organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Phenyl­ethanaminium 4-hy­dr­oxy­benzoate

aDepartment of Physics, Presidency College, Chennai 600 005, India, and bDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India
*Correspondence e-mail: chakkaravarthi_2005@yahoo.com, mohan66@hotmail.com

(Received 17 April 2013; accepted 19 April 2013; online 27 April 2013)

In the title salt, C8H12N+·C7H5O3, the cation is disordered over two orientations with site occupancies of 0.565 (7) and 0.435 (7). In the anion, the carboxyl­ate group makes the dihedral angle of 4.19 (18)° with the benzene ring. In the crystal, the ions are connected by N—H⋯O and O—H⋯O hydrogen bonds, forming a three-dimensional network.

Related literature

For structures containing p-hy­droxy­benzoate anions, see: Marsh & Spek (2001[Marsh, R. E. & Spek, A. L. (2001). Acta Cryst. B57, 800-805.]); Yang et al. (2010[Yang, Y. X., Li, K., Wang, Y. J. & Li, Q. (2010). Beijing Shifan Dax. Xue. Zir. Kex. (J. B. Norm. Univ.), 46, 160-165.]); Sudhahar et al. (2013[Sudhahar, S., Krishnakumar, M., Sornamurthy, B. M., Chakkaravarthi, G. & Mohankumar, R. (2013). Acta Cryst. E69, o279.]).

[Scheme 1]

Experimental

Crystal data
  • C8H12N+·C7H5O3

  • Mr = 259.30

  • Orthorhombic, P n a 21

  • a = 13.0721 (12) Å

  • b = 17.3426 (16) Å

  • c = 6.2154 (6) Å

  • V = 1409.1 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 295 K

  • 0.36 × 0.30 × 0.24 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.]) Tmin = 0.970, Tmax = 0.980

  • 7327 measured reflections

  • 2561 independent reflections

  • 1671 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.106

  • S = 1.03

  • 2561 reflections

  • 254 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.89 1.89 2.709 (11) 152
N1—H1B⋯O2ii 0.89 1.88 2.760 (10) 168
N1—H1C⋯O2 0.89 1.90 2.752 (11) 159
O3—H3A⋯O2iii 0.82 1.88 2.674 (3) 162
Symmetry codes: (i) [-x+1, -y+1, z-{\script{1\over 2}}]; (ii) [-x+1, -y+1, z+{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

p-Hydroxybenzoate has been found to interact with different cations to form different crystal structures (Marsh et al., 2001; Yang et al., 2010). The asymmetric unit of the title compound, (I), Fig 1, contains a C8H12N+ cation and a C7H5O3- anion. The bond lengths and angles of the anion are comparable with a recently reported structure (Sudhahar et al., 2013). In the anion, the carboxylate group makes the dihedral angle of 4.19 (18) Å with the benzene ring. In the crystal structure, the anions and cations are connected by weak N—H···O and O—H···O interactions (Table 1 & Fig. 2) to form a three-dimensional network.

Related literature top

For structures containing p-hydroxybenzoate anions, see: Marsh & Spek (2001); Yang et al. (2010); Sudhahar et al. (2013).

Experimental top

The title salt was synthesized from the starting materials of 2-phenylethylamine (1.26 g) and 4-hydroxybenzoic acid (1.38 g) taken in methanol:water mixed solvent system. Single crystals suitable for X-ray diffraction were grown by slow evaporation.

Refinement top

The H atoms were positioned geometrically with C—H = 0.93–0.97 Å O—H = 0.82 Å and N—H = 0.89 Å and allowed to ride on their parent atoms, with 1.2Ueq(C) and Uiso(H) = 1.5Ueq(O,N). The cation is oriented over two sites with occupancies 0.565 (7) and 0.435 (7). During refinement, the same distance restraint (SADI 0.01) was applied to the following pairs of bonds: C13—C14 and C13A—C14A, C8—C13 and C8A—C13A, C14—C15 and C14A—C15A, and C15—N1 and C15A—N1A. The anisotropic displacement parameters of C11 and C12 were restrained with the DELU 0.01 instruction. Two reflections, i.e. (1 1 0) and (0 2 0), were omitted from the final cycles of refinement owing to poor agreement.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The packing of (I), viewed down c axis. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted.
2-Phenylethanaminium 4-hydroxybenzoate top
Crystal data top
C8H12N+·C7H5O3F(000) = 552
Mr = 259.30Dx = 1.222 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 2142 reflections
a = 13.0721 (12) Åθ = 2.8–25.4°
b = 17.3426 (16) ŵ = 0.09 mm1
c = 6.2154 (6) ÅT = 295 K
V = 1409.1 (2) Å3Block, colourless
Z = 40.36 × 0.30 × 0.24 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2561 independent reflections
Radiation source: fine-focus sealed tube1671 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω and ϕ scanθmax = 25.3°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1315
Tmin = 0.970, Tmax = 0.980k = 2016
7327 measured reflectionsl = 77
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.0508P)2 + 0.0395P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2561 reflectionsΔρmax = 0.12 e Å3
254 parametersΔρmin = 0.13 e Å3
6 restraintsAbsolute structure: nd
Primary atom site location: structure-invariant direct methods
Crystal data top
C8H12N+·C7H5O3V = 1409.1 (2) Å3
Mr = 259.30Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 13.0721 (12) ŵ = 0.09 mm1
b = 17.3426 (16) ÅT = 295 K
c = 6.2154 (6) Å0.36 × 0.30 × 0.24 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2561 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1671 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.980Rint = 0.029
7327 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0386 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.03Δρmax = 0.12 e Å3
2561 reflectionsΔρmin = 0.13 e Å3
254 parametersAbsolute structure: nd
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.3890 (2)0.37442 (13)0.6595 (4)0.0748 (6)
C20.31676 (16)0.31851 (12)0.5643 (4)0.0604 (5)
C30.33145 (19)0.28736 (13)0.3645 (4)0.0733 (6)
H30.38920.30090.28560.088*
C40.26201 (19)0.23621 (15)0.2782 (4)0.0811 (7)
H40.27340.21580.14190.097*
C50.17637 (18)0.21509 (13)0.3907 (4)0.0694 (6)
C60.16109 (19)0.24534 (15)0.5906 (4)0.0816 (7)
H60.10370.23110.66960.098*
C70.2299 (2)0.29658 (13)0.6757 (4)0.0803 (7)
H70.21780.31710.81150.096*
O20.46474 (11)0.39682 (8)0.5459 (3)0.0800 (5)
O30.11124 (14)0.16400 (11)0.2981 (3)0.1025 (6)
H3A0.06360.15520.38030.154*
O10.3714 (2)0.40004 (14)0.8429 (4)0.1320 (9)
C80.8544 (9)0.4684 (9)1.1607 (13)0.082 (3)0.565 (7)
H80.82190.51281.20910.099*0.565 (7)
C90.9437 (12)0.4412 (8)1.2649 (19)0.075 (3)0.565 (7)
H90.96410.46151.39660.090*0.565 (7)
C101.0025 (11)0.3810 (10)1.161 (4)0.100 (5)0.565 (7)
H101.06270.36441.22640.120*0.565 (7)
C110.9770 (14)0.3519 (11)0.995 (3)0.093 (5)0.565 (7)
H111.01530.31160.93850.112*0.565 (7)
C120.8778 (14)0.3815 (13)0.871 (2)0.111 (6)0.565 (7)
H120.86410.36760.72910.133*0.565 (7)
C130.8154 (5)0.4275 (4)0.9833 (10)0.0722 (17)0.565 (7)
C140.7075 (5)0.4460 (3)0.9177 (10)0.090 (2)0.565 (7)
H14A0.67110.39840.88890.108*0.565 (7)
H14B0.67320.47201.03550.108*0.565 (7)
C150.7036 (4)0.4958 (4)0.7234 (8)0.0794 (18)0.565 (7)
H15A0.73030.46890.59860.095*0.565 (7)
H15B0.74250.54280.74490.095*0.565 (7)
N10.5880 (8)0.5137 (6)0.6959 (15)0.084 (3)0.565 (7)
H1A0.57910.54420.58240.125*0.565 (7)
H1B0.56480.53720.81350.125*0.565 (7)
H1C0.55380.46980.67620.125*0.565 (7)
C8A0.8880 (10)0.4599 (12)1.148 (2)0.098 (5)0.435 (7)
H8A0.85240.49131.24360.118*0.435 (7)
C9A0.9684 (16)0.4220 (13)1.212 (4)0.115 (10)0.435 (7)
H9A0.98930.43141.35250.137*0.435 (7)
C10A1.018 (2)0.378 (2)1.116 (9)0.22 (2)0.435 (7)
H10A1.08010.35861.16390.262*0.435 (7)
C11A0.967 (2)0.3549 (19)0.898 (4)0.104 (7)0.435 (7)
H11A0.99500.31660.81190.125*0.435 (7)
C12A0.899 (2)0.3841 (12)0.852 (4)0.108 (7)0.435 (7)
H12A0.86320.36130.73970.130*0.435 (7)
C13A0.8560 (6)0.4526 (5)0.9342 (13)0.0609 (19)0.435 (7)
C14A0.7772 (4)0.4966 (3)0.8103 (10)0.072 (2)0.435 (7)
H14C0.76800.54700.87550.086*0.435 (7)
H14D0.80120.50430.66420.086*0.435 (7)
C15A0.6773 (5)0.4558 (4)0.8050 (15)0.0655 (19)0.435 (7)
H15C0.65260.44600.94970.079*0.435 (7)
H15D0.68340.40700.72960.079*0.435 (7)
N1A0.6043 (9)0.5113 (6)0.6832 (19)0.072 (4)0.435 (7)
H1E0.54240.49020.67430.108*0.435 (7)
H1F0.62840.51980.55140.108*0.435 (7)
H1D0.60020.55580.75410.108*0.435 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0827 (17)0.0731 (14)0.0685 (16)0.0049 (14)0.0114 (14)0.0053 (14)
C20.0601 (13)0.0590 (12)0.0620 (13)0.0042 (11)0.0004 (11)0.0058 (11)
C30.0682 (15)0.0760 (15)0.0757 (16)0.0053 (13)0.0144 (12)0.0077 (13)
C40.0795 (17)0.0930 (18)0.0707 (16)0.0163 (15)0.0152 (13)0.0154 (14)
C50.0637 (14)0.0664 (14)0.0781 (16)0.0031 (12)0.0045 (12)0.0060 (12)
C60.0730 (15)0.0774 (15)0.0944 (19)0.0112 (14)0.0266 (14)0.0100 (15)
C70.0987 (18)0.0776 (15)0.0645 (14)0.0058 (15)0.0200 (14)0.0092 (13)
O20.0606 (9)0.0745 (9)0.1050 (12)0.0018 (8)0.0089 (10)0.0008 (10)
O30.0831 (11)0.1104 (14)0.1141 (16)0.0279 (11)0.0056 (10)0.0291 (12)
O10.173 (2)0.148 (2)0.0746 (13)0.0583 (18)0.0001 (14)0.0254 (13)
C80.071 (7)0.110 (5)0.065 (4)0.046 (5)0.002 (4)0.018 (3)
C90.072 (7)0.088 (4)0.065 (5)0.008 (5)0.008 (5)0.004 (4)
C100.039 (5)0.102 (8)0.157 (13)0.012 (5)0.020 (6)0.030 (10)
C110.076 (7)0.071 (6)0.133 (15)0.021 (6)0.040 (9)0.013 (11)
C120.103 (9)0.133 (11)0.096 (9)0.015 (7)0.010 (9)0.021 (7)
C130.067 (4)0.077 (4)0.072 (4)0.009 (3)0.018 (3)0.006 (3)
C140.088 (5)0.111 (4)0.072 (4)0.023 (4)0.023 (3)0.026 (3)
C150.070 (5)0.101 (4)0.067 (3)0.009 (3)0.006 (3)0.004 (3)
N10.047 (3)0.131 (7)0.073 (5)0.008 (3)0.014 (3)0.031 (4)
C8A0.060 (9)0.113 (9)0.122 (10)0.036 (8)0.017 (7)0.041 (6)
C9A0.070 (13)0.18 (2)0.097 (12)0.009 (13)0.010 (8)0.001 (13)
C10A0.15 (2)0.19 (2)0.32 (4)0.011 (17)0.01 (3)0.00 (3)
C11A0.085 (9)0.096 (12)0.131 (16)0.024 (7)0.039 (11)0.024 (12)
C12A0.133 (13)0.075 (8)0.116 (11)0.037 (8)0.082 (9)0.018 (6)
C13A0.042 (4)0.072 (5)0.068 (5)0.002 (4)0.007 (3)0.003 (3)
C14A0.058 (4)0.076 (4)0.080 (4)0.014 (3)0.000 (3)0.012 (3)
C15A0.065 (4)0.053 (3)0.079 (5)0.008 (3)0.005 (4)0.017 (4)
N1A0.062 (7)0.084 (6)0.069 (6)0.017 (4)0.012 (4)0.042 (5)
Geometric parameters (Å, º) top
C1—O11.245 (3)C14—H14B0.9700
C1—O21.277 (3)C15—N11.551 (8)
C1—C21.477 (3)C15—H15A0.9700
C2—C31.368 (3)C15—H15B0.9700
C2—C71.383 (3)N1—H1A0.8900
C3—C41.378 (3)N1—H1B0.8900
C3—H30.9300N1—H1C0.8900
C4—C51.370 (3)C8A—C9A1.30 (3)
C4—H40.9300C8A—C13A1.401 (11)
C5—O31.357 (3)C8A—H8A0.9300
C5—C61.363 (3)C9A—C10A1.16 (5)
C6—C71.370 (3)C9A—H9A0.9300
C6—H60.9300C10A—C11A1.56 (6)
C7—H70.9300C10A—H10A0.9300
O3—H3A0.8200C11A—C12A1.06 (4)
C8—C131.407 (9)C11A—H11A0.9300
C8—C91.415 (19)C12A—C13A1.41 (2)
C8—H80.9300C12A—H12A0.9300
C9—C101.45 (3)C13A—C14A1.495 (7)
C9—H90.9300C14A—C15A1.486 (7)
C10—C111.20 (3)C14A—H14C0.9700
C10—H100.9300C14A—H14D0.9700
C11—C121.60 (2)C15A—N1A1.554 (8)
C11—H110.9300C15A—H15C0.9700
C12—C131.34 (2)C15A—H15D0.9700
C12—H120.9300N1A—H1E0.8900
C13—C141.503 (8)N1A—H1F0.8900
C14—C151.485 (6)N1A—H1D0.8900
C14—H14A0.9700
O1—C1—O2122.8 (2)C14—C15—H15A111.0
O1—C1—C2118.9 (2)N1—C15—H15A111.0
O2—C1—C2118.3 (2)C14—C15—H15B111.0
C3—C2—C7117.4 (2)N1—C15—H15B111.0
C3—C2—C1122.2 (2)H15A—C15—H15B109.0
C7—C2—C1120.3 (2)C15—N1—H1A109.5
C2—C3—C4121.0 (2)C15—N1—H1B109.5
C2—C3—H3119.5H1A—N1—H1B109.5
C4—C3—H3119.5C15—N1—H1C109.5
C5—C4—C3120.8 (2)H1A—N1—H1C109.5
C5—C4—H4119.6H1B—N1—H1C109.5
C3—C4—H4119.6C9A—C8A—C13A119.0 (11)
O3—C5—C6123.1 (2)C9A—C8A—H8A120.5
O3—C5—C4118.1 (2)C13A—C8A—H8A120.5
C6—C5—C4118.8 (2)C10A—C9A—C8A129 (3)
C5—C6—C7120.3 (2)C10A—C9A—H9A115.7
C5—C6—H6119.8C8A—C9A—H9A115.7
C7—C6—H6119.8C9A—C10A—C11A112 (3)
C6—C7—C2121.6 (2)C9A—C10A—H10A124.0
C6—C7—H7119.2C11A—C10A—H10A124.0
C2—C7—H7119.2C12A—C11A—C10A118 (3)
C5—O3—H3A109.5C12A—C11A—H11A121.0
C13—C8—C9119.3 (11)C10A—C11A—H11A121.0
C13—C8—H8120.4C11A—C12A—C13A130 (3)
C9—C8—H8120.4C11A—C12A—H12A115.2
C8—C9—C10118.4 (13)C13A—C12A—H12A115.2
C8—C9—H9120.8C8A—C13A—C12A107.5 (13)
C10—C9—H9120.8C8A—C13A—C14A130.5 (9)
C11—C10—C9122.6 (13)C12A—C13A—C14A121.2 (12)
C11—C10—H10118.7C15A—C14A—C13A111.9 (5)
C9—C10—H10118.7C15A—C14A—H14C109.2
C10—C11—C12120.7 (16)C13A—C14A—H14C109.2
C10—C11—H11119.7C15A—C14A—H14D109.2
C12—C11—H11119.7C13A—C14A—H14D109.2
C13—C12—C11115.7 (11)H14C—C14A—H14D107.9
C13—C12—H12122.2C14A—C15A—N1A104.8 (8)
C11—C12—H12122.2C14A—C15A—H15C110.8
C12—C13—C8119.3 (9)N1A—C15A—H15C110.8
C12—C13—C14123.9 (8)C14A—C15A—H15D110.8
C8—C13—C14116.4 (7)N1A—C15A—H15D110.8
C15—C14—C13112.2 (5)H15C—C15A—H15D108.9
C15—C14—H14A109.2C15A—N1A—H1E109.5
C13—C14—H14A109.2C15A—N1A—H1F109.5
C15—C14—H14B109.2H1E—N1A—H1F109.5
C13—C14—H14B109.2C15A—N1A—H1D109.5
H14A—C14—H14B107.9H1E—N1A—H1D109.5
C14—C15—N1103.8 (6)H1F—N1A—H1D109.5
O1—C1—C2—C3179.4 (3)C11—C12—C13—C823 (2)
O2—C1—C2—C33.5 (3)C11—C12—C13—C14164.8 (12)
O1—C1—C2—C71.5 (3)C9—C8—C13—C1222.7 (19)
O2—C1—C2—C7175.6 (2)C9—C8—C13—C14164.2 (10)
C7—C2—C3—C40.1 (3)C12—C13—C14—C1569.6 (14)
C1—C2—C3—C4179.0 (2)C8—C13—C14—C15103.1 (10)
C2—C3—C4—C50.1 (4)C13—C14—C15—N1175.2 (6)
C3—C4—C5—O3179.5 (2)C13A—C8A—C9A—C10A4 (4)
C3—C4—C5—C60.3 (4)C8A—C9A—C10A—C11A10 (5)
O3—C5—C6—C7179.8 (2)C9A—C10A—C11A—C12A6 (5)
C4—C5—C6—C70.7 (4)C10A—C11A—C12A—C13A14 (5)
C5—C6—C7—C20.8 (4)C9A—C8A—C13A—C12A20 (3)
C3—C2—C7—C60.4 (3)C9A—C8A—C13A—C14A170.4 (16)
C1—C2—C7—C6179.4 (2)C11A—C12A—C13A—C8A26 (4)
C13—C8—C9—C1011.5 (18)C11A—C12A—C13A—C14A163 (3)
C8—C9—C10—C112 (2)C8A—C13A—C14A—C15A96.9 (15)
C9—C10—C11—C123 (2)C12A—C13A—C14A—C15A71.6 (15)
C10—C11—C12—C1314 (3)C13A—C14A—C15A—N1A176.8 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.891.892.709 (11)152
N1—H1B···O2ii0.891.882.760 (10)168
N1—H1C···O20.891.902.752 (11)159
O3—H3A···O2iii0.821.882.674 (3)162
Symmetry codes: (i) x+1, y+1, z1/2; (ii) x+1, y+1, z+1/2; (iii) x1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC8H12N+·C7H5O3
Mr259.30
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)295
a, b, c (Å)13.0721 (12), 17.3426 (16), 6.2154 (6)
V3)1409.1 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.36 × 0.30 × 0.24
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.970, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
7327, 2561, 1671
Rint0.029
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.106, 1.03
No. of reflections2561
No. of parameters254
No. of restraints6
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.12, 0.13
Absolute structureNd

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.891.892.709 (11)152
N1—H1B···O2ii0.891.882.760 (10)168
N1—H1C···O20.891.902.752 (11)159
O3—H3A···O2iii0.821.882.674 (3)162
Symmetry codes: (i) x+1, y+1, z1/2; (ii) x+1, y+1, z+1/2; (iii) x1/2, y+1/2, z.
 

Acknowledgements

MK would like to thank Council of Scientific and Industrial Research, New Delhi, India, for providing financial support (project No. 03 (1200)/11/EMR-II).

References

First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationMarsh, R. E. & Spek, A. L. (2001). Acta Cryst. B57, 800–805.  Web of Science CSD CrossRef CAS IUCr Journals
First citationSheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals
First citationSudhahar, S., Krishnakumar, M., Sornamurthy, B. M., Chakkaravarthi, G. & Mohankumar, R. (2013). Acta Cryst. E69, o279.  CSD CrossRef IUCr Journals
First citationYang, Y. X., Li, K., Wang, Y. J. & Li, Q. (2010). Beijing Shifan Dax. Xue. Zir. Kex. (J. B. Norm. Univ.), 46, 160–165.  CAS

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds