organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

An unknown solvate of 1-(2,4-dichlorobenzyl)-4-[(4-methylphenyl)sulfonyl]piperazine

S. Sreenivasa,^a* K. E. ManojKumar,^a H. C. Anitha,^b P. A. Suchetan,^c B. S. Palakshamurthy,^d Yenagi Jayashree^e and J. Tonannavar^e

^aDepartment of Studies and Research in Chemistry, Tumkur University, Tumkur, Karnataka 572 103, India, ^bCenter for Advanced Materials and Department of Chemistry, Tumkur University Tumkur, Karnataka 572103, India, ^cDepartment of Studies and Research in Chemistry, U.C.S, Tumkur University, Tumkur, Karnataka 572 103, India, ^dDepartment of Studies and Research in Physics, U.C.S, Tumkur University, Tumkur, Karnataka 572 103, India, and ^eDepartment of Physics, Karnatak University, Dharwad, Karnataka 580 003, India Correspondence e-mail: drsreenivasa@yahoo.co.in

Received 29 March 2013; accepted 13 April 2013

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.038; wR factor = 0.109; data-to-parameter ratio = 15.8.

In the title compound, $C_{18}H_{20}Cl_2N_2O_2S$, the piperazine ring adopts a chair conformation. The dihedral angle between the sulfonyl-bound benzene ring and the best-fit plane through the six non-H atoms of the piperazine ring is 72.22 (12)°; those between the dichlorobenzene ring and the sulfonyl and piperazine rings are 2.44 (13) and 74.16 (2)°, respectively. In the crystal, molecules are connected through weak $C-H \cdots O$ interactions into a hexameric unit generating a $R_6^6(60)$ motif in the *ab* plane. The molecules are also connected into C(4)chains through weak C-H···N interactions. The solvent used to grow the crystal was a mixture of dichloromethane and methanol, but the resulting electron density was uninterpretable. The solvent contribution to the scattering was removed with the SQUEEZE routine in PLATON [Spek (2009). Acta Cryst. D65, 148-155]. The formula mass and unitcell characteristics do not take into account the disordered solvent.

Related literature

0782

For similar structures, see: Sreenivasa et al. (2013a,b).

Experimental

Crystal data

$C_{18}H_{20}Cl_2N_2O_2S$	
$M_r = 399.32$	
Trigonal, R3	
a = 28.2896 (5) Å	
c = 13.3041 (3) Å	
V = 9220.8 (3) Å ³	

Data collection

Bruker APEXII diffractometer 15194 measured reflections 3596 independent reflections 2637 reflections with $I > 2\sigma(I)$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.038$ 227 parameters $wR(F^2) = 0.109$ H-atom parameters constrainedS = 0.95 $\Delta \rho_{max} = 0.20 \text{ e } \text{Å}^{-3}$ 3596 reflections $\Delta \rho_{min} = -0.25 \text{ e } \text{Å}^{-3}$

Z = 18

Mo $K\alpha$ radiation $\mu = 0.43 \text{ mm}^{-1}$ T = 296 K

 $R_{int} = 0.033$

reflections

 $0.31 \times 0.23 \times 0.19 \text{ mm}$

3608 standard reflections every 22

intensity decay: 1.0%

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C18 $-$ H18 \cdots O2 ⁱ	0.93	2.70	3.575 (3)	157
С1/—П1/…N2	0.95	2.70	5.465 (5)	145

Symmetry codes: (i) $y + \frac{1}{3}$, $-x + y + \frac{2}{3}$, $-z + \frac{5}{3}$; (ii) $-x + y + \frac{2}{3}$, $-x + \frac{1}{3}$, $z + \frac{1}{3}$.

Data collection: *APEX2* (Bruker, 2009); cell refinement: *APEX2* and *SAINT-Plus* (Bruker, 2009); data reduction: *SAINT-Plus* and *XPREP* (Bruker, 2009); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *SHELXL97*.

The authors thank Dr S. C. Sharma, Vice Chancellor, Tumkur University, Tumkur, for his constant encouragement. JT thanks the SCXRD facility under a PURSE Grant (SR/S9/ Z-23/2008/11, 2009) at USIC, Karnatak University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK5213).

References

Bruker (2009). APEX2, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.

- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

- Sreenivasa, S., Anitha, H. C., ManojKumar, K. E., Tonannavar, J., Jayashree, Y., Suchetan, P. A. & Palakshamurthy, B. S. (2013a). Acta Cryst. E69, 0239.
- Sreenivasa, S., ManojKumar, K. E., Suchetan, P. A., Tonannavar, J., Chavan, Y. & Palakshamurthy, B. S. (2013b). Acta Cryst. E69, 0185.

Acta Cryst. (2013). E69, o782 [https://doi.org/10.1107/S160053681301012X]

An unknown solvate of 1-(2,4-dichlorobenzyl)-4-[(4-methylphenyl)sulfonyl]piperazine

S. Sreenivasa, K. E. ManojKumar, H. C. Anitha, P. A. Suchetan, B. S. Palakshamurthy, Yenagi Jayashree and J. Tonannavar

S1. Comment

As a part of our continued efforts to study the crystal structures of N-(aryl)(4-tosylpiperazin-1-yl)methanone derivatives (Sreenivasa *et al.*, 2013*a*,*b*), we report herein the crystal structure of the title compound.

In the title compound, Fig. 1, the piperazine ring adopts a chair conformation. The dihedral angle between the sulfonylbound benzene ring and the best fit plane through the six non-H atoms of the piperazine ring is 72.22 (12)°, while those between the dichlorobenzene and sulfonyl rings and the dichlorobenzene and piperazine rings are 2.44 (13) and 74.16 (2)° respectively. In the crystal, molecules are connected through weak C18—H18···O2 interactions into a hexameric unit generating a $R_6^{-6}(60)$ motif, Fig. 2 and Table 1. The molecules are also connected into C(4) chains through a weak C17— H17···N2 interaction, Fig. 3 and Table 1.

S2. Experimental

A mixture of 1-tosylpiperazine (0.01 mmol), potassium carbonate (0.03 mmol) and 2,4-dichlorobenzyl bromide (0.01 mmol) was added into dry acetonitrile (5 ml). The mixture was stirred at 85°C for 8 h. The reaction was monitored by TLC. Solvent was removed by vacuum distillation and the crude product obtained was purified by column chromatography using 230–400 silica gel and petroleum ether/ethyl acetate as eluent. Colourless prisms were obtained from a mixture of dichloromethane/methanol (7:3) by slow evaporation.

S3. Refinement

All H atoms were included in calculated positions with C—H bond distances 0.93–0.97 Å and refined in a riding model approximation with $U_{iso}(H) = 1.2-1.5U_{eq}(C)$. The solvent used to grow the crystal was a mixture of dichloromethane and methanol. But the resulting electron density was largely uninterpretable. It was decided to model it with the SQUEEZE routine in PLATON (Spek, 2009); more details are given in "_platon_squeeze_details".

Figure 1

Molecular structure of the title compound, showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

Molecular packing in the title compound displaying $R_6^6(60)$ rings.

Figure 3 Molecular packing in the title compound displaying *C*(4) chains.

1-(2,4-Dichlorobenzyl)-4-[(4-methylphenyl)sulfonyl]piperazine

Crystal data

 $C_{18}H_{20}Cl_2N_2O_2S$ $M_r = 399.32$ Trigonal, $R\overline{3}$ Hall symbol: -R 3 a = 28.2896 (5) Å c = 13.3041 (3) Å V = 9220.8 (3) Å³ Z = 18 F(000) = 3744Prism $D_x = 1.294 \text{ Mg m}^{-3}$ Melting point: 423 K Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2637 reflections $\theta = 2.5-25^{\circ}$ $\mu = 0.43 \text{ mm}^{-1}$ T = 296 KPrism, colourless $0.31 \times 0.23 \times 0.19 \text{ mm}$ Data collection

Bruker APEXII diffractometer	$R_{\text{int}} = 0.033$ $\theta_{\text{max}} = 250^{\circ} \ \theta_{\text{mix}} = 25^{\circ}$
Radiation source: fine-focus sealed tube	$h = -31 \rightarrow 33$
phi and ω scans	$k = -29 \rightarrow 28$ $l = -15 \rightarrow 15$
15194 measured reflections	3608 standard reflections every 22 reflections
3596 independent reflections	intensity decay: 1.0%
2637 reflections with $I > 2\sigma(I)$	
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.038$	Hydrogen site location: inferred from
$wR(F^2) = 0.109$	neighbouring sites
<i>S</i> = 0.95	H-atom parameters constrained
3596 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0587P)^2 + 6.8101P]$
227 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.089$
0 constraints	$\Delta ho_{ m max} = 0.20 \ { m e} \ { m \AA}^{-3}$
Primary atom site location: structure-invariant direct methods	$\Delta \rho_{\rm min} = -0.25 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.64880 (8)	0.09435 (8)	0.76974 (16)	0.0464 (5)	
O2	0.62445 (6)	-0.00584 (6)	0.79558 (13)	0.0674 (5)	
N2	0.44379 (7)	-0.01492 (7)	0.71771 (13)	0.0488 (4)	
C2	0.65949 (9)	0.14258 (9)	0.81461 (18)	0.0567 (6)	
H2	0.6452	0.1423	0.8777	0.068*	
N1	0.54532 (7)	0.00797 (7)	0.79761 (12)	0.0458 (4)	
C3	0.69137 (10)	0.19115 (10)	0.7653 (2)	0.0654 (7)	
Н3	0.6984	0.2236	0.7959	0.079*	
C4	0.71321 (9)	0.19286 (10)	0.67143 (19)	0.0595 (6)	
C5	0.70225 (9)	0.14399 (11)	0.62852 (19)	0.0624 (6)	
Н5	0.7168	0.1442	0.5657	0.075*	
C6	0.67040 (9)	0.09499 (10)	0.67628 (17)	0.0563 (6)	
H6	0.6634	0.0625	0.6459	0.068*	
01	0.61109 (6)	0.04263 (7)	0.93700 (12)	0.0678 (5)	
C7	0.74895 (12)	0.24614 (12)	0.6180 (2)	0.0928 (9)	
H7A	0.7857	0.2527	0.6149	0.139*	

H7B	0.7485	0.2753	0.6541	0.139*
H7C	0.7355	0.2443	0.5511	0.139*
C8	0.51725 (8)	0.03596 (9)	0.83632 (18)	0.0530 (6)
H8A	0.5293	0.0698	0.8001	0.064*
H8B	0.5258	0.0445	0.9069	0.064*
C9	0.45666 (9)	-0.00078 (9)	0.82310 (16)	0.0531 (6)
H9A	0.4444	-0.0337	0.8624	0.064*
H9B	0.4377	0.0176	0.8471	0.064*
C10	0.47094 (8)	-0.04358 (9)	0.68121 (17)	0.0522 (5)
H10A	0.4615	-0.0535	0.6113	0.063*
H10B	0.4588	-0.0769	0.7196	0.063*
C11	0.53211 (8)	-0.00766 (9)	0.69135 (16)	0.0538 (6)
H11A	0.5502	-0.0272	0.6688	0.065*
H11B	0.5447	0.0247	0.6501	0.065*
C12	0.38530 (9)	-0.04161 (9)	0.69488 (18)	0.0571 (6)
H12A	0.3804	-0.0505	0.6239	0.068*
H12B	0.3731	-0.0156	0.7069	0.068*
C13	0.34892 (8)	-0.09302 (9)	0.75381 (16)	0.0475 (5)
C14	0.33447 (8)	-0.14556 (9)	0.72265 (16)	0.0492 (5)
C15	0.30393 (8)	-0.19090 (9)	0.78093 (17)	0.0545 (6)
H15	0.2957	-0.2253	0.7586	0.065*
C16	0.28575 (9)	-0.18448 (9)	0.87298 (17)	0.0556 (6)
C17	0.29689 (9)	-0.13381 (10)	0.90606 (18)	0.0600 (6)
H17	0.2837	-0.1298	0.9676	0.072*
C18	0.32797 (9)	-0.08920 (10)	0.84600 (18)	0.0565 (6)
H18	0.3353	-0.0550	0.8681	0.068*
S1	0.60861 (2)	0.03176 (2)	0.83193 (4)	0.05200 (18)
Cl1	0.35347 (3)	-0.15637 (3)	0.60399 (5)	0.0748 (2)
Cl2	0.24812 (3)	-0.24131 (3)	0.94814 (6)	0.0875 (3)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0379 (11)	0.0542 (13)	0.0499 (12)	0.0250 (10)	-0.0040 (9)	-0.0026 (10)
O2	0.0607 (10)	0.0627 (10)	0.0950 (13)	0.0431 (9)	-0.0010 (9)	0.0009 (9)
N2	0.0427 (10)	0.0504 (10)	0.0573 (11)	0.0264 (9)	-0.0001 (8)	0.0044 (8)
C2	0.0525 (14)	0.0616 (15)	0.0552 (14)	0.0278 (12)	0.0022 (11)	-0.0055 (12)
N1	0.0436 (10)	0.0480 (10)	0.0497 (10)	0.0258 (8)	-0.0012 (8)	-0.0079 (8)
C3	0.0589 (15)	0.0552 (15)	0.0773 (18)	0.0248 (12)	-0.0085 (13)	-0.0102 (13)
C4	0.0424 (13)	0.0638 (16)	0.0652 (16)	0.0213 (12)	-0.0084 (11)	0.0070 (12)
C5	0.0506 (14)	0.0795 (18)	0.0567 (15)	0.0321 (13)	0.0024 (11)	0.0042 (13)
C6	0.0487 (13)	0.0640 (15)	0.0590 (14)	0.0303 (12)	-0.0012 (11)	-0.0053 (12)
01	0.0661 (11)	0.0780 (11)	0.0511 (10)	0.0297 (9)	-0.0086 (8)	0.0039 (8)
C7	0.080(2)	0.078 (2)	0.096 (2)	0.0213 (16)	-0.0027 (17)	0.0193 (17)
C8	0.0502 (13)	0.0524 (13)	0.0600 (14)	0.0282 (11)	0.0020 (10)	-0.0105 (10)
C9	0.0504 (13)	0.0571 (14)	0.0604 (14)	0.0334 (11)	0.0053 (11)	-0.0067 (11)
C10	0.0494 (13)	0.0582 (13)	0.0500 (13)	0.0278 (11)	-0.0022 (10)	-0.0078 (10)
C11	0.0476 (13)	0.0632 (14)	0.0524 (13)	0.0290 (11)	0.0029 (10)	-0.0101 (11)

C12	0.0515 (13)	0.0636 (15)	0.0633 (15)	0.0341 (12)	-0.0051 (11)	0.0081 (11)	
C13	0.0352 (11)	0.0572 (13)	0.0537 (13)	0.0259 (10)	-0.0056 (9)	-0.0021 (10)	
C14	0.0367 (11)	0.0631 (14)	0.0469 (12)	0.0242 (11)	-0.0057 (9)	-0.0107 (10)	
C15	0.0463 (12)	0.0504 (13)	0.0595 (14)	0.0186 (11)	-0.0053 (10)	-0.0138 (11)	
C16	0.0415 (12)	0.0544 (14)	0.0569 (14)	0.0133 (11)	-0.0004 (10)	-0.0044 (11)	
C17	0.0506 (13)	0.0647 (15)	0.0569 (14)	0.0230 (12)	0.0089 (11)	-0.0115 (12)	
C18	0.0464 (13)	0.0557 (14)	0.0701 (16)	0.0276 (11)	0.0028 (11)	-0.0116 (12)	
S 1	0.0478 (3)	0.0554 (4)	0.0567 (4)	0.0288 (3)	-0.0042 (2)	0.0013 (3)	
Cl1	0.0692 (4)	0.0910 (5)	0.0524 (4)	0.0312 (4)	0.0014 (3)	-0.0202 (3)	
Cl2	0.0864 (5)	0.0670 (4)	0.0774 (5)	0.0146 (4)	0.0190 (4)	0.0064 (3)	

Geometric parameters (Å, °)

C1—C2	1.377 (3)	C8—H8A	0.9700	
C1—C6	1.382 (3)	C8—H8B	0.9700	
C1—S1	1.760 (2)	С9—Н9А	0.9700	
O2—S1	1.4294 (16)	С9—Н9В	0.9700	
N2—C9	1.454 (3)	C10-C11	1.512 (3)	
N2-C10	1.451 (3)	C10—H10A	0.9700	
N2-C12	1.467 (3)	C10—H10B	0.9700	
C2—C3	1.375 (3)	C11—H11A	0.9700	
С2—Н2	0.9300	C11—H11B	0.9700	
N1—C8	1.467 (2)	C12—C13	1.514 (3)	
N1-C11	1.473 (3)	C12—H12A	0.9700	
N1—S1	1.6317 (17)	C12—H12B	0.9700	
C3—C4	1.384 (3)	C13—C18	1.390 (3)	
С3—Н3	0.9300	C13—C14	1.393 (3)	
C4—C5	1.380 (3)	C14—C15	1.373 (3)	
C4—C7	1.508 (3)	C14—Cl1	1.743 (2)	
С5—С6	1.374 (3)	C15—C16	1.375 (3)	
С5—Н5	0.9300	C15—H15	0.9300	
С6—Н6	0.9300	C16—C17	1.377 (3)	
01—S1	1.4255 (17)	C16—Cl2	1.734 (2)	
С7—Н7А	0.9600	C17—C18	1.376 (3)	
С7—Н7В	0.9600	C17—H17	0.9300	
С7—Н7С	0.9600	C18—H18	0.9300	
C8—C9	1.506 (3)			
C2—C1—C6	120.0 (2)	N2	110.00 (17)	
C2-C1-S1	120.28 (17)	N2-C10-H10A	109.7	
C6—C1—S1	119.69 (17)	C11-C10-H10A	109.7	
C9—N2—C10	110.30 (16)	N2-C10-H10B	109.7	
C9—N2—C12	113.84 (17)	C11-C10-H10B	109.7	
C10-N2-C12	114.78 (17)	H10A—C10—H10B	108.2	
C3—C2—C1	119.5 (2)	N1-C11-C10	108.70 (17)	
С3—С2—Н2	120.2	N1-C11-H11A	109.9	
C1—C2—H2	120.2	C10-C11-H11A	109.9	
C8—N1—C11	112.00 (16)	N1-C11-H11B	110.0	

C8—N1—S1	117.23 (13)	C10—C11—H11B	110.0
C11—N1—S1	116.99 (13)	H11A—C11—H11B	108.3
C2—C3—C4	121.6 (2)	N2—C12—C13	115.93 (17)
С2—С3—Н3	119.2	N2—C12—H12A	108.3
C4—C3—H3	119.2	C13—C12—H12A	108.3
$C_{5}-C_{4}-C_{3}$	117.7 (2)	N2-C12-H12B	108.3
C_{5} C_{4} C_{7}	120.6(2)	C13—C12—H12B	108.3
$C_3 - C_4 - C_7$	120.0(2) 121.7(3)	H12A $C12$ $H12B$	107.4
C_{6}	121.7(3) 121.7(2)	C18 - C13 - C14	107.1 115.9(2)
C6-C5-H5	110.2	C18 - C13 - C12	119.9(2)
C_{4} C_{5} H_{5}	110.2	$C_{10} = C_{13} = C_{12}$	119.0(2) 124.5(2)
$C_{4} = C_{5} = C_{6} = C_{1}$	119.2	$C_{14} = C_{13} = C_{12}$	124.3(2) 122.7(2)
C_{5}	119.3 (2)	$C_{15} = C_{14} = C_{15}$	122.7(2) 116.02(17)
C_{1} C_{6} H_{6}	120.3	C_{13} C_{14} C_{11}	110.92(17) 120.33(17)
$C_1 = C_0 = H_0$	120.5	C14 - C15 - C16	120.33(17)
C4 = C7 = H7R	109.5	C14 - C15 - C10	110.0 (2)
$C4 - C - \Pi / B$	109.5	С14—С15—Н15	120.0
H/A - C / - H/B	109.5	C16—C15—H15	120.6
C4 - C - H / C	109.5	C15-C16-C17	121.1 (2)
H/A—C/—H/C	109.5	C15 - C16 - C12	119.20 (18)
H7B—C7—H7C	109.5	C17—C16—Cl2	119.73 (18)
NI	108.85 (16)	C18—C17—C16	118.5 (2)
N1—C8—H8A	109.9	С18—С17—Н17	120.7
С9—С8—Н8А	109.9	С16—С17—Н17	120.7
N1—C8—H8B	109.9	C17—C18—C13	122.9 (2)
С9—С8—Н8В	109.9	C17—C18—H18	118.6
H8A—C8—H8B	108.3	C13—C18—H18	118.6
N2—C9—C8	110.16 (17)	O1—S1—O2	119.49 (10)
N2—C9—H9A	109.6	O1—S1—N1	106.79 (9)
С8—С9—Н9А	109.6	O2—S1—N1	106.62 (9)
N2—C9—H9B	109.6	O1—S1—C1	107.86 (10)
С8—С9—Н9В	109.6	O2—S1—C1	107.72 (10)
Н9А—С9—Н9В	108.1	N1—S1—C1	107.89 (9)
C6—C1—C2—C3	0.5 (3)	C12—C13—C14—C15	176.15 (19)
S1—C1—C2—C3	179.42 (17)	C18—C13—C14—Cl1	174.77 (15)
C1—C2—C3—C4	-0.1 (3)	C12—C13—C14—Cl1	-5.6 (3)
C2—C3—C4—C5	-0.4 (3)	C13—C14—C15—C16	1.5 (3)
C2—C3—C4—C7	-179.0(2)	Cl1—C14—C15—C16	-176.77 (17)
C3—C4—C5—C6	0.6 (3)	C14—C15—C16—C17	1.2 (3)
C7—C4—C5—C6	179.1 (2)	C14—C15—C16—Cl2	-178.92(16)
C4—C5—C6—C1	-0.2(3)	C15—C16—C17—C18	-1.7(4)
C_{2} C_{1} C_{6} C_{5}	-0.3(3)	C12 - C16 - C17 - C18	178 44 (18)
S1-C1-C6-C5	-179.28(17)	C_{16} C_{17} C_{18} C_{13}	-0.5(3)
$C_{11} = N_{1} = C_{8} = C_{9}$	57 6 (2)	C14-C13-C18-C17	2.9(3)
S1_N1_C8_C9	-163 12 (15)	C_{12} C_{13} C_{18} C_{17}	-1767(2)
C10-N2-C9-C8	60 6 (2)	C8 - N1 - S1 - O1	44 09 (18)
$C_{12} = N_2 = C_9 = C_8$	-16874(17)	$C_{11} = N_1 = S_1 = O_1$	-178 60 (15)
N1 - C8 - C9 - N2	-58.1(2)	C_{8} N1 S_{1} O_{2}	172 00 (15)
111 00 07 112	20.1 (2)	00 101 01 02	1/2.70 (13)

C9—N2—C10—C11	-60.5 (2)	C11—N1—S1—O2	-49.80 (17)
C12—N2—C10—C11	169.35 (18)	C8—N1—S1—C1	-71.63 (17)
C8—N1—C11—C10	-57.5 (2)	C11—N1—S1—C1	65.67 (17)
S1—N1—C11—C10	163.11 (15)	C2-C1-S1-O1	-23.1 (2)
N2-C10-C11-N1	57.9 (2)	C6-C1-S1-O1	155.79 (17)
C9—N2—C12—C13	-56.4 (2)	C2-C1-S1-O2	-153.37 (17)
C10—N2—C12—C13	72.1 (2)	C6—C1—S1—O2	25.6 (2)
N2-C12-C13-C18	88.3 (2)	C2-C1-S1-N1	91.89 (18)
N2-C12-C13-C14	-91.3 (3)	C6—C1—S1—N1	-89.19 (18)
C18—C13—C14—C15	-3.4 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H…A
C18—H18…O2 ⁱ	0.93	2.70	3.575 (3)	157
C17—H17…N2 ⁱⁱ	0.93	2.70	3.485 (3)	143

Symmetry codes: (i) y+1/3, -x+y+2/3, -z+5/3; (ii) -x+y+2/3, -x+1/3, z+1/3.