organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(3R,4S,5R)-Methyl 3,5-bis[(tert-butyldimethylsilyl)oxy]-4-methoxycyclohex-1enecarboxylate

Ri Liu,^a Yu Shi,^b Chun-Xiu Xu^a and Yi-Liang Li^{b*}

^aSchool of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, People's Republic of China, and ^bTianjin Key Laboratory of Molecular Design and Drug Discovery, Tianjin Institute of Pharmaceutical Research, Tianjin 300193, People's Republic of China Correspondence e-mail: liyl@tjipr.com

Received 28 January 2013; accepted 19 March 2013

Key indicators: single-crystal X-ray study; T = 113 K; mean σ (C–C) = 0.003 Å; R factor = 0.048; wR factor = 0.073; data-to-parameter ratio = 22.7.

The title compound, C₂₁H₄₂O₅Si₂, was synthesized from (3R,4S,5R)-methyl 3,5-bis[(tert-butyldimethylsilyl)oxy]-4-hydroxycyclohex-1-enecarboxylate by an esterification reaction. The cyclohexene ring adopts a half-chair conformation. In the crystal, molecules are linked via C-H···O hydrogen bonds, forming helical chains propagating along [010].

Related literature

The title compound is an intermediate in the synthesis of vandetanib {systematic name: N-(4-bromo-2-fluorophenyl)-6methoxy-7-[(1-methyl-4-piperidinyl)methoxy]-4-quinazolinamine} derivatives. For vandetanib as a tyrosine kinase inhibitor, see: Heymach (2005); Morabito et al. (2009); Wells et al. (2010); Natale et al. (2009).

Experimental

Crystal data

$C_{21}H_{42}O_5Si_2$	a = 10.760 (5
$M_r = 430.72$	b = 8.321 (4)
Monoclinic, P2 ₁	c = 14.601 (7)

$\beta = 98.997 \ (9)^{\circ}$
$V = 1291.3 (10) \text{ Å}^3$
Z = 2
Mo $K\alpha$ radiation

Data collection _

Refinement

_ . .

$R[F^2 > 2\sigma(F^2)] = 0.048$ wR(F^2) = 0.073	H-atom parameters constrained $\Delta \rho = -0.21 \text{ e} \text{\AA}^{-3}$
S = 0.98	$\Delta \rho_{\rm min} = -0.29 \text{ e} \text{ Å}^{-3}$
6015 reflections	Absolute structure: Flack (1983),
265 parameters	2745 Friedel pairs
1 restraint	Flack parameter: -0.04 (9)

 $\mu = 0.16 \text{ mm}^{-1}$ T = 113 K

 $R_{\rm int} = 0.058$

 $0.20 \times 0.18 \times 0.12 \text{ mm}$

13589 measured reflections

6015 independent reflections 4456 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D{\cdots}A$	$D - \mathbf{H} \cdots A$
$C7 - H7B \cdots O3^{i}$	0.98	2.55	3.410 (3)	147
$C9-H9A\cdots O3^{ii}$	0.98	2.59	3.527 (3)	161

Symmetry codes: (i) x, y + 1, z; (ii) $-x + 1, y + \frac{1}{2}, -z + 1$.

Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2006).

The synthesis and evaluation of the title compound was undertaken as part of the National Science and Technology Major Project "The synthesis and anticancer activity screening of novel chalcone derivatives". The authors thank the State Key Laboratory of Elemento-organic Chemistry Nankai University, for the X-ray data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: VM2187).

References

- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Heymach, J. V. (2005). Br. J. Cancer, 92(Suppl 1), 14-20.
- Morabito, A., Piccirillo, M. C., Falasconi, F., De Feo, G., Del Giudice, A., Bryce, J., Di Maio, M., De Maio, E., Normanno, N. & Perrone, F. (2009). Oncologist, 14, 378-390.
- Natale, R. B., Thongprasert, S., Greco, F. A., Thomas, M., Tsai, C. M., Sunpaweravong, P., Ferry, D., Langmuir, P., Rowbottom, J. A. & Goss, G. D. (2009). J. Clin. Oncol. 27(15S), abstr. 8009.
- Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.

Rigaku/MSC (2006). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.

- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wells, S. A., Gosnell, J. E., Gagel, R. F., Moley, J., Pfister, D., Sosa, J. A., Skinner, M., Krebs, A., Vasselli, J. & Schlumberger, M. (2010). J. Clin. Oncol. 28, 767-772.

supporting information

Acta Cryst. (2013). E69, o632 [https://doi.org/10.1107/S1600536813007551]

(3*R*,4*S*,5*R*)-Methyl 3,5-bis[(*tert*-butyldimethylsilyl)oxy]-4-methoxycyclohex-1enecarboxylate

Ri Liu, Yu Shi, Chun-Xiu Xu and Yi-Liang Li

S1. Comment

Vandetanib is a small molecule tyrosine kinase inhibitor, which can act on the tumor cells epidermal growth factor receptor (EGFR), vascular endothelial growth factor receptor (VEGFR) and the RET tyrosine kinase (Heymach, 2005; Morabito *et al.*, 2009). Vandetanib has a good therapeutic effect for Medullary thyroid cancer and Non-small cell lung cancer (Wells *et al.*, 2010; Natale *et al.*, 2009).

(3*R*,4*S*,5*R*)-Methyl 3,5-bis[(*tert*-butyldimethylsilyl)oxy]-4-methoxycyclohex-1-enecarboxylate (Fig. 1) is an intermediate to synthetize Vandetanib derivatives. Here, the synthesis and crystallographic characterization of the compound are reported.

The crystal structure of the compound has monoclinic ($P2_1$) symmetry at 113 K. No hydrogen-bonding or π - π interactions are observed in the crystal structure. Despite the relatively large steric size of substituent groups, the cyclohexene still has a nearly ideal half-chair form with carbon atoms C3, C4,C5 and C2 lying in one plane.

S2. Experimental

Solid sodium hydroxide (2.8 g, 0.07 mol) was added to a stirred solution of (3R,4S,5R)-methyl 3,5-bis((*tert*-butyl-dimethylsilyl)oxy)-4-hydroxycyclohex-1-*e*necarboxylate (5.6 g, 0.134 mol) in acetonitrile (60 ml) at room temperature. The reaction mixture was added dropwise to a solution of dimethyl sulfate (4.2 ml, 0.044 mol) in acetonitrile (60 ml). After the dropwise addition, the temperature was raised to 40 °C. The reaction was completed within 15 hrs at 40 °C stirring. The solvent was removed under reduced pressure, and ethyl acetate (300 ml) and H₂O (100 ml) were added three times to extract the solid. The ethyl acetate layer was dried with anhydrous magnesium sulfate and a white solid was obtained after removal of the solvent. The yield was 4.8 g (82.7%). About 0.5g of the product was put in an ampoule bottle and 10 ml absolute methanol was added. The white single crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of the solvent at room temperature after 1 week.

S3. Refinement

H atoms were placed at calculated positions with C-H = 0.98 Å (methyl), 0.99 Å (methylene), 1.00 Å (methine sp³) and 0.95 Å (methine sp²) and refined as riding atoms with $U_{iso}(H) = 1.5U_{eq}(C)$ (methyl) or $1.2U_{eq}(C)$ (others).

Figure 1

 $Molecular\ structure\ of\ C_{21}H_{42}O_5Si_2\ with\ atom-labelling\ scheme\ and\ ellipsoids\ drawn\ at\ the\ 50\%\ probability\ level.$

F(000) = 472

 $\theta = 1.9-27.9^{\circ}$

 $\mu = 0.16 \text{ mm}^{-1}$

Prism, colourless

 $0.20\times0.18\times0.12~mm$

T = 113 K

 $D_{\rm x} = 1.108 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 4632 reflections

Methyl (3R,4S,5R)-3,5-bis[(tert-butyldimethylsilyl)oxy]-4-methoxycyclohex-1-enecarboxylate

Crystal data

 $C_{21}H_{42}O_5Si_2$ $M_r = 430.72$ Monoclinic, $P2_1$ a = 10.760 (5) Å b = 8.321 (4) Å c = 14.601 (7) Å $\beta = 98.997$ (9)° V = 1291.3 (10) Å³ Z = 2

Data collection

Rigaku Saturn724 CCD	13589 measured reflections
diffractometer	6015 independent reflections
Radiation source: rotating anode	4456 reflections with $I > 2\sigma(I)$
Multilayer monochromator	$R_{\rm int} = 0.058$
Detector resolution: 14.22 pixels mm ⁻¹	$\theta_{\rm max} = 27.9^{\circ}, \ \theta_{\rm min} = 1.9^{\circ}$
ω and φ scans	$h = -14 \rightarrow 14$
Absorption correction: multi-scan	$k = -10 \rightarrow 10$
(CrystalClear; Rigaku, 2007)	$l = -19 \rightarrow 19$
$T_{\min} = 0.968, \ T_{\max} = 0.981$	

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.048$	H-atom parameters constrained
$wR(F^2) = 0.073$	$w = 1/[\sigma^2(F_o^2) + (0.010P)^2]$
S = 0.98	where $P = (F_o^2 + 2F_c^2)/3$
6015 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
265 parameters	$\Delta \rho_{\rm max} = 0.21 \text{ e } \text{\AA}^{-3}$
1 restraint	$\Delta ho_{\min} = -0.29 \text{ e} \text{ Å}^{-3}$
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack (1983), 2745 Friedel pairs
Secondary atom site location: difference Fourier map	Absolute structure parameter: -0.04 (9)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Si1	0.43693 (6)	0.59832 (8)	0.75544 (5)	0.02755 (16)
Si2	0.93837 (6)	0.92816 (8)	0.82849 (4)	0.02554 (16)
01	0.55081 (13)	0.59788 (19)	0.69212 (10)	0.0277 (4)
O2	0.66743 (13)	0.92780 (19)	0.57018 (10)	0.0307 (4)
O3	0.75863 (16)	0.3984 (2)	0.44370 (12)	0.0421 (5)
O4	0.93371 (15)	0.4208 (2)	0.54942 (11)	0.0367 (4)
O5	0.86351 (13)	0.89726 (17)	0.72306 (10)	0.0246 (4)
C1	0.5623 (2)	0.7011 (3)	0.61583 (16)	0.0274 (6)
H1	0.4777	0.7436	0.5885	0.033*
C2	0.61777 (19)	0.6039 (3)	0.54295 (15)	0.0290 (5)
H2A	0.5717	0.5011	0.5319	0.035*
H2B	0.6066	0.6644	0.4838	0.035*
C3	0.7562 (2)	0.5697 (3)	0.57327 (15)	0.0250 (5)
C4	0.8238 (2)	0.6447 (3)	0.64413 (15)	0.0238 (5)
H4	0.9101	0.6167	0.6598	0.029*
C5	0.7728 (2)	0.7704 (3)	0.70088 (15)	0.0242 (5)
Н5	0.7564	0.7202	0.7601	0.029*
C6	0.6494 (2)	0.8400 (3)	0.65060 (15)	0.0266 (6)
H6	0.6093	0.9098	0.6935	0.032*
C7	0.6928 (2)	1.0957 (3)	0.58602 (16)	0.0488 (7)
H7A	0.6265	1.1434	0.6163	0.073*
H7B	0.6950	1.1496	0.5266	0.073*
H7C	0.7743	1.1086	0.6260	0.073*

C8	0.4174 (2)	0.8026 (3)	0.80365 (17)	0.0441 (7)
H8A	0.4949	0.8335	0.8444	0.066*
H8B	0.3473	0.8016	0.8392	0.066*
H8C	0.3998	0.8801	0.7527	0.066*
C9	0.2855 (2)	0.5375 (3)	0.68386 (17)	0.0412 (7)
H9A	0.2537	0.6259	0.6423	0.062*
H9B	0.2239	0.5122	0.7246	0.062*
H9C	0.2992	0.4426	0.6470	0.062*
C10	0.4906 (2)	0.4488 (3)	0.84924 (16)	0.0327 (6)
C11	0.4060 (3)	0.4598(3)	0.92525 (17)	0.0537 (8)
H11A	0.4329	0 3794	0.9733	0.081*
HIIR	0.3184	0.4396	0.8978	0.081*
HIIC	0.4131	0.5673	0.9529	0.081*
C12	0.4151 0.4852 (3)	0.2784(3)	0.9029	0.0501 (8)
H12A	0.4852 (5)	0.2704 (3)	0.7508	0.075*
1112A 1112P	0.3357	0.2727	0.7598	0.075*
	0.5977	0.2505	0.7858	0.075*
П12C	0.5180	0.2028	0.0391	0.075°
	0.0274(2)	0.4848 (3)	0.89552 (17)	0.0515 (8)
HIJA	0.6519	0.4094	0.9467	0.077*
HI3B	0.6325	0.5950	0.9194	0.07/*
HI3C	0.6842	0.4727	0.8496	0.077*
C14	0.8129 (2)	0.4543 (3)	0.51520 (17)	0.0299 (6)
C15	0.9983 (3)	0.3166 (3)	0.49216 (19)	0.0448 (7)
H15A	0.9561	0.2119	0.4853	0.067*
H15B	1.0858	0.3022	0.5216	0.067*
H15C	0.9964	0.3656	0.4309	0.067*
C16	1.0379 (2)	0.7499 (3)	0.86556 (17)	0.0409 (7)
H16A	0.9843	0.6549	0.8664	0.061*
H16B	1.0847	0.7684	0.9278	0.061*
H16C	1.0973	0.7324	0.8220	0.061*
C17	0.8227 (2)	0.9581 (3)	0.90962 (15)	0.0384 (7)
H17A	0.7633	1.0430	0.8857	0.058*
H17B	0.8674	0.9893	0.9707	0.058*
H17C	0.7768	0.8578	0.9151	0.058*
C18	1.0368 (2)	1.1119 (3)	0.81908 (16)	0.0314 (6)
C19	1.1006 (2)	1.1013 (3)	0.73279 (15)	0.0429 (7)
H19A	1.1597	1.1908	0.7326	0.064*
H19B	1.0367	1.1069	0.6771	0.064*
H19C	1.1462	0.9993	0.7333	0.064*
C20	1.1383 (2)	1.1213 (4)	0.90549 (17)	0.0510 (8)
H20A	1.1989	1.0339	0.9039	0.076*
H20B	1.0988	1.1113	0.9613	0.076*
H20C	1.1820	1.2248	0.9064	0.076*
C21	0.9558 (3)	1.2647 (3)	0.8138 (2)	0.0521 (9)
H21A	0.9137	1.2710	0.8685	0.078*
H21B	0.8924	1.2613	0.7577	0.078*
H21C	1 0095	1 3593	0.8116	0.078*
		1.0070	0.0110	3.070

supporting information

Atomic displacement parameters (A	²)
-----------------------------------	----------------

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
Si1	0.0247 (4)	0.0286 (4)	0.0307 (4)	-0.0038 (3)	0.0084 (3)	0.0005 (3)
Si2	0.0258 (4)	0.0250 (3)	0.0258 (4)	-0.0017 (3)	0.0038 (3)	-0.0023 (3)
O1	0.0305 (9)	0.0244 (8)	0.0305 (9)	-0.0039 (8)	0.0118 (7)	0.0027 (8)
O2	0.0330 (10)	0.0296 (9)	0.0293 (9)	-0.0063 (9)	0.0039 (8)	0.0070 (8)
O3	0.0526 (12)	0.0404 (11)	0.0344 (10)	-0.0022 (10)	0.0103 (9)	-0.0126 (9)
O4	0.0402 (11)	0.0333 (9)	0.0389 (10)	0.0074 (10)	0.0137 (9)	-0.0083 (9)
O5	0.0239 (9)	0.0259 (9)	0.0238 (8)	-0.0070 (7)	0.0027 (7)	0.0000 (7)
C1	0.0271 (15)	0.0303 (13)	0.0261 (13)	-0.0032 (11)	0.0076 (12)	0.0023 (11)
C2	0.0293 (14)	0.0325 (13)	0.0261 (13)	-0.0070 (13)	0.0071 (11)	-0.0070 (13)
C3	0.0284 (13)	0.0223 (13)	0.0269 (13)	-0.0053 (10)	0.0121 (11)	-0.0011 (10)
C4	0.0228 (13)	0.0242 (13)	0.0258 (13)	-0.0020 (10)	0.0081 (11)	0.0010 (10)
C5	0.0263 (14)	0.0243 (12)	0.0228 (13)	-0.0053 (11)	0.0060 (11)	0.0002 (10)
C6	0.0297 (15)	0.0285 (13)	0.0223 (13)	-0.0015 (11)	0.0065 (11)	0.0026 (11)
C7	0.0525 (17)	0.0375 (15)	0.0521 (18)	-0.0128 (16)	-0.0055 (14)	0.0143 (16)
C8	0.0436 (18)	0.0375 (15)	0.057 (2)	0.0024 (14)	0.0250 (16)	-0.0008 (14)
C9	0.0345 (16)	0.0421 (16)	0.0460 (17)	-0.0101 (12)	0.0030 (13)	0.0066 (14)
C10	0.0306 (15)	0.0356 (15)	0.0330 (14)	-0.0086 (12)	0.0089 (12)	0.0021 (12)
C11	0.065 (2)	0.057 (2)	0.0444 (18)	-0.0087 (16)	0.0247 (16)	0.0125 (16)
C12	0.055 (2)	0.0378 (17)	0.058 (2)	-0.0007 (15)	0.0082 (17)	0.0078 (15)
C13	0.0412 (18)	0.062 (2)	0.0471 (18)	-0.0091 (15)	-0.0064 (14)	0.0198 (16)
C14	0.0361 (16)	0.0248 (14)	0.0320 (14)	-0.0073 (12)	0.0146 (12)	-0.0002 (11)
C15	0.0537 (18)	0.0387 (16)	0.0472 (17)	0.0135 (15)	0.0241 (15)	-0.0056 (14)
C16	0.0421 (17)	0.0359 (16)	0.0429 (17)	0.0046 (13)	0.0008 (14)	0.0045 (14)
C17	0.0428 (17)	0.0393 (17)	0.0353 (15)	-0.0083 (13)	0.0136 (13)	-0.0057 (13)
C18	0.0321 (14)	0.0280 (13)	0.0344 (14)	-0.0053 (13)	0.0065 (12)	-0.0077 (13)
C19	0.0434 (16)	0.0476 (15)	0.0392 (16)	-0.0200 (16)	0.0110 (13)	-0.0045 (15)
C20	0.0497 (18)	0.0577 (19)	0.0436 (18)	-0.0243 (17)	0.0011 (15)	-0.0130 (16)
C21	0.059 (2)	0.0201 (14)	0.078 (2)	-0.0042 (14)	0.0140 (19)	-0.0030 (15)

Geometric parameters (Å, °)

Sil—Ol	1.6464 (15)	С9—Н9В	0.9800
Sil—C9	1.863 (2)	С9—Н9С	0.9800
Sil—C8	1.864 (3)	C10—C12	1.527 (3)
Sil—C10	1.874 (3)	C10—C11	1.544 (3)
Si2—O5	1.6421 (16)	C10-C13	1.549 (3)
Si2-C16	1.860 (2)	C11—H11A	0.9800
Si2—C17	1.864 (2)	C11—H11B	0.9800
Si2-C18	1.877 (3)	C11—H11C	0.9800
01—C1	1.427 (2)	C12—H12A	0.9800
O2—C6	1.422 (2)	C12—H12B	0.9800
O2—C7	1.435 (3)	C12—H12C	0.9800
O3—C14	1.207 (3)	C13—H13A	0.9800
O4—C14	1.347 (3)	C13—H13B	0.9800
O4—C15	1.454 (3)	C13—H13C	0.9800

supporting information

O5—C5	1.440 (2)	C15—H15A	0.9800
C1—C6	1.523 (3)	C15—H15B	0.9800
C1—C2	1.530 (3)	C15—H15C	0.9800
C1—H1	1.0000	C16—H16A	0.9800
C2—C3	1.513 (3)	C16—H16B	0.9800
C2—H2A	0.9900	C16—H16C	0.9800
C2—H2B	0.9900	C17—H17A	0.9800
C3—C4	1.324 (3)	C17—H17B	0.9800
C3—C14	1.475 (3)	C17—H17C	0.9800
C4—C5	1.492 (3)	C18—C19	1.529 (3)
C4—H4	0.9500	C18—C20	1.536 (3)
C5—C6	1.527 (3)	C18—C21	1.537 (3)
С5—Н5	1 0000	C19—H19A	0.9800
С6—Н6	1 0000	C19—H19B	0.9800
С7—Н7А	0.9800	C19—H19C	0.9800
C7—H7B	0.9800	C20—H20A	0.9800
C7H7C	0.9800	C20—H20B	0.9800
	0.9800	C20 H20C	0.9800
	0.9800	C20—1120C	0.9800
	0.9800	C21_H21R	0.9800
	0.9800	C21—H21B	0.9800
С9—п9А	0.9800	C2I—H2IC	0.9800
01—Si1—C9	110.29 (10)	C12—C10—Si1	110.67 (18)
O1—Si1—C8	110.58 (10)	C11-C10-Si1	109.69 (17)
C9—Si1—C8	108.63 (12)	C13—C10—Si1	110.70 (16)
O1—Si1—C10	103.74 (10)	C10-C11-H11A	109.5
C9—Si1—C10	111.85 (11)	C10—C11—H11B	109.5
C8—Si1—C10	111.69 (12)	H11A—C11—H11B	109.5
O5—Si2—C16	108.88 (10)	C10—C11—H11C	109.5
O5—Si2—C17	109.77 (10)	H11A—C11—H11C	109.5
C16—Si2—C17	109.45 (12)	H11B—C11—H11C	109.5
05—Si2—C18	104.99 (10)	C10—C12—H12A	109.5
C_{16} S_{12} C_{18}	111.41 (12)	C10—C12—H12B	109.5
C17 - Si2 - C18	112.21 (11)	H12A—C12—H12B	109.5
C1 - O1 - Si1	126.87 (15)	C10-C12-H12C	109.5
C6-02-C7	114 49 (18)	H12A - C12 - H12C	109.5
$C_{14} - O_{4} - C_{15}$	115 5 (2)	H12B-C12-H12C	109.5
C_{5} C_{5} S_{12}	113.3(2) 122.79(13)	C10-C13-H13A	109.5
01 - C1 - C6	108 68 (18)	C10-C13-H13B	109.5
01 C1 C2	108.00(18) 108.40(18)	H13A C13 H13B	109.5
$C_{1} = C_{1} = C_{2}$	100.40(10) 110.27(18)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5
$C_{0} = C_{1} = C_{2}$	100.8	H_{12} C_{13} H_{12} H_{12} H_{12} C_{13} H_{12} H_{12} C_{13} H_{12} H_{12} C_{13} H_{12} H_{12} C_{13} H_{12} H_{12} H_{12} C_{13} H_{12} H	109.5
	109.8		109.5
$C_0 - C_1 - H_1$	109.8	$\begin{array}{c} HI3B \\ CI3 \\ CI4 \\ O4 \end{array}$	109.5
$C_2 = C_1 = C_1$	109.0	03 - 014 - 04	123.3(2)
$C_2 = C_2 = U_2 A$	111.05 (19)	03 - 014 - 03	124.1(2)
$C_3 - C_2 - H_2 A$	109.3	04 - 014 - 03	112.5 (2)
$C_1 - C_2 - H_2 A$	109.3	04—015—H15A	109.5
C3—C2—H2B	109.3	O4—C15—H15B	109.5

C1—C2—H2B	109.3	H15A—C15—H15B	109.5
H2A—C2—H2B	108.0	O4—C15—H15C	109.5
C4—C3—C14	122.0 (2)	H15A—C15—H15C	109.5
C4—C3—C2	122.4 (2)	H15B—C15—H15C	109.5
C14—C3—C2	115.5 (2)	Si2—C16—H16A	109.5
C3—C4—C5	124.0 (2)	Si2—C16—H16B	109.5
C3—C4—H4	118.0	H16A—C16—H16B	109.5
C5—C4—H4	118.0	Si2—C16—H16C	109.5
O5—C5—C4	110.08 (18)	H16A—C16—H16C	109.5
Q5—C5—C6	109.77 (18)	H16B—C16—H16C	109.5
C4-C5-C6	111 52 (19)	Si2—C17—H17A	109.5
05-C5-H5	108.5	Si2—C17—H17B	109.5
C4—C5—H5	108 5	H17A—C17—H17B	109.5
C6-C5-H5	108.5	Si2—C17—H17C	109.5
02-C6-C1	105 72 (18)	H17A - C17 - H17C	109.5
02 - C6 - C5	111 78 (18)	H17B-C17-H17C	109.5
C1 - C6 - C5	108 40 (19)	C19-C18-C20	109.3 109.1(2)
$0^{2}-C^{6}-H^{6}$	110.3	C19 - C18 - C21	109.1(2) 109.3(2)
C1-C6-H6	110.3	C_{20} C_{18} C_{21}	109.3(2) 108.9(2)
C5-C6-H6	110.3	$C_{10} - C_{18} - S_{12}$	100.9(2)
$\Omega^2 - \Omega^7 - H7A$	109.5	$C_{10} = C_{10} = S_{12}$	108.14(17)
$O_2 = C_7 = H7R$	109.5	$C_{20} = C_{10} = S_{12}$	100.30(10) 110.82(16)
$H_{7A} = C_7 = H_{7B}$	109.5	$C_{21} = C_{10} = S_{12}$	100.5
$\Omega^2 C7 H7C$	109.5	C_{18} C_{19} H_{19B}	109.5
	109.5	H10A C10 H10P	109.5
H/R C7 H7C	109.5	$\begin{array}{cccc} \mathbf{H} & \mathbf{H} & \mathbf{H} & \mathbf{H} \\ \mathbf{H} & \mathbf{H} & \mathbf{H} & \mathbf{H} & \mathbf{H} \\ \mathbf{H} & \mathbf{H} & \mathbf{H} & \mathbf{H} & \mathbf{H} \\ \mathbf{H} & \mathbf{H} & \mathbf{H} & \mathbf{H} & \mathbf{H} \\ \mathbf{H} & \mathbf{H} & \mathbf{H} & \mathbf{H} & \mathbf{H} \\ \mathbf{H} & \mathbf{H} & \mathbf{H} & \mathbf{H} & \mathbf{H} \\ \mathbf{H} \\ \mathbf{H} & \mathbf{H} \\ \mathbf{H} \\ \mathbf{H} & \mathbf{H} \\ \mathbf{H} & \mathbf{H} \\ \mathbf{H} \\ \mathbf{H} & \mathbf{H} \\ \mathbf{H} \\ \mathbf{H} & \mathbf{H} \\ \mathbf{H} \\$	109.5
$\frac{11}{D} - \frac{1}{C} + \frac{11}{C}$	109.5		109.5
$SII = C_0 = II_0 A$	109.5	H19A - C19 - H19C	109.5
	109.5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5
BA - C - BB	109.5	C18 = C20 = H20R	109.5
	109.5	U18—C20—H20В	109.5
$H\delta A = C\delta = H\delta C$	109.5	$H_{20}A = C_{20} = H_{20}B$	109.5
$H\delta B = C\delta = H\delta C$	109.5	H_{20} H	109.5
SII—C9—H9A	109.5	$H_{20}A = C_{20} = H_{20}C$	109.5
SII—C9—H9B	109.5	$H_{20B} = C_{20} = H_{20}C$	109.5
H9A—C9—H9B	109.5	C18 - C21 - H21A	109.5
S11—C9—H9C	109.5	C18—C21—H21B	109.5
H9A—C9—H9C	109.5	$H_2IA = C_2I = H_2IB$	109.5
H9B-C9-H9C	109.5	C18—C21—H2IC	109.5
	109.4 (2)	$H_2IA = C_2I = H_2IC$	109.5
C12 - C10 - C13	108.7 (2)	H21B-C21-H21C	109.5
C11 - C10 - C13	107.5 (2)		
C9—Si1—O1—C1	65.82 (19)	O5—C5—C6—C1	171.87 (16)
C8—Si1—O1—C1	-54.4 (2)	C4—C5—C6—C1	49.6 (2)
C10—Si1—O1—C1	-174.24 (17)	O1—Si1—C10—C12	-70.14 (19)
C16—Si2—O5—C5	63.48 (18)	C9—Si1—C10—C12	48.7 (2)
C17—Si2—O5—C5	-56.31 (18)	C8—Si1—C10—C12	170.72 (18)
C18—Si2—O5—C5	-177.12 (16)	O1—Si1—C10—C11	169.01 (16)

Si1-01-C1-C6	97.0 (2)	C9—Si1—C10—C11	-72.1 (2)
Si1-01-C1-C2	-143.19 (15)	C8—Si1—C10—C11	49.9 (2)
O1—C1—C2—C3	-73.1 (2)	O1—Si1—C10—C13	50.48 (19)
C6—C1—C2—C3	45.8 (3)	C9—Si1—C10—C13	169.35 (17)
C1—C2—C3—C4	-13.4 (3)	C8—Si1—C10—C13	-68.6 (2)
C1-C2-C3-C14	170.15 (18)	C15—O4—C14—O3	2.6 (3)
C14—C3—C4—C5	175.70 (19)	C15—O4—C14—C3	-175.76 (18)
C2—C3—C4—C5	-0.5 (3)	C4—C3—C14—O3	-170.6 (2)
Si2—O5—C5—C4	-110.40 (18)	C2-C3-C14-O3	5.9 (3)
Si2—O5—C5—C6	126.48 (16)	C4—C3—C14—O4	7.8 (3)
C3—C4—C5—O5	-140.3 (2)	C2—C3—C14—O4	-175.7 (2)
C3—C4—C5—C6	-18.3 (3)	O5—Si2—C18—C19	-43.92 (18)
C7—O2—C6—C1	151.68 (18)	C16—Si2—C18—C19	73.8 (2)
C7—O2—C6—C5	-90.6 (2)	C17—Si2—C18—C19	-163.11 (17)
O1—C1—C6—O2	173.92 (17)	O5—Si2—C18—C20	-163.30 (16)
C2-C1-C6-O2	55.2 (2)	C16—Si2—C18—C20	-45.6 (2)
O1—C1—C6—C5	53.9 (2)	C17—Si2—C18—C20	77.52 (19)
C2-C1-C6-C5	-64.8 (2)	O5—Si2—C18—C21	77.13 (18)
O5—C5—C6—O2	55.7 (2)	C16—Si2—C18—C21	-165.17 (17)
C4—C5—C6—O2	-66.5 (2)	C17—Si2—C18—C21	-42.1 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
C7—H7 <i>B</i> ···O3 ⁱ	0.98	2.55	3.410 (3)	147
C9—H9A···O3 ⁱⁱ	0.98	2.59	3.527 (3)	161

Symmetry codes: (i) *x*, *y*+1, *z*; (ii) –*x*+1, *y*+1/2, –*z*+1.