Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

μ_3 -Methoxido- κ^3 O:O:O-tris(μ -L-ptyrosinato- $\kappa^3 N$,O:O)tris(L-p-tyrosinato- $\kappa^2 N, O$)trinickel(II,III) methanol tetrasolvate

Weerinradah Tapala,^a Timothy J. Prior^b and Apinpus Ruiiwatra^a*

^aDepartment of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand, and ^bDepartment of Chemistry, University of Hull, Cottingham Road, Hull HU6 7RX, England Correspondence e-mail: apinpus@gmail.com

Received 17 April 2013; accepted 19 April 2013

Key indicators: single-crystal X-ray study; T = 150 K; mean σ (C–C) = 0.006 Å; R factor = 0.040; wR factor = 0.097; data-to-parameter ratio = 21.2.

A trinuclear nickel complex, [Ni₃(C₉H₁₀NO₃)₆(CH₃O)]--4CH₄O, was synthesized and characterized as a neutral cluster containing the incomplete cubane {Ni₃(μ_1 -O)(μ_2 -O)₂(μ_3 -O)} core of 2M3-1 topology. The three nickel cations show similar octahedral coordination, {Ni(μ_1 -O)(μ_2 -O)₂(μ_3 -O)(μ_1 -N)₂}; the positive charge is balanced by six tyrosinate ligands and one methoxide ion. The mean oxidation state of each Ni^{II} ion is therefore +2.33. The common coordination modes, chelating (via the amino N and the carboxylate O atoms) and bridging (via the carboxylate O atom), are exhibited by the tyrosinates. Three interligand (intracluster) N-H···O hydrogen-bonding interactions stabilize the incomplete cubane-type moiety. Additional N-H \cdots O. O-H \cdots O and C-H \cdots O interactions are formed between clusters, and between the clusters and methanol molecules to regulate the spatial orientation of the tyrosinate and the assembly of the clusters in the crystal. The approximate equilateral triangular arrangement of the three nickel cations in the incomplete cubane-type moiety suggests the possible magnetic frustration, and the proximity of these metal cations indicates weak metallic bonds. The structure contains approximately 39% solvent-accessible volume between the clusters. This is filled with 17 molecules of disordered methanol and was modelled with SOUEEZE [Spek (2009). Acta Cryst. D65, 148–155]; the reported unit-cell characteristics do not take these molecules into account. The H atoms of the solvent molecules have not been included in the crystal data.

Related literature

For related incomplete cubane clusters, see: Ama et al. (2000); Lalia-Kantouri et al. (2010). For a nickel complex with Ltyrosine, see: Pei & Wang (2006). For structures with tyrosinate, see: Wojciechowska et al. (2011, 2012). For assignment of topology, see: Blatov (2012). For background to magnetic frustration, see: Hendrickson et al. (2005); Nakatsuji et al. (2005). For the CSD, see: Allen (2002).

Experimental

Crystal data

[Ni ₃ (C ₉ H ₁₀ NO ₃) ₆ (CH ₃ O)]·4CH ₄ O	V = 4145.0 (3) Å ³
$M_r = 1400.28$	Z = 2
Monoclinic, P2 ₁	Mo $K\alpha$ radiation
a = 12.5688 (6) Å	$\mu = 0.74 \text{ mm}^{-1}$
b = 25.3381 (9) Å	T = 150 K
c = 13.1058 (7) Å	$0.36 \times 0.35 \times 0.34$ mm
$\beta = 96.740 \ (4)^{\circ}$	

Data collection

Stoe IPDS2 diffractometer Absorption correction: analytical (a face-indexed absorption correction was applied using the Tompa method; Meulenaer de &

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.040$ $wR(F^2) = 0.097$ S = 0.8816565 reflections 780 parameters 1 restraint H-atom parameters constrained

Tompa, 1965) $T_{\min} = 0.716, T_{\max} = 0.780$ 41350 measured reflections 16565 independent reflections 11845 reflections with $I > 2\sigma(I)$ $R_{\rm int}=0.074$

 $\Delta \rho_{\rm max} = 0.83 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.38 \text{ e } \text{\AA}^{-3}$ Absolute structure: Flack (1983), 8080 Friedel pairs Flack parameter: 0.023 (9)

Table 1 Hydrogen-bond geometry (Å, °).

$\overline{D-\mathrm{H}\cdots A}$	D-H	$H \cdots A$	$D \cdots A$	$D - H \cdots A$
$N1-H1A\cdotsO15^{i}$	0.90	2.26	3.082 (4)	153
$N1 - H1B \cdot \cdot \cdot O18^{i}$	0.90	2.20	3.042 (4)	157
$O3-H3\cdots O3M$	0.82	1.79	2.601 (5)	170
$O6-H6A\cdots O14^{ii}$	0.82	1.88	2.685 (4)	166
N3−H3C···O13	0.90	2.36	3.174 (4)	150
O9−H9A···O2 ⁱⁱⁱ	0.82	1.78	2.597 (4)	173
$N4-H4B\cdots O17$	0.90	2.29	3.050 (5)	142
$O12 - H12 \cdot \cdot \cdot O2M^{iii}$	0.82	1.90	2.669 (7)	155
$N5-H5A\cdots O1$	0.90	2.46	3.251 (4)	146
$N5-H5A\cdots O9^{iv}$	0.90	2.54	3.216 (4)	133
$O15-H15A\cdots O8^{v}$	0.82	2.02	2.815 (4)	164
$O15-H15A\cdots O7^{v}$	0.82	2.47	2.983 (4)	122
$O18-H18A\cdots O11^{v}$	0.82	1.84	2.638 (4)	163
$C1M - H1M1 \cdots O1$	0.96	2.52	3.042 (4)	114
C30-H30A···O11	0.97	2.55	2.893 (5)	101
C38-H38···O9 ^{iv}	0.98	2.38	3.178 (5)	138
C54-H54O5	0.93	2.42	3.338 (5)	167

Symmetry codes: (i) x, y, z + 1; (ii) -x + 1, $y - \frac{1}{2}$, -z + 1; (iii) x - 1, y, z; (iv) x + 1, y, z; (v) x, y, z - 1.

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

The Thailand Research Fund and the National Research University Project under the Thailand office of the Higher Education Commission are acknowledged for financial support. W. Tapala thanks the Royal Golden Jubilee PhD Program and the Graduate School of Chiang Mai University for graduate scholarships.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK5221).

References

- Allen, F. H. (2002). Acta Cryst. B58, 380-388.
- Ama, T., Rashid, Md. M., Yonemura, T., Kawaguchi, H. & Yasui, T. (2000). Coord. Chem. Rev. 198, 101–116.
- Blatov, V. A. (2012). Struct. Chem. 23, 955-963.
- Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Hendrickson, D., Yang, E.-C., Isidro, R. M., Kirman, C., Lawrence, J., Edwards, R. S., Hill, S., Yamaguchi, A., Ishimoto, H., Wernsdorfer, W., Ramsey, C., Dalal, N. & Olmstead, M. M. (2005). *Polyhedron*, 24, 2280–2283.
- Lalia-Kantouri, M., Papadopoulos, C. D., Hatzidimitriou, A. G., Bakas, T. & Pachini, S. (2010). Z. Anorg. Allg. Chem. 636, 531–538.
- Meulenaer, J. de & Tompa, H. (1965). Acta Cryst. 19, 1014-1018.

Nakatsuji, S., Nambu, Y., Tonomura, H., Sakai, O., Jonas, S., Broholm, C., Tsunetsugu, H., Qiu, Y. & Maeno, Y. (2005). *Science*, **309**, 1607–1700.

- Pei, Y. & Wang, L. (2006). Acta Cryst. E62, m1668-m1670.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Stoe & Cie (2002). X-AREA. Stoe & Cie, Darmstadt, Germany.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Wojciechowska, A., Daszkiewicz, M., Staszak, Z., Trusz-Zdybek, A., Bienko, A. & Ozarowski, A. (2011). *Inorg. Chem.* 50, 11532–11542.
- Wojciechowska, A., Gagor, A., Wysokinski, R. & Trusz-Zdybek, A. (2012). J. Inorg. Biochem. 117, 93–102.

Acta Cryst. (2013). E69, m286–m287 [https://doi.org/10.1107/S1600536813010696]

 μ_3 -Methoxido- $\kappa^3 O:O:O$ -tris(μ -L-p-tyrosinato- $\kappa^3 N,O:O$)tris(L-p-tyrosinato- $\kappa^2 N,O$)trinickel(II,III) methanol tetrasolvate

Weerinradah Tapala, Timothy J. Prior and Apinpus Rujiwatra

S1. Comment

In the investigation of anti-bacterial and anti-fungal activities of the divalent metal complexes using (*S*)-2-amino-2methyl-3-(4'-hydroxyphenyl)propanoic acid (*L*-tyrosine) under basic conditions, single crystals of $[Ni_3(C_9H_{11}NO_3)_6(OCH_3)]$.4CH₃OH (**1**) were prepared and isolated.

The asymmetric unit of **1** contains a neutral cluster of ninety-one non-hydrogen atoms comprising three Ni ions, six tyrosinate ligands, a methoxide ion and four methanol molecules (Fig. 1). The three Ni ions adopt similar octahedral coordination geometries, completed by two monodentate amino N atoms, one monodentate carboxylate O atom, two carboxylate bridging μ_2 -O atoms, and one bridging μ_3 -O atom of the methoxide ion: {Ni(μ_1 -O)(μ_2 -O)₂(μ_3 -O)((μ_1 -N)₂}. The six tyrosinate ligands exhibit the common chelating mode of coordination, using the amino N atoms and either the carboxylate μ_2 - η^2 : η^0 O atoms (O4, O10, O16) or the carboxylate μ_1 - η^1 : η^0 O atoms (O1, O7, O13). These generate two five-membered chelate rings about each Ni center. These coordination modes are commonly found in the tyrosinate ligands (Pei & Wang, 2006; Wojciechowska *et al.*, 2011, 2012). Curiously, none of the phenolic groups of the tyrosine ligands within **1** are coordinated to the metal, despite conditions sufficiently basic to produce methoxide. The presence of the coordinated methoxide should invalidate any assumption on the presence of any extra-framework species with positive charges. The positive charge of Ni ions is therefore balanced by six tyrosinate ligands and one methoxide ion, resulting in the mean oxidation state of each nickel to be +2.33 (possibly a combination of two Ni^{II} and one Ni^{III}). The solid conclusion may be derived by a magnetic study of **1**.

The three {Ni(μ_1 -O)(μ_2 -O)₂(μ_3 -O)((μ_1 -N)₂} octahedra are condensed by edge-sharing and the addition of a μ_3 -OCH₃ group (O1*M*) results in a trinuclear cluster with the {Ni₃(μ_1 -O)(μ_2 -O)₂(μ_3 -O)} incomplete cubane core (Fig. 2) (Ama *et al.*, 2000; Lalia-Kantouri *et al.*, 2010). Notably, the nickel ions present within the cluster must display a total positive charge of +7 to balanced the six tyrosinate ions and one methoxide ion. This corresponds to a mean oxidation state for the nickel of +2.33. The complete cubane core [Ni₄O₄] is rather well illustrated within the CSD (Allen, 2002) with over 100 examples. There are only 10 examples of the incomplete cubane core [Ni₃O₄]; the core within **1** is rather more symmetric than many of these examples. If the Ni atoms are taken as nodes, the {Ni₃(μ_1 -O)(μ_2 -O)₂(μ_3 -O)} core can be characterized as the 2-connected uninodal net of 2M3–1 topology with the vertex symbol [3] (Blatov, 2012).

The summation of the inner angles for each quadrilateral face of the {Ni₃(μ_1 -O)(μ_2 -O)₂(μ_3 -O)} core, *i.e.* {Ni1—O10—Ni2—O1*M*}, {Ni1—O4—Ni3—O1*M*} and {Ni2—O16—Ni3—O1*M*}, of *ca.* 360° suggest the planarity of these faces. Distributions of the Ni— μ_3 -O1*M* distances and the Ni— μ_3 -O1M—Ni angles in the ranges 2.067 (2) - 2.109 (2) Å and 97.17 (10) - 99.59 (10)°, respectively, imply an asymmetrical arrangement of the three Ni atoms about the apical μ_3 -O1*M* atom. This is also evident from the distances between any two Ni ions which vary within the range 3.132 (1) - 3.174 (1) Å. These relatively short distances between pairs of Ni cations may signal the presence of weak metallic bonds within **1**.

In nickel metal the Ni—Ni distance is 2.49 Å, while in the CSD Ni to Ni distances lie in the range 2.194 - 3.441 Å (Allen, 2002). The triangular arrangement of Ni ions within the cluster may also induce spin disorder and be associated with magnetic frustration. (Hendrickson *et al.*, 2005; Lalia-Kantouri *et al.*, 2010; Nakatsuji *et al.*, 2005).

According to previous literature, three inter-ligand (intra-cluster) hydrogen bonding interactions of N—H···O type were reported to be important in stabilizing the incomplete cubane structure (Ama *et al.*, 2000). This seems to be partially true for the {Ni₃(μ_1 -O)(μ_2 -O)₂(μ_3 -O)} core in **1**, in which three N—H···O hydrogen bonding interactions, *i.e.* N3—H3C···O13, N4—H4B···O17 and N5—H5A···O1 [N···O 3.050 (5) - 3.251 (4) Å, N—H···O 142° - 150°], are present (Fig. 3). Atoms N1 and N5, in addition, reinforce the stability of the {Ni₃(μ_1 -O)(μ_2 -O)₂(μ_3 -O)} core *via* the inter-cluster interactions, *i.e.* N1—H1A···O15, N1—H1B···O18 and N5—H5A···O9 [N···O 3.042 (4) - 3.216 (4) Å, N—H···O 132.69° - 156.47°] (Fig. 4). The presence of the —CH₂— group in the structure of the tyrosinate provides flexibility in spatial arrangement of the motifs is regulated by the strong O—H···O hydrogen bonding interactions (Fig. 4). The OH groups of all tyrosinate anions are associated in the O—H···O interactions with the neighboring clusters and methanol molecules [O—H···O 2.597 (4) - 2.983 (4) Å, O—H···O 122 - 173°], and these generate the supramolecular assembly in **1**. The arrangement of these clusters occurs in such a way to maximize the hydrogen bonding interactions of which the weak hydrogen bonding of C—H···O and C38—H38···O9.

The clusters are arranged by the 2_1 screw axis into layers in the *xz* plane. These layers are stacked in an ABAB arrangement parallel to *b*. There exist hydrogen bonds between the clusters, both within the layers and between them. This packing arrangement of clusters is rather inefficient and the structure contains large voids centred on the origin such that approximately 39% of the structure is solvent accessible volume. Methanol molecules within these regions were poorly located and the reflection data were treated with the SQUEEZE algorithm (Spek, 2009) to model electron density within these regions. These calculations reveal that each void contains around 279 electrons consistent with around 17 molecules of methanol, giving an overall composition for 1 of $[Ni_3(C_9H_{11}NO_3)_6(OCH_3)].21CH_3OH$. The methanol is lost very quickly when crystals are removed from solvent and this has prevented extensive analysis of the properties of 1.

The presence of methoxide suggests that it should be possible to obtain similar structures with other weakly coordinating anions. Similarly, replacement of method by other, bulkier and less volatile solvents, may enable further studies on similar compounds, in particular magnetic measurements. Clusters of this type therefore may be suitable for fundamental magnetic studies by variation of ligand bulk, or may prove suitable nodes in the construction of framework solids by appropriate ligand choice.

S2. Experimental

Ni(NO₃)₂.6H₂O (0.0148 g, 0.5 mmol; 98% Alfa Aesar) and 4-(HO)C₆H₄CH₂CH(NH₂)CO₂H (*L*-tyrosine; 0.0185 g, 0.10 mmol; 98% Sigma-Aldrich) were dissolved in methanol (5.0 cm³; 99.8% Fisher Scientific) using a glass vial (vial **A**). A few drops of HCl (37% Fisher Scientific) were necessary to completely dissolve the *L*-Tyr. To a smaller glass vial, *ca*. 0.2 cm³ of (C₂H₅)₃N (triethylamine; 99% Fisher Scientific) was added and the vial closed using lid with a small pin hole (vial **B**). Vial **B** was then inserted in vial **A**, which was then closed tightly. After *ca* 4 months, a few blue blocks crystallized from the solution, and were isolated for X-ray diffraction data collection.

S3. Refinement

The O-, N- and C-bound H-atoms were placed in calculated positions $[O-H = 0.82 \text{ Å}, N-H = 0.90 \text{ Å} \text{ and } C-H = 0.93 \text{ to } 0.98 \text{ Å}, U_{iso}(H) = 1.2-1.5U_{eq}(O, N \text{ and } C)]$ and were included in the refinement in the riding model approximation. In

order to take the contribution of the disordered methanol into account, the 'SQUEEZE option' in the program *PLATON* (Spek, 2009) was implemented. This resulted in an improvement of the *R* and *wR* from 0.073 and 0.212 to 0.040 and 0.097, respectively.

Figure 1

The asymmetric unit of **1** showing atom-labeling scheme and with 50% probability displacement ellipsoids. Hydrogen atoms are omitted for clarity.

Figure 2

The incomplete cubane core of **1**. Only selected atoms from the ligands are drawn. Atoms are shown as 30% probability ellipsoids.

Figure 3

View of intra-cluster hydrogen bonding interactions (dash lines), showing the donor and acceptor atoms in a ball-andstick model and with 50% probability ellipsoids for the incomplete cubane core. Weak C—H···O hydrogen bonding interactions are omitted. [Symmetry codes: (i) 1 - x, -1/2 + y, 1 - z (ii) -1 + x, y, z (iii) 1 + x, y, z.]

Figure 4

View of inter-cluster hydrogen bonding interactions (dash lines), showing the donor and acceptor atoms in a ball-andstick model and with 50% probability ellipsoids for the incomplete cubane core. Weak C—H···O hydrogen bonding interactions are omitted. [Symmetry codes: (i) 1 - x, -1/2 + y, 1 - z (ii) -1 + x, y, z (iii) 1 + x, y, z.]

 μ_3 -Methoxido- $\kappa^3 O:O:O$ -tris(μ -*L*-*p*-tyrosinato- $\kappa^3 N, O:O$)tris(*L*-*p*-tyrosinato- $\kappa^2 N, O$)trinickel(II,III) methanol tetrasolvate

F(000) = 1454 $D_x = 1.122 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3495 reflections $\theta = 1.6-28.3^{\circ}$ $\mu = 0.74 \text{ mm}^{-1}$ T = 150 K Block, light-blue $0.36 \times 0.35 \times 0.34 \text{ mm}$
Detector resolution: 6.67 pixels mm ⁻¹ ω scans

Absorption correction: analytical (a face-indexed absorption correction was applied using the Tompa method; Meulenaer de & Tompa, 1965) $T_{min} = 0.716, T_{max} = 0.780$ 41350 measured reflections 16565 independent reflections	11845 reflections with $I > 2\sigma(I)$ $R_{int} = 0.074$ $\theta_{max} = 26.1^{\circ}, \ \theta_{min} = 1.6^{\circ}$ $h = -15 \rightarrow 15$ $k = -31 \rightarrow 31$ $l = -16 \rightarrow 14$
Refinement	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.040$	H-atom parameters constrained
$wR(F^2) = 0.097$	$w = 1/[\sigma^2(F_o^2) + (0.0444P)^2]$
S = 0.88	where $P = (F_o^2 + 2F_c^2)/3$
16565 reflections	$(\Delta/\sigma)_{\rm max} = 0.002$
780 parameters	$\Delta \rho_{\rm max} = 0.83 \text{ e} \text{ Å}^{-3}$
1 restraint	$\Delta \rho_{\rm min} = -0.38 \text{ e} \text{ Å}^{-3}$
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack (1983), 8080 Friedel pairs
Secondary atom site location: difference Fourier	Absolute structure parameter: 0.023 (9)
map	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Ni1	0.67401 (3)	0.209152 (16)	0.66058 (4)	0.03463 (11)	
O1M	0.64605 (17)	0.28831 (10)	0.62163 (19)	0.0350 (5)	
N1	0.7077 (2)	0.21031 (14)	0.8182 (2)	0.0432 (7)	
H1A	0.6691	0.2359	0.8440	0.052*	
H1B	0.6884	0.1793	0.8439	0.052*	
01	0.83540 (19)	0.22349 (9)	0.6684 (2)	0.0369 (6)	
C1	0.8803 (3)	0.23246 (14)	0.7588 (3)	0.0404 (9)	
O2	0.9740 (2)	0.25142 (11)	0.7761 (2)	0.0483 (7)	
C2	0.8238 (3)	0.21973 (14)	0.8507 (3)	0.0426 (9)	
H2	0.8296	0.2507	0.8958	0.051*	
C3	0.8785 (3)	0.17307 (16)	0.9118 (3)	0.0477 (10)	
H3A	0.9498	0.1841	0.9403	0.057*	
H3B	0.8385	0.1655	0.9691	0.057*	
C4	0.8886 (3)	0.12271 (16)	0.8527 (3)	0.0478 (10)	
C5	0.9647 (3)	0.11715 (17)	0.7819 (4)	0.0558 (11)	
H5	1.0082	0.1459	0.7713	0.067*	
C6	0.9773 (4)	0.07274 (18)	0.7297 (4)	0.0614 (12)	

H6	1.0295	0.0707	0.6851	0.074*
C7	0.9103 (4)	0.02862 (17)	0.7426 (4)	0.0590 (12)
C8	0.8360 (4)	0.03291 (17)	0.8129 (4)	0.0612 (13)
H8	0.7916	0.0046	0.8234	0.073*
C9	0.8280 (3)	0.07957 (17)	0.8676 (4)	0.0567 (11)
Н9	0.7795	0.0813	0.9159	0.068*
03	0.9161 (3)	-0.01815 (12)	0.6914 (3)	0.0763 (10)
H3	0.9644	-0.0166	0.6545	0.114*
N2	0.6949 (2)	0.12825 (11)	0.6396 (3)	0.0416 (8)
H2A	0.7321	0.1140	0.6957	0.050*
H2B	0.6310	0.1120	0.6282	0.050*
04	0.66026 (18)	0.20168 (9)	0.5025 (2)	0.0370 (6)
C10	0.7201 (3)	0.16670 (13)	0.4722 (3)	0.0363 (9)
05	0.7561 (2)	0.16689 (11)	0.3872 (2)	0.0455 (6)
C11	0.7544 (3)	0.12247 (13)	0.5498 (3)	0.0405 (9)
H11	0.8301	0.1285	0.5743	0.049*
C12	0.7462 (3)	0.06642 (14)	0.5046 (4)	0.0524 (11)
H12A	0.7801	0.0660	0.4418	0.063*
H12B	0.7859	0.0425	0.5527	0.063*
C13	0.6346 (3)	0.04650 (13)	0.4814 (3)	0.0420(9)
C14	0.5666 (3)	0.06193 (14)	0.3962 (4)	0.0467 (10)
H14	0.5922	0.0858	0.3509	0.056*
C15	0.4626 (3)	0.04394 (14)	0.3745 (4)	0.0473 (10)
H15	0.4191	0.0556	0.3166	0.057*
C16	0.4246 (3)	0.00790 (15)	0.4418 (3)	0.0476 (10)
C17	0.4897 (3)	-0.00772(15)	0.5270 (3)	0.0469 (10)
H17	0.4648	-0.0318	0.5723	0.056*
C18	0.5934 (3)	0.01222 (16)	0.5464 (3)	0.0501 (10)
H18	0.6360	0.0018	0.6059	0.060*
06	0.3242 (2)	-0.01120(10)	0.4159 (2)	0.0552 (8)
H6A	0.3093	-0.0318	0.4604	0.083*
Ni2	0.48220 (3)	0.291099 (15)	0.62530 (4)	0.03586 (11)
N3	0.4712 (2)	0.37166 (11)	0.6007 (2)	0.0358 (7)
H3C	0.5228	0.3820	0.5629	0.043*
H3D	0.4074	0.3794	0.5653	0.043*
07	0.4971(2)	0.31369 (9)	0.7749(2)	0.0407 (6)
C19	0.5061(3)	0.36282(14)	0.7897(3)	0.0404 (9)
08	0.5333(3)	0.38163(11)	0.8774(2)	0.0601 (8)
C20	0.4830(3)	0.40097(13)	0.7005(3)	0.0368(8)
H20	0 5445	0 4248	0 7010	0.044*
C21	0.3828(3)	0.43479(14)	0.7125(3)	0.0423(9)
H21A	0.3888	0.4487	0.7819	0.051*
H21R	0.3813	0.4645	0.6658	0.051*
C22	0.2789 (3)	0.40506 (13)	0.6917(3)	0 0390 (9)
C23	0.2428(3)	0 37308 (15)	0.7650(3)	0.0350(5)
H23	0.2813	0 3720	0.8301	0.054*
C24	0.1507 (3)	0.34206 (15)	0.7456 (3)	0 0434 (0)
С2-т Н24	0.1278	0 3210	0.7450 (5)	0.052*
1147	0.12/0	0.5210	0.1909	0.054

C25	0.0942 (3)	0.34335 (15)	0.6479 (3)	0.0428 (9)
C26	0.1283 (3)	0.37557 (17)	0.5735 (4)	0.0528 (11)
H26	0.0900	0.3769	0.5084	0.063*
C27	0.2194 (3)	0.40591 (15)	0.5956 (4)	0.0479 (10)
H27	0.2415	0.4275	0.5447	0.058*
09	0.0065 (2)	0.31212 (11)	0.6231 (2)	0.0548 (7)
H9A	-0.0056	0.2951	0.6737	0.082*
N4	0.3258 (2)	0.26513 (11)	0.6264 (3)	0.0389(7)
H4A	0.2840	0.2915	0.6447	0.047*
H4B	0.2991	0.2535	0.5637	0.047*
O10	0.50697 (18)	0.21246 (10)	0.6586 (2)	0.0396 (6)
C28	0.4328 (3)	0.18951 (14)	0.6989 (3)	0.0360 (8)
011	0.4391(2)	0 14462 (10)	0.7387(2)	0.0448 (6)
C29	0.3300(3)	0.22191(14)	0.7017(3)	0.0394 (9)
H29	0.3360	0.2387	0 7695	0.047*
C30	0.2260 (3)	0.18813(15)	0.6932 (3)	0.0425(9)
H30A	0.2380	0.1583	0.7394	0.051*
H30R	0.1693	0.2093	0.7354	0.051*
C31	0.1095 0.1882 (3)	0.16788 (15)	0.5888 (3)	0.051 0.0462 (10)
C32	0.1002(3) 0.0857(3)	0.18068 (18)	0.5000(3)	0.0402(10)
UJ2 H32	0.0837 (3)	0.10000 (10)	0.5424 (4)	0.073*
C22	0.0455(4)	0.2038	0.3750	0.075
U22	-0.0248	0.10009 (19)	0.4494 (4)	0.0033 (13)
ПЭЭ С24	-0.0248	0.1070	0.4220 0.2051 (4)	0.070°
C34	0.1007(4)	0.1288(2) 0.11(0(2))	0.3931(4)	0.0001(13)
U35	0.2115 (4)	0.1169 (2)	0.4305 (5)	0.0740 (16)
H35	0.2556	0.0973	0.3986	0.089*
036	0.2488 (3)	0.13418 (18)	0.5326 (4)	0.0577(12)
H30	0.3163	0.1234	0.3618	0.069*
012	0.0/15 (3)	0.10594 (17)	0.3024 (3)	0.0922 (12)
HIZ	0.0108	0.1164	0.2828	0.138*
N13	0.64300 (3)	0.280740 (15)	0.46105 (4)	0.03642 (11)
N5	0.8050 (2)	0.28923 (12)	0.4539 (2)	0.0386 (7)
H5A	0.8411	0.2779	0.5133	0.046*
H5B	0.8243	0.2689	0.4029	0.046*
013	0.64711 (19)	0.36165 (10)	0.4467 (2)	0.0436 (7)
C37	0.7391 (3)	0.38049 (14)	0.4409 (3)	0.0422 (9)
014	0.7563 (2)	0.42996 (10)	0.4409 (3)	0.0553 (8)
C38	0.8346 (3)	0.34438 (14)	0.4360 (3)	0.0437 (10)
H38	0.8876	0.3543	0.4937	0.052*
C39	0.8885 (3)	0.35072 (18)	0.3408 (4)	0.0565 (11)
H39A	0.9092	0.3874	0.3347	0.068*
H39B	0.9534	0.3297	0.3476	0.068*
C40	0.8211 (3)	0.33499 (17)	0.2459 (4)	0.0558 (11)
C41	0.7431 (4)	0.3691 (2)	0.1951 (4)	0.0692 (14)
H41	0.7337	0.4022	0.2234	0.083*
C42	0.6809 (4)	0.3557 (2)	0.1066 (4)	0.0690 (13)
H42	0.6305	0.3795	0.0763	0.083*
C43	0.6922 (3)	0.30699 (17)	0.0614 (3)	0.0530(11)

C44	0.7645 (4)	0.27061 (18)	0.1084 (3)	0.0602 (12)
H44	0.7697	0.2370	0.0807	0.072*
C45	0.8300 (3)	0.2852 (2)	0.1989 (3)	0.0555 (10)
H45	0.8807	0.2613	0.2285	0.067*
O15	0.6373 (3)	0.29244 (14)	-0.0297 (2)	0.0757 (9)
H15A	0.5968	0.3163	-0.0512	0.114*
N6	0.5834 (3)	0.26790 (13)	0.3064 (3)	0.0452 (8)
H6B	0.5877	0.2980	0.2706	0.054*
H6C	0.6232	0.2432	0.2793	0.054*
O16	0.48472 (19)	0.27843 (10)	0.4722 (2)	0.0409 (6)
C46	0.4195 (3)	0.26377 (15)	0.3922 (3)	0.0444 (9)
O17	0.3229 (2)	0.26011 (14)	0.3935 (3)	0.0698 (9)
C47	0.4695 (3)	0.25007 (15)	0.2987 (3)	0.0442 (9)
H47	0.4292	0.2676	0.2395	0.053*
C48	0.4619 (3)	0.18945 (15)	0.2818 (3)	0.0463 (10)
H48A	0.5085	0.1722	0.3361	0.056*
H48B	0.3891	0.1783	0.2880	0.056*
C49	0.4916 (3)	0.17103 (14)	0.1804 (3)	0.0416 (9)
C50	0.4162 (3)	0.17076 (15)	0.0914 (3)	0.0483 (10)
H50	0.3466	0.1820	0.0961	0.058*
C51	0.4432 (3)	0.15440 (15)	-0.0011 (3)	0.0452 (9)
H51	0.3914	0.1545	-0.0580	0.054*
C52	0.5463 (3)	0.13756 (15)	-0.0125 (3)	0.0435 (9)
C53	0.6209 (3)	0.13709 (17)	0.0737 (3)	0.0522 (11)
H53	0.6900	0.1252	0.0684	0.063*
C54	0.5945 (3)	0.15397 (16)	0.1677 (3)	0.0481 (10)
H54	0.6469	0.1539	0.2240	0.058*
O18	0.5789 (2)	0.12088 (11)	-0.1018 (2)	0.0493 (7)
H18A	0.5288	0.1227	-0.1478	0.074*
O3M	1.0553 (3)	-0.02010 (15)	0.5593 (3)	0.0815 (10)*
C1M	0.7126 (3)	0.32667 (13)	0.6751 (3)	0.0384 (9)
H1M1	0.7859	0.3200	0.6652	0.058*
H1M2	0.7049	0.3250	0.7470	0.058*
H1M3	0.6923	0.3611	0.6492	0.058*
O2M	0.8596 (5)	0.1098 (2)	0.2522 (4)	0.1298 (17)*
C3M	1.0306 (5)	0.0038 (3)	0.4648 (5)	0.0954 (18)*
C2M	0.8170 (8)	0.0539 (4)	0.2325 (7)	0.140 (3)*
O4M	0.6264 (6)	0.4805 (3)	0.9009 (6)	0.177 (3)*
C4M	0.5490 (9)	0.5181 (5)	0.9249 (9)	0.172 (4)*
O5M	0.3634 (7)	0.3045 (4)	1.0147 (6)	0.215 (3)*
C5M	0.2700 (8)	0.3219 (4)	1.0342 (7)	0.142 (3)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
Ni1	0.0304 (2)	0.0249 (2)	0.0472 (3)	-0.00070 (19)	-0.0011 (2)	-0.0033 (2)
O1M	0.0297 (11)	0.0255 (12)	0.0488 (14)	-0.0037 (11)	-0.0001 (11)	-0.0059 (13)
N1	0.0360 (15)	0.0412 (16)	0.053 (2)	-0.0085 (15)	0.0067 (14)	-0.0080 (17)

Acta Cryst. (2013). E69, m286-m287

01	0.0336 (12)	0.0317 (13)	0.0440 (16)	-0.0004 (10)	-0.0013 (12)	-0.0034 (11)
C1	0.0353 (19)	0.0343 (18)	0.050 (3)	-0.0008 (16)	-0.0009 (19)	-0.0015 (18)
O2	0.0377 (14)	0.0554 (16)	0.0489 (18)	-0.0156 (12)	-0.0075 (12)	0.0015 (13)
C2	0.0403 (18)	0.039 (2)	0.048 (2)	-0.0038 (16)	0.0012 (17)	-0.0046 (17)
C3	0.043 (2)	0.053 (2)	0.047 (3)	-0.0058 (18)	0.0026 (19)	0.005 (2)
C4	0.044 (2)	0.045 (2)	0.052 (3)	0.0069 (18)	-0.0030 (19)	0.0143 (19)
C5	0.048 (2)	0.051 (2)	0.066 (3)	0.001 (2)	-0.001 (2)	0.016 (2)
C6	0.061 (3)	0.060 (3)	0.065 (3)	0.022 (2)	0.014 (2)	0.008 (2)
C7	0.062 (3)	0.043 (2)	0.072 (3)	0.015 (2)	0.007 (2)	0.014 (2)
C8	0.068 (3)	0.039 (2)	0.079 (4)	0.011 (2)	0.018 (3)	0.014 (2)
C9	0.043 (2)	0.054 (2)	0.075 (3)	0.0042 (19)	0.016 (2)	0.011 (2)
03	0.092 (2)	0.0403 (16)	0.098 (3)	0.0149 (17)	0.017 (2)	-0.0075 (17)
N2	0.0390(16)	0.0276 (15)	0.055(2)	-0.0005(13)	-0.0062(16)	0.0028 (15)
04	0.0306(12)	0.0285(13)	0.0505(16)	-0.0010(10)	-0.0018(11)	-0.0048(12)
C10	0.0255(16)	0.0200(12)	0.049(3)	-0.0015(14)	-0.0118(17)	-0.0123(17)
05	0.0222 (10) 0.0422 (14)	0.0301(17) 0.0469(15)	0.0460(18)	0.0013(11) 0.0047(12)	-0.0009(13)	-0.0061(13)
C11	0.0377(19)	0.0246(16)	0.057(3)	0.0017(12) 0.0008(15)	-0.0040(18)	-0.0050(17)
C12	0.0377(1)	0.0210(10) 0.0325(19)	0.027(3)	0.0000(17)	-0.009(2)	-0.012(2)
C13	0.017(2) 0.044(2)	0.0323(17)	0.071(3)	0.0037(17)	-0.004(2)	-0.012(2)
C14	0.045(2)	0.0255(17)	0.050(3)	0.0032(15)	0.001(2)	-0.0084(18)
C15	0.049(2) 0.039(2)	0.0230(17) 0.0322(19)	0.007(3)	0.0031(16)	-0.009(2)	-0.0080(19)
C16	0.035(2)	0.0322(19)	0.061(3)	0.0001(10) 0.0006(17)	0.000(2)	-0.0070(19)
C17	0.040(2)	0.0347(19) 0.0332(19)	0.001(3)	-0.0000(17)	0.001(2)	-0.0078(18)
C18	0.050(2)	0.0332(1))	0.051(3)	0.0023(10)	-0.013(2)	-0.004(2)
06	0.045(2)	0.042(2)	0.035(3)	-0.0074(12)	-0.0034(15)	-0.0070(14)
Ni2	0.0430(13)	0.0383(14)	0.079(2)	-0.0074(12)	0.0034(13)	-0.0018(2)
N3	0.0290(2)	0.0241(2) 0.0288(15)	0.0525(3)	0.000000(10)	-0.0017(14)	0.0013(2)
07	0.0310(13)	0.0288(13) 0.0277(12)	0.040(2) 0.0528(17)	-0.0013(12)	-0.0017(14)	0.0017(14)
C10	0.0397(13)	0.0277(12)	0.0328(17)	-0.0013(10)	-0.0032(12)	0.0049(11)
08	0.0343(18)	0.033(2)	0.049(3)	-0.0032(13) -0.0112(15)	-0.0072(18) -0.0201(16)	-0.0000(18)
C20	0.087(2)	0.0409(14)	0.0433(18)	-0.0015(15)	-0.0201(10)	-0.0072(14)
C20	0.0309(19)	0.0231(10)	0.047(2)	-0.0043(13)	-0.0018(17)	-0.0022(10)
C21 C22	0.040(2)	0.0293(17)	0.033(3)	-0.0007(13)	-0.004/(18)	-0.0007(17)
C22	0.0329(18)	0.0289(17)	0.033(3)	0.0049(13)	0.0039(18)	0.0020(17)
C23	0.038(2)	0.049(2)	0.047(3)	-0.0048(17)	0.0014(19)	0.0023(19)
C24	0.0348(18)	0.048(2)	0.046(2)	-0.006/(1/)	0.0018(18)	0.0051(18)
C25	0.0280(17)	0.046(2)	0.054(3)	0.0023(10)	0.0039(18)	0.0057(19)
C26	0.036(2)	0.054(2)	0.065(3)	0.0026 (18)	-0.009(2)	0.025(2)
00	0.038(2)	0.041(2)	0.063(3)	0.0026(17)	0.001(2)	0.017(2)
09	0.0318 (13)	0.0611 (17)	0.069 (2)	-0.0089 (12)	-0.0054 (13)	0.0149 (15)
N4	0.0329 (15)	0.0278 (14)	0.056 (2)	-0.0001 (12)	0.0029 (14)	-0.00/6(14)
010	0.0294 (11)	0.0236 (11)	0.0647 (18)	-0.0029 (11)	0.0007 (12)	0.0042 (13)
011	0.0399 (19)	0.0334 (18)	0.032 (2)	-0.0048 (15)	-0.0058 (16)	-0.00/2(16)
	0.0424 (14)	0.0324 (13)	0.0554 (18)	-0.0034 (11)	-0.0123 (13)	0.0062 (12)
C29	0.0352 (18)	0.041 (2)	0.041 (2)	-0.0084 (15)	-0.0010 (16)	-0.0060 (16)
C30	0.0379 (19)	0.0405 (19)	0.048 (3)	-0.0036 (16)	-0.0008 (18)	0.0030 (18)
C31	0.038 (2)	0.0355 (19)	0.063 (3)	-0.0091 (17)	-0.001 (2)	-0.0093 (19)
C32	0.049 (2)	0.059 (3)	0.071 (3)	0.015 (2)	-0.010(2)	-0.023(2)
C33	0.051 (2)	0.057 (3)	0.082 (4)	0.006 (2)	0.001 (3)	-0.014 (3)

C34	0.060 (3)	0.068 (3)	0.067 (3)	0.003 (2)	-0.009 (2)	-0.021 (3)
C35	0.050 (3)	0.064 (3)	0.106 (4)	0.004 (2)	0.001 (3)	-0.040 (3)
C36	0.033 (2)	0.059 (3)	0.077 (3)	0.0037 (19)	-0.011 (2)	-0.029 (2)
O12	0.081 (3)	0.101 (3)	0.090 (3)	0.010 (2)	-0.006 (2)	-0.033 (2)
Ni3	0.0310 (2)	0.0278 (2)	0.0490 (3)	-0.00175 (18)	-0.0016 (2)	-0.0004 (2)
N5	0.0376 (15)	0.0345 (15)	0.0420 (17)	0.0044 (15)	-0.0027 (13)	-0.0044 (15)
O13	0.0316 (13)	0.0301 (13)	0.067 (2)	-0.0019 (11)	-0.0009 (13)	0.0051 (13)
C37	0.044 (2)	0.0297 (18)	0.052 (3)	-0.0033 (16)	0.0003 (19)	0.0033 (17)
O14	0.0427 (15)	0.0307 (13)	0.091 (2)	-0.0059 (12)	0.0022 (15)	0.0084 (14)
C38	0.0322 (18)	0.0358 (19)	0.064 (3)	-0.0066 (15)	0.0073 (19)	-0.0021 (18)
C39	0.051 (2)	0.051 (2)	0.068 (3)	-0.008(2)	0.008 (2)	-0.003 (2)
C40	0.040 (2)	0.053 (3)	0.074 (3)	-0.0022 (19)	0.009 (2)	0.008 (2)
C41	0.077 (3)	0.060 (3)	0.068 (4)	0.013 (3)	-0.004 (3)	0.011 (3)
C42	0.078 (3)	0.060 (3)	0.064 (3)	0.022 (3)	-0.011 (3)	0.004 (3)
C43	0.052 (2)	0.063 (3)	0.040 (2)	0.010 (2)	-0.007 (2)	0.008 (2)
C44	0.073 (3)	0.055 (3)	0.052 (3)	0.023 (2)	0.003 (2)	-0.001 (2)
C45	0.054 (2)	0.062 (3)	0.049 (2)	0.008 (2)	0.0030 (19)	0.004 (2)
O15	0.084 (2)	0.072 (2)	0.065 (2)	0.028 (2)	-0.0147 (17)	-0.0137 (19)
N6	0.0452 (17)	0.0402 (17)	0.048 (2)	-0.0112 (14)	-0.0028 (15)	0.0045 (15)
016	0.0355 (12)	0.0340 (14)	0.0521 (16)	-0.0046 (12)	0.0008 (12)	-0.0027 (13)
C46	0.0300 (19)	0.045 (2)	0.054 (3)	-0.0014 (16)	-0.0109 (18)	0.0026 (19)
O17	0.0342 (16)	0.100 (3)	0.071 (2)	-0.0017 (15)	-0.0130 (14)	0.0005 (19)
C47	0.042 (2)	0.044 (2)	0.043 (3)	-0.0003 (17)	-0.0103 (18)	0.0034 (18)
C48	0.043 (2)	0.043 (2)	0.050 (3)	-0.0106 (17)	-0.0079 (19)	0.0107 (19)
C49	0.042 (2)	0.0322 (18)	0.048 (2)	-0.0059 (16)	-0.0057 (18)	0.0027 (17)
C50	0.0361 (19)	0.045 (2)	0.061 (3)	-0.0011 (17)	-0.0061 (19)	0.000 (2)
C51	0.040 (2)	0.051 (2)	0.040 (2)	-0.0015 (17)	-0.0104 (18)	0.0021 (19)
C52	0.043 (2)	0.043 (2)	0.044 (2)	-0.0086 (17)	0.0039 (19)	0.0094 (18)
C53	0.041 (2)	0.056 (2)	0.056 (3)	-0.0042 (19)	-0.009(2)	0.019 (2)
C54	0.039 (2)	0.059 (3)	0.044 (3)	-0.0040 (19)	-0.0073 (19)	0.007 (2)
O18	0.0405 (14)	0.0566 (16)	0.0477 (18)	-0.0053 (13)	-0.0080 (13)	0.0044 (14)
C1M	0.0333 (17)	0.0302 (18)	0.051 (2)	-0.0019 (15)	0.0035 (17)	-0.0046 (17)

Geometric parameters (Å, °)

Nil—Ol	2.051 (2)	С27—Н27	0.9300
Ni1—N1	2.060 (3)	O9—H9A	0.8200
Nil—O4	2.067 (3)	N4—C29	1.471 (5)
Nil—N2	2.089 (3)	N4—H4A	0.9000
Nil—O1M	2.089 (3)	N4—H4B	0.9000
Ni1-010	2.098 (2)	O10—C28	1.265 (4)
O1M—C1M	1.413 (4)	C28—O11	1.250 (4)
O1M—Ni2	2.067 (2)	C28—C29	1.535 (5)
O1M—Ni3	2.109 (2)	C29—C30	1.556 (5)
N1C2	1.490 (5)	C29—H29	0.9800
N1—H1A	0.9000	C30—C31	1.486 (6)
N1—H1B	0.9000	C30—H30A	0.9700
O1—C1	1.272 (5)	С30—Н30В	0.9700

C1—O2	1.268 (4)	C31—C32	1.397 (6)
C1—C2	1.504 (5)	C31—C36	1.409 (6)
C2—C3	1.544 (5)	C32—C33	1.367 (6)
С2—Н2	0.9800	С32—Н32	0.9300
C3—C4	1.506 (6)	C33—C34	1.362 (6)
С3—НЗА	0.9700	С33—Н33	0.9300
С3—Н3В	0.9700	C34—O12	1.371 (6)
C4—C9	1.360 (6)	C34—C35	1.397 (7)
C4—C5	1.415 (6)	C35—C36	1.363 (7)
C5—C6	1.336 (6)	С35—Н35	0.9300
C5—H5	0.9300	С36—Н36	0.9300
C6—C7	1.421 (6)	012—H12	0.8200
С6—Н6	0.9300	Ni3-016	2.013 (2)
C7—O3	1.368 (5)	Ni3-013	2.060(3)
C7—C8	1.392 (6)	Ni3—N5	2.060 (3)
C8—C9	1.392 (6)	Ni3—N6	2.102(3)
C8—H8	0.9300	N5-C38	1472(5)
C9—H9	0.9300	N5—H5A	0.9000
03—H3	0.8200	N5—H5B	0.9000
N2	1 473 (5)	013 - 013	1.261(4)
N2_H2A	0.9000	$C_{37} - 0_{14}$	1.201(4) 1.272(4)
N2 H2R	0.9000	$C_{37} = C_{38}$	1.272(4) 1.517(5)
Ω_{4} Ω_{10}	1.256(A)	C_{38} C_{39}	1.317(5) 1.407(6)
04 Ni3	1.230(4)	C38 H38	0.0800
C_{10} C_{5}	2.080(2) 1.251(4)	$C_{30} = C_{40}$	1.475(7)
C10-03	1.231(4)	$C_{20} = U_{20}$	1.4/3 (/)
	1.341(3)	С39—Н39А	0.9700
	1.558 (5)	C40 C41	0.9/00
	0.9800	C40-C41	1.413(7)
C12—C13	1.488 (5)	C40 - C45	1.414(7)
CI2—HI2A	0.9700	C41—C42	1.363 (7)
С12—Н12В	0.9700	C41—H41	0.9300
C13—C18	1.361 (6)	C42—C43	1.383 (7)
C13—C14	1.381 (6)	C42—H42	0.9300
C14—C15	1.382 (5)	C43—015	1.358 (5)
C14—H14	0.9300	C43—C44	1.387 (6)
C15—C16	1.392 (6)	C44—C45	1.411 (6)
C15—H15	0.9300	C44—H44	0.9300
C16—O6	1.356 (5)	C45—H45	0.9300
C16—C17	1.364 (6)	O15—H15A	0.8200
C17—C18	1.393 (6)	N6—C47	1.494 (5)
C17—H17	0.9300	N6—H6B	0.9000
C18—H18	0.9300	N6—H6C	0.9000
O6—H6A	0.8200	O16—C46	1.307 (5)
Ni2—07	2.030 (3)	C46—O17	1.219 (4)
Ni2—O16	2.036 (3)	C46—C47	1.483 (6)
Ni2—O10	2.056 (3)	C47—C48	1.553 (5)
Ni2—N3	2.069 (3)	C47—H47	0.9800
Ni2—N4	2.074 (3)	C48—C49	1.497 (6)

	1 406 (5)	C10 11404	0.0700
N3—C20	1.496 (5)	C48—H48A	0.9700
N3—H3C	0.9000	C48—H48B	0.9700
N3—H3D	0.9000	C49—C54	1.392 (5)
O7—C19	1.263 (4)	C49—C50	1.414 (5)
C19—O8	1.255 (5)	C50—C51	1.361 (6)
C19—C20	1.518 (5)	С50—Н50	0.9300
C20—C21	1.546 (5)	C51—C52	1.390 (5)
C20—H20	0.9800	C51—H51	0.9300
C21—C22	1.505 (5)	C52—018	1.352 (5)
C_{21} H_{21}	0.9700	$C_{52} - C_{53}$	1 381 (6)
C21 H21R	0.9700	C_{52} C_{53}	1.301 (6)
C_{21} C_{23} C_{23}	1 374 (5)	C52 U52	0.0300
$C_{22} = C_{23}$	1.374(3)	С53—П53	0.9300
	1.387 (6)	C34—H34	0.9300
C23—C24	1.398 (5)	OI8—HI8A	0.8200
C23—H23	0.9300	O3M—C3M	1.382 (7)
C24—C25	1.390 (6)	C1M—H1M1	0.9600
C24—H24	0.9300	C1M—H1M2	0.9600
C25—O9	1.365 (5)	C1M—H1M3	0.9600
C25—C26	1.378 (6)	O2M—C2M	1.526 (10)
C26—C27	1.382 (6)	O4M—C4M	1.423 (12)
С26—Н26	0.9300	O5M—C5M	1.306 (11)
01_Ni1_N1	82.06 (11)	С25—С26—Н26	120.0
01 Ni1 04	01.82(10)	C27 C26 H26	120.0
N1 N1 04	91.03(10)	$C_2/-C_20-H_20$	120.0
NI—NII—04	1/1./2(11)	$C_{26} - C_{27} - C_{22}$	121.8 (4)
01—N11—N2	92.38 (11)	C26—C2/—H2/	119.1
N1—Ni1—N2	97.58 (14)	С22—С27—Н27	119.1
O4—Ni1—N2	77.00 (12)	С25—О9—Н9А	109.5
O1—Ni1—O1M	88.80 (9)	C29—N4—Ni2	106.4 (2)
N1—Ni1—O1M	103.90 (12)	C29—N4—H4A	110.5
O4—Ni1—O1M	81.44 (9)	Ni2—N4—H4A	110.5
N2—Ni1—O1M	158.43 (11)	C29—N4—H4B	110.5
O1—Ni1—O10	167.32 (10)	Ni2—N4—H4B	110.5
N1—Ni1—O10	95.69 (11)	H4A—N4—H4B	108.6
04—Ni1—010	91.47 (10)	C28—O10—Ni2	115.7 (2)
N2—Ni1—O10	100.29(11)	$C_{28} = 0.10 = N_{11}$	139.6(2)
0.1M - Ni1 - 0.10	79 59 (9)	Ni2_010_Ni1	99 64 (10)
C1M = O1M = Ni2	110.0(2)	011 028 010	125.3(3)
CIM OIM NI	117.9(2)	011 - C28 - C20	123.3(3)
	117.0(2)	010 628 620	119.3 (3)
	99.59 (10)	010-028-029	115.3 (3)
CIM—OIM—N13	119.8 (2)	N4—C29—C28	110.2 (3)
N12—O1M—N13	97.17 (10)	N4—C29—C30	113.5 (3)
Ni1—O1M—Ni3	98.01 (10)	C28—C29—C30	114.0 (3)
C2—N1—Ni1	111.6 (2)	N4—C29—H29	106.2
C2—N1—H1A	109.3	С28—С29—Н29	106.2
Ni1—N1—H1A	109.3	С30—С29—Н29	106.2
C2—N1—H1B	109.3	C31—C30—C29	115.5 (3)
Ni1—N1—H1B	109.3	C31—C30—H30A	108.4

H1A—N1—H1B	108.0	С29—С30—Н30А	108.4
C1—O1—Ni1	114.0 (2)	С31—С30—Н30В	108.4
O2—C1—O1	122.4 (4)	C29—C30—H30B	108.4
O2—C1—C2	117.0 (4)	H30A—C30—H30B	107.5
01 - C1 - C2	120.6 (3)	C32—C31—C36	116.2 (4)
N1 - C2 - C1	1101(3)	C_{32} C_{31} C_{30}	120.0(4)
N1 C2 C3	110.1(3) 112.8(3)	$C_{32}^{36} = C_{31}^{31} = C_{30}^{30}$	120.0(4) 123.8(4)
$C_1 = C_2 = C_3$	112.0(3)	$C_{30}^{23} = C_{31}^{23} = C_{30}^{21}$	123.0(4)
C1 - C2 - C3	110.6 (5)	$C_{22} = C_{22} = C_{21}$	121.7 (4)
NI = C2 = H2	107.6	$C_{33} = C_{32} = H_{32}$	119.2
C1—C2—H2	107.6	C31—C32—H32	119.2
C3—C2—H2	107.6	C34—C33—C32	121.0 (4)
C4—C3—C2	116.2 (3)	С34—С33—Н33	119.5
C4—C3—H3A	108.2	С32—С33—Н33	119.5
С2—С3—Н3А	108.2	C33—C34—O12	124.4 (4)
С4—С3—Н3В	108.2	C33—C34—C35	119.1 (5)
С2—С3—Н3В	108.2	O12—C34—C35	116.4 (4)
НЗА—СЗ—НЗВ	107.4	C36—C35—C34	119.8 (4)
C9—C4—C5	116 6 (4)	C36—C35—H35	120.1
C9-C4-C3	121 6 (4)	C_{34} C_{35} H_{35}	120.1
C_{2} C_{4} C_{3}	121.0(4) 121.7(4)	C_{35} C_{36} C_{31}	120.1
$C_{5} - C_{4} - C_{5}$	121.7(4) 122.2(4)	$C_{35} = C_{36} = C_{37}$	121.9 (4)
$C_0 = C_2 = C_4$	123.3 (4)	$C_{33} = C_{30} = H_{30}$	119.1
С6—С5—Н5	118.4	C31-C36-H36	119.1
C4—C5—H5	118.4	C34—012—H12	109.5
C5—C6—C7	119.6 (4)	O16—Ni3—O13	94.09 (10)
С5—С6—Н6	120.2	O16—Ni3—N5	175.41 (12)
С7—С6—Н6	120.2	O13—Ni3—N5	81.74 (11)
O3—C7—C8	118.1 (4)	O16—Ni3—O4	91.53 (10)
O3—C7—C6	123.8 (4)	O13—Ni3—O4	168.31 (11)
C8—C7—C6	118.1 (4)	N5—Ni3—O4	92.24 (11)
C7—C8—C9	120.1 (4)	O16—Ni3—N6	79.74 (12)
С7—С8—Н8	119.9	013—Ni3—N6	94.34 (12)
С9—С8—Н8	119.9	N5—Ni3—N6	102 40 (12)
C4 - C9 - C8	122.2 (4)	04—Ni3—N6	96 75 (11)
$C_4 C_9 H_9$	118.0	O16 Ni3 $O1M$	80 37 (9)
$C^{\circ} = C^{\circ} = H^{\circ}$	118.9	O_{10} N_{13} O_{1M}	00.37(9)
C_{0}	100.5		90.18(11)
$C/-O_{3}-H_{3}$	109.5	$N_{\rm M} = N_{\rm M} = 0.1 M$	97.66 (10)
CII—N2—NII	106.6 (2)	04—N13—OTM	80.65 (10)
C11—N2—H2A	110.4	N6—N13—O1M	159.86 (10)
N11—N2—H2A	110.4	C38—N5—N13	112.1 (2)
C11—N2—H2B	110.4	C38—N5—H5A	109.2
Ni1—N2—H2B	110.4	Ni3—N5—H5A	109.2
H2A—N2—H2B	108.6	C38—N5—H5B	109.2
C10—O4—Ni1	113.5 (2)	Ni3—N5—H5B	109.2
C10-04-Ni3	130.1 (2)	H5A—N5—H5B	107.9
Ni1—O4—Ni3	99.65 (10)	C37—O13—Ni3	114.5 (2)
O5—C10—O4	124.9 (4)	O13—C37—O14	122.0 (3)
O5—C10—C11	119.2 (3)	O13—C37—C38	120.7 (3)
O4—C10—C11	115.8 (3)	Q14—C37—C38	117.3 (3)

N2-C11-C12	112.5 (3)	N5—C38—C39	112.5 (3)
N2-C11-C10	109.0 (3)	N5—C38—C37	110.4 (3)
C12—C11—C10	114.6 (3)	C39—C38—C37	114.1 (4)
N2—C11—H11	106.7	N5—C38—H38	106.4
C12—C11—H11	106.7	С39—С38—Н38	106.4
C10—C11—H11	106.7	С37—С38—Н38	106.4
C13—C12—C11	114.2 (3)	C40—C39—C38	113.7 (4)
C13—C12—H12A	108.7	С40—С39—Н39А	108.8
C11—C12—H12A	108.7	C38—C39—H39A	108.8
C_{13} C_{12} H_{12B}	108.7	C40-C39-H39B	108.8
C11_C12_H12B	108.7	C_{38} C_{39} H_{39B}	108.8
H_{12} C_{12} H_{12} H_{2}	107.6	H30A C30 H30B	107.7
1112A - C12 - 1112D	107.0	$\begin{array}{cccc} 1137 \mathbf{A} & - \mathbf{C} & 39 \\ \hline \mathbf{C} & \mathbf{A} & \mathbf{C} & \mathbf{A} \\ \mathbf{C} & \mathbf{C} & \mathbf{A} \\ \mathbf{C} & \mathbf{C} & \mathbf{C} & \mathbf{C} & \mathbf{C} \\ \mathbf{C} & \mathbf{C} & \mathbf{C} & \mathbf{C} & \mathbf{C} \\ \mathbf{C} & \mathbf{C} & \mathbf{C} & \mathbf{C} \\ \mathbf{C} & \mathbf{C} &$	107.7 115.2(5)
C18 - C13 - C14	110.2 (4) 120 5 (4)	C41 - C40 - C43	113.2(3)
C13 - C13 - C12	120.3 (4)	C41 - C40 - C39	122.0 (4)
C14 - C13 - C12	123.3 (4)	C45 - C40 - C39	122.8 (4)
	123.6 (4)	C42 - C41 - C40	123.1 (5)
C13—C14—H14	118.2	C42—C41—H41	118.5
C15—C14—H14	118.2	C40—C41—H41	118.5
C14—C15—C16	118.2 (4)	C41—C42—C43	120.6 (5)
C14—C15—H15	120.9	C41—C42—H42	119.7
C16—C15—H15	120.9	C43—C42—H42	119.7
O6—C16—C17	123.5 (4)	O15—C43—C42	123.4 (4)
O6—C16—C15	117.0 (4)	O15—C43—C44	116.7 (4)
C17—C16—C15	119.4 (4)	C42—C43—C44	119.9 (4)
C16—C17—C18	120.2 (4)	C43—C44—C45	119.1 (4)
C16—C17—H17	119.9	C43—C44—H44	120.5
C18—C17—H17	119.9	C45—C44—H44	120.5
C13—C18—C17	122.2 (4)	C44—C45—C40	122.1 (4)
C13—C18—H18	118.9	C44—C45—H45	118.9
C17—C18—H18	118.9	C40—C45—H45	118.9
C_{16} C	109.5	C43 - 015 - H15A	109.5
07 - Ni2 - 016	170.42 (10)	C47 - N6 - Ni3	109.5
07 - Ni2 - 010	94.22(10)	C47 - N6 - H6B	109.6
0.16 Ni2 010	97.22(10)	Ni2 NG HGP	109.6
07 Ni2 010	92.13(11) 93.04(10)	C47 N6 H6C	109.0
0/-N2-01M	93.04 (10) 90.95 (0)	N^{2} NG HGC	109.0
010 Ni2 01M	80.85 (9)		109.0
010—N12—01M	81.11 (9)	HbB-Nb-HbC	108.2
0/-N12-N3	82.47 (11)	C46 - 016 - N13	118.9 (2)
016—N12—N3	90.61 (12)	C46—O16—N12	139.0 (2)
O10—N12—N3	174.38 (12)	N13—O16—N12	101.34 (11)
O1M—Ni2—N3	94.50 (11)	O17—C46—O16	122.8 (4)
07—Ni2—N4	93.59 (11)	O17—C46—C47	120.9 (4)
O16—Ni2—N4	94.65 (11)	O16—C46—C47	116.3 (3)
O10—Ni2—N4	79.10 (10)	C46—C47—N6	111.6 (3)
O1M—Ni2—N4	159.52 (10)	C46—C47—C48	108.9 (3)
N3—Ni2—N4	105.56 (11)	N6-C47-C48	110.6 (3)
C20—N3—Ni2	110.8 (2)	C46—C47—H47	108.6
C20—N3—H3C	109.5	N6—C47—H47	108.6

Ni2—N3—H3C	109.5	C48—C47—H47	108.6
C20—N3—H3D	109.5	C49—C48—C47	114.6 (3)
Ni2—N3—H3D	109.5	C49—C48—H48A	108.6
H3C—N3—H3D	108.1	C47—C48—H48A	108.6
C19—O7—Ni2	115.0 (3)	C49—C48—H48B	108.6
O8—C19—O7	121.6 (4)	C47—C48—H48B	108.6
O8—C19—C20	118.1 (3)	H48A—C48—H48B	107.6
O7—C19—C20	120.3 (4)	C54—C49—C50	116.2 (4)
N3—C20—C19	110.3 (3)	C54—C49—C48	122.4 (4)
N3—C20—C21	111.5 (3)	C50—C49—C48	121.5 (4)
C19—C20—C21	111.0 (3)	C51—C50—C49	121.6 (4)
N3—C20—H20	108.0	С51—С50—Н50	119.2
С19—С20—Н20	108.0	С49—С50—Н50	119.2
C21—C20—H20	108.0	C50—C51—C52	121.5 (4)
C22—C21—C20	113.8 (3)	C50—C51—H51	119.3
C22—C21—H21A	108.8	C52—C51—H51	119.3
C20—C21—H21A	108.8	O18—C52—C53	117.4 (4)
C22—C21—H21B	108.8	O18—C52—C51	124.8 (4)
C20—C21—H21B	108.8	C53—C52—C51	117.8 (4)
H21A—C21—H21B	107.7	C54—C53—C52	121.1 (4)
C23—C22—C27	117.2 (3)	С54—С53—Н53	119.5
C23—C22—C21	121.2 (4)	С52—С53—Н53	119.5
C27—C22—C21	121.4 (3)	C53—C54—C49	121.8 (4)
C22—C23—C24	122.6 (4)	С53—С54—Н54	119.1
С22—С23—Н23	118.7	C49—C54—H54	119.1
C24—C23—H23	118.7	C52—O18—H18A	109.5
C25—C24—C23	118.5 (4)	O1M—C1M—H1M1	109.5
C25—C24—H24	120.7	O1M—C1M—H1M2	109.5
C23—C24—H24	120.7	H1M1—C1M—H1M2	109.5
O9—C25—C26	119.0 (4)	O1M—C1M—H1M3	109.5
O9—C25—C24	121.2 (3)	H1M1—C1M—H1M3	109.5
C26—C25—C24	119.8 (4)	H1M2—C1M—H1M3	109.5
C25—C26—C27	120.0 (4)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A
N1—H1A…O15 ⁱ	0.90	2.26	3.082 (4)	153
N1—H1 <i>B</i> ···O18 ⁱ	0.90	2.20	3.042 (4)	157
O3—H3···O3 <i>M</i>	0.82	1.79	2.601 (5)	170
O6—H6A···O14 ⁱⁱ	0.82	1.88	2.685 (4)	166
N3—H3 <i>C</i> ···O13	0.90	2.36	3.174 (4)	150
O9—H9A…O2 ⁱⁱⁱ	0.82	1.78	2.597 (4)	173
N4—H4 <i>B</i> ···O17	0.90	2.29	3.050 (5)	142
O12—H12···O2 <i>M</i> ⁱⁱⁱ	0.82	1.90	2.669 (7)	155
N5—H5A…O1	0.90	2.46	3.251 (4)	146
N5—H5 <i>A</i> ···O9 ^{iv}	0.90	2.54	3.216 (4)	133
O15—H15A···O8 ^v	0.82	2.02	2.815 (4)	164

O15—H15A···O7 ^v	0.82	2.47	2.983 (4)	122
O18—H18A···O11 ^v	0.82	1.84	2.638 (4)	163
C1 <i>M</i> —H1 <i>M</i> 1…O1	0.96	2.52	3.042 (4)	114
C30—H30A…O11	0.97	2.55	2.893 (5)	101
C38—H38…O9 ^{iv}	0.98	2.38	3.178 (5)	138
C54—H54···O5	0.93	2.42	3.338 (5)	167

Symmetry codes: (i) *x*, *y*, *z*+1; (ii) –*x*+1, *y*–1/2, –*z*+1; (iii) *x*–1, *y*, *z*; (iv) *x*+1, *y*, *z*; (v) *x*, *y*, *z*–1.