *PLATON* (Spek, 2009).

The authors thank the TBI X-ray facility, CAS in Crystallography and Biophysics, University of Madras, India for data collection. TS and DV thank the UGC (SAP-CAS) for the departmental facilities. TS also thanks the DST Inspire program for financial assistance.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2589).

References

- Andra, K. K., Bullinger, J. C., Bann, J. G. & Eichhorn, D. M. (2010). *Acta Cryst.* E66, 02713.
- Biradha, K. & Mahata, G. (2005). Cryst. Growth Des. 5, 49-51.
- Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Koshima, H., Miyamoto, H., Yagi, I. & Uosaki, K. (2004). Cryst. Growth Des. 4,807–811.
- Madden, J. J., McGandy, E. L. & Seeman, N. C. (1972). Acta Cryst. B28, 2377–2382.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sivakumar, P. K., Krishnakumar, M., Kanagadurai, R., Chakkaravarthi, G. & Mohankumar, R. (2012). Acta Cryst. E68, 03059.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2013). E69, o804 [https://doi.org/10.1107/S1600536813011161]

L-Histidinium *p*-toluenesulfonate

Srinivasan Muralidharan, Perumal Nagapandiselvi, Thothadri Srinivasan, Rengasamy Gopalakrishnan and Devadasan Velmurugan

S1. Comment

The asymmetric unit of the title compound, Fig. 1, contains an L-histidinium cation and a 4-toluenesulfonate anion. The histidine molecule exists as an histidinium ion due to the protonation at the N atom of the imidazole ring. The 4-toluene-sulfonic acid exists as a 4-toluenesulfonate since the proton is transferred to the amino acid.

In the crystal, the imidazole ring (N1/N2/C8-C10) makes a dihedral angle of 70.93 (12)° with the toluene ring (C1-C6). In the crystal, the ions are linked via N-H···O and weak C-H···O hydrogen bonds forming two-dimensional networks lying parallel to (001); see Table 1 and Fig. 2. These networks are linked via C-H··· π interactions forming a three-dimensional structure.

S2. Experimental

L-histidine and 4-toluenesulfonic acid were mixed in an equimolar (1:1) ratio using distilled water as solvent and stirred for 1 h, giving a clear solution. The solution was filtered into a clean beaker and optimally closed and kept at room temperature for slow evaporation. After a period of 10 days, block-like colourless crystals suitable for X-ray diffraction analysis were obtained.

S3. Refinement

The NH₃ H atoms were located in a difference Fourier map and refined freely. The NH H atoms and the C-bound H atoms were positioned geometrically and refined using a riding model: N—H = 0.86 Å, C—H = 0.93 and 0.98 Å for CH(aromatic) and CH(methine) H atoms, respectively, and 0.96 Å for CH₂ and CH₃ H atoms, with $U_{iso}(H) = 1.5U_{eq}(C-methyl)$ and $= 1.2U_{eq}(N,C)$ for other H atoms.

The molecular structure of the title salt, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2

The crystal packing of the title compound viewed along the b axis. The hydrogen bonds are shown as dashed lines (see Table 1 for details; H-atoms not involved in hydrogen bonds have been omitted for clarity).

L-Histidinium *p*-toluenesulfonate

$C_{6}H_{10}N_{3}O_{2}^{+}\cdot C_{7}H_{7}O_{3}S^{-}$
$M_r = 327.36$
Orthorhombic, P212121
Hall symbol: P 2ac 2ab
a = 5.2700 (2) Å
<i>b</i> = 7.3691 (3) Å
<i>c</i> = 38.2042 (14) Å
$V = 1483.67 (10) \text{ Å}^3$
Z = 4

F(000) = 688 $D_x = 1.466 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3638 reflections $\theta = 2.1-28.3^{\circ}$ $\mu = 0.25 \text{ mm}^{-1}$ T = 293 KBlock, colourless $0.30 \times 0.25 \times 0.20 \text{ mm}$ Data collection

Bruker SMART APEXII area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω and φ scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2008) $T_{\min} = 0.930, T_{\max} = 0.952$ Refinement	8400 measured reflections 3638 independent reflections 3533 reflections with $I > 2\sigma(I)$ $R_{int} = 0.022$ $\theta_{max} = 28.3^{\circ}, \ \theta_{min} = 2.1^{\circ}$ $h = -6 \rightarrow 6$ $k = -9 \rightarrow 6$ $l = -41 \rightarrow 50$
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.038$	H atoms treated by a mixture of independent
$wR(F^2) = 0.094$	and constrained refinement
S = 1.20	$w = 1/[\sigma^2(F_o^2) + (0.0378P)^2 + 0.5138P]$
3638 reflections	where $P = (F_o^2 + 2F_c^2)/3$
212 parameters	$(\Delta/\sigma)_{max} = 0.014$
0 restraints	$\Delta\rho_{max} = 0.22$ e Å ⁻³
Primary atom site location: structure-invariant	$\Delta\rho_{min} = -0.29$ e Å ⁻³
direct methods	Absolute structure: Flack (1983), 1479 Friedel
Secondary atom site location: difference Fourier	pairs
map	Absolute structure parameter: 0.07 (7)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.5686 (4)	0.8856 (3)	0.08354 (5)	0.0267 (4)	
C2	0.3546 (5)	0.8904 (3)	0.06249 (6)	0.0378 (5)	
H2	0.2447	0.9891	0.0633	0.045*	
C3	0.3067 (5)	0.7455 (4)	0.04012 (6)	0.0445 (6)	
H3	0.1645	0.7493	0.0257	0.053*	
C4	0.4653 (5)	0.5955 (3)	0.03871 (6)	0.0410 (5)	
C5	0.6786 (5)	0.5940 (3)	0.05970 (6)	0.0413 (5)	
Н5	0.7888	0.4956	0.0588	0.050*	
C6	0.7307 (4)	0.7383 (3)	0.08214 (6)	0.0352 (5)	
H6	0.8747	0.7355	0.0962	0.042*	
C7	0.4046 (8)	0.4355 (4)	0.01540 (8)	0.0698 (9)	
H7A	0.2604	0.4640	0.0010	0.105*	
H7B	0.3667	0.3315	0.0296	0.105*	
H7C	0.5479	0.4093	0.0007	0.105*	
C8	1.2390 (4)	0.5424 (3)	0.13142 (5)	0.0305 (4)	

H8	1.3637	0.5258	0.1145	0.037*
C9	1.0008 (4)	0.6656 (3)	0.17226 (5)	0.0312 (4)
H9	0.9349	0.7496	0.1880	0.037*
C10	0.9162 (4)	0.4935 (2)	0.16686 (5)	0.0240 (4)
C11	0.7122 (4)	0.3892 (2)	0.18479 (5)	0.0242 (4)
H11A	0.6039	0.3330	0.1673	0.029*
H11B	0.6089	0.4719	0.1985	0.029*
C12	0.8209 (3)	0.2411 (2)	0.20905 (4)	0.0190 (3)
H12	0.9473	0.1693	0.1963	0.023*
C13	0.9463 (3)	0.3308 (2)	0.24112 (5)	0.0217 (4)
N1	1.0671 (3)	0.4207 (2)	0.14111 (4)	0.0261 (3)
H1	1.0525	0.3132	0.1326	0.031*
N2	1.2021 (4)	0.6914 (2)	0.15002 (5)	0.0325 (4)
H2A	1.2904	0.7892	0.1484	0.039*
N3	0.6079 (3)	0.1216 (2)	0.22022 (4)	0.0227 (3)
01	0.4968 (4)	1.2199 (2)	0.10150 (5)	0.0513 (5)
O2	0.8939 (3)	1.0777 (2)	0.11806 (5)	0.0564 (5)
O3	0.5067 (4)	0.9933 (2)	0.14701 (4)	0.0448 (4)
O4	1.1834 (3)	0.3507 (2)	0.23929 (4)	0.0344 (4)
O5	0.8051 (3)	0.3822 (2)	0.26480 (4)	0.0340 (3)
S1	0.62131 (10)	1.05973 (6)	0.114496 (13)	0.02896 (12)
H3D	0.534 (4)	0.064 (3)	0.2015 (6)	0.027 (5)*
H3B	0.673 (5)	0.024 (4)	0.2341 (7)	0.037 (7)*
H3C	0.487 (5)	0.173 (4)	0.2300 (6)	0.036 (7)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}	
C1	0.0301 (10)	0.0217 (8)	0.0283 (8)	-0.0061 (8)	0.0041 (8)	-0.0026 (7)	
C2	0.0372 (12)	0.0342 (10)	0.0421 (11)	0.0033 (9)	-0.0061 (10)	-0.0038 (9)	
C3	0.0450 (14)	0.0514 (14)	0.0372 (11)	-0.0084 (12)	-0.0092 (10)	-0.0068 (10)	
C4	0.0515 (14)	0.0352 (12)	0.0363 (11)	-0.0120 (10)	0.0078 (10)	-0.0102 (9)	
C5	0.0457 (13)	0.0272 (10)	0.0509 (13)	0.0019 (9)	0.0099 (11)	-0.0077 (9)	
C6	0.0312 (11)	0.0306 (10)	0.0437 (11)	-0.0002 (9)	-0.0012 (9)	-0.0043 (9)	
C7	0.095 (3)	0.0578 (17)	0.0570 (16)	-0.0227 (19)	0.0094 (17)	-0.0293 (14)	
C8	0.0280 (10)	0.0273 (9)	0.0361 (10)	-0.0045 (9)	0.0013 (8)	0.0055 (8)	
C9	0.0449 (12)	0.0186 (8)	0.0302 (10)	-0.0051 (8)	-0.0014 (9)	-0.0016 (7)	
C10	0.0275 (9)	0.0202 (8)	0.0244 (8)	-0.0024 (7)	-0.0016 (8)	0.0021 (6)	
C11	0.0245 (9)	0.0210 (8)	0.0273 (8)	-0.0011 (7)	-0.0025 (7)	0.0032 (7)	
C12	0.0161 (8)	0.0176 (7)	0.0234 (8)	-0.0030 (6)	0.0006 (6)	0.0000 (6)	
C13	0.0214 (9)	0.0139 (7)	0.0300 (9)	0.0024 (6)	-0.0055 (7)	0.0004 (6)	
N1	0.0307 (9)	0.0176 (7)	0.0301 (7)	-0.0037 (6)	0.0013 (6)	0.0002 (6)	
N2	0.0392 (10)	0.0221 (8)	0.0362 (9)	-0.0119 (7)	-0.0043 (8)	0.0049 (7)	
N3	0.0188 (7)	0.0202 (7)	0.0290 (8)	-0.0031 (7)	-0.0001 (7)	0.0008 (6)	
01	0.0761 (14)	0.0229 (7)	0.0550 (10)	0.0084 (8)	-0.0015 (10)	-0.0024 (7)	
O2	0.0336 (9)	0.0439 (9)	0.0917 (14)	-0.0153 (8)	0.0063 (9)	-0.0324 (10)	
O3	0.0614 (11)	0.0379 (8)	0.0350 (8)	-0.0244 (8)	0.0022 (8)	-0.0085 (6)	
O4	0.0192 (7)	0.0312 (7)	0.0529 (9)	-0.0031 (6)	-0.0052 (6)	-0.0140 (6)	

supporting information

O5	0.0322 (8)	0.0386 (8)	0.0312 (7)	0.0045 (6)	-0.0018 (6)	-0.0095 (6)
S1	0.0314 (3)	0.0191 (2)	0.0364 (2)	-0.00777 (18)	0.0038 (2)	-0.00459 (18)

Geometric parameters (Å, °)

С1—С6	1.382 (3)	С9—Н9	0.9300
C1—C2	1.386 (3)	C10—N1	1.374 (2)
C1—S1	1.7671 (19)	C10—C11	1.488 (3)
С2—С3	1.391 (3)	C11—C12	1.542 (2)
С2—Н2	0.9300	C11—H11A	0.9700
C3—C4	1.387 (4)	C11—H11B	0.9700
С3—Н3	0.9300	C12—N3	1.490 (2)
C4—C5	1.381 (4)	C12—C13	1.541 (2)
C4—C7	1.512 (3)	C12—H12	0.9800
С5—С6	1.393 (3)	C13—O5	1.231 (2)
С5—Н5	0.9300	C13—O4	1.260 (2)
С6—Н6	0.9300	N1—H1	0.8600
C7—H7A	0.9600	N2—H2A	0.8600
С7—Н7В	0.9600	N3—H3D	0.92 (2)
C7—H7C	0.9600	N3—H3B	0.96 (3)
C8—N2	1.322 (3)	N3—H3C	0.83 (3)
C8—N1	1.327 (2)	O1—S1	1.4391 (17)
С8—Н8	0.9300	O2—S1	1.4490 (18)
C9—C10	1.360 (3)	O3—S1	1.4652 (17)
C9—N2	1.372 (3)		
C6—C1—C2	120.04 (18)	C10-C11-C12	111.95 (15)
C6—C1—S1	119.94 (16)	C10-C11-H11A	109.2
C2-C1-S1	119.85 (16)	C12—C11—H11A	109.2
C1—C2—C3	119.0 (2)	C10-C11-H11B	109.2
C1—C2—H2	120.5	C12—C11—H11B	109.2
С3—С2—Н2	120.5	H11A—C11—H11B	107.9
C4—C3—C2	121.8 (2)	N3—C12—C13	110.43 (14)
С4—С3—Н3	119.1	N3-C12-C11	108.10 (14)
С2—С3—Н3	119.1	C13—C12—C11	109.47 (14)
C5—C4—C3	118.3 (2)	N3—C12—H12	109.6
C5—C4—C7	120.5 (2)	C13—C12—H12	109.6
C3—C4—C7	121.1 (3)	C11—C12—H12	109.6
C4—C5—C6	120.8 (2)	O5—C13—O4	127.17 (18)
C4—C5—H5	119.6	O5—C13—C12	117.22 (16)
С6—С5—Н5	119.6	O4—C13—C12	115.52 (17)
C1—C6—C5	120.1 (2)	C8—N1—C10	109.33 (16)
С1—С6—Н6	119.9	C8—N1—H1	125.3
С5—С6—Н6	119.9	C10—N1—H1	125.3
С4—С7—Н7А	109.5	C8—N2—C9	109.36 (17)
С4—С7—Н7В	109.5	C8—N2—H2A	125.3
H7A—C7—H7B	109.5	C9—N2—H2A	125.3
С4—С7—Н7С	109.5	C12—N3—H3D	111.8 (14)

H7A—C7—H7C	109.5	C12—N3—H3B	109.6 (15)
H7B—C7—H7C	109.5	H3D—N3—H3B	104 (2)
N2	108.10 (18)	C12—N3—H3C	115.8 (18)
N2—C8—H8	125.9	H3D—N3—H3C	104 (2)
N1—C8—H8	125.9	H3B—N3—H3C	112 (2)
C10—C9—N2	106.77 (19)	O1—S1—O2	114.19 (12)
С10—С9—Н9	126.6	O1—S1—O3	112.24 (12)
N2—C9—H9	126.6	O2—S1—O3	111.07 (12)
C9—C10—N1	106.42 (17)	O1—S1—C1	107.04 (10)
C9—C10—C11	130.43 (19)	O2—S1—C1	106.56 (10)
N1-C10-C11	123.10 (16)	O3—S1—C1	105.06 (9)
C6—C1—C2—C3	0.0 (3)	N3-C12-C13-O5	-39.4 (2)
S1—C1—C2—C3	-175.30 (18)	C11—C12—C13—O5	79.5 (2)
C1—C2—C3—C4	0.9 (4)	N3-C12-C13-O4	143.72 (16)
C2—C3—C4—C5	-1.4 (4)	C11—C12—C13—O4	-97.38 (19)
C2—C3—C4—C7	177.3 (2)	N2-C8-N1-C10	-0.4 (2)
C3—C4—C5—C6	1.0 (4)	C9—C10—N1—C8	0.7 (2)
C7—C4—C5—C6	-177.7 (2)	C11—C10—N1—C8	-176.84 (17)
C2-C1-C6-C5	-0.3 (3)	N1—C8—N2—C9	-0.1 (2)
S1—C1—C6—C5	174.95 (17)	C10—C9—N2—C8	0.6 (2)
C4—C5—C6—C1	-0.2 (3)	C6-C1-S1-O1	157.65 (17)
N2-C9-C10-N1	-0.8 (2)	C2-C1-S1-O1	-27.0 (2)
N2-C9-C10-C11	176.54 (19)	C6-C1-S1-O2	35.1 (2)
C9—C10—C11—C12	-106.9 (2)	C2-C1-S1-O2	-149.61 (18)
N1-C10-C11-C12	70.1 (2)	C6-C1-S1-O3	-82.85 (19)
C10-C11-C12-N3	-169.02 (15)	C2-C1-S1-O3	92.46 (19)
C10-C11-C12-C13	70.64 (19)		

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids the C1–C6 and N1/N2/C8–C10 rings, respectively.

D—H···A	D—H	H···A	D···A	D—H··· A
N1—H1…O2 ⁱ	0.86	2.00	2.828 (2)	160
N2—H2A···O3 ⁱⁱ	0.86	1.89	2.746 (2)	175
N3—H3 <i>B</i> ···O4 ⁱⁱⁱ	0.96 (3)	1.80 (3)	2.755 (2)	176 (2)
N3—H3 <i>C</i> ···O4 ^{iv}	0.83 (3)	2.10 (3)	2.896 (2)	161 (2)
N3—H3D····O3 ⁱ	0.92 (2)	2.15 (2)	3.000 (2)	153.4 (19)
C8—H8…O1 ^v	0.93	2.41	2.967 (3)	118
C9—H9…O5 ^{vi}	0.93	2.47	3.062 (3)	122
С6—Н6…Сg2	0.93	2.73	3.515 (2)	143
C8—H8…Cg1 ⁱⁱ	0.93	2.71	3.394 (2)	131

Symmetry codes: (i) x, y-1, z; (ii) x+1, y, z; (iii) -x+2, y-1/2, -z+1/2; (iv) x-1, y, z; (v) x+1, y-1, z; (vi) -x+2, y+1/2, -z+1/2.