[Journal logo]

Volume 69 
Part 5 
Page i25  
May 2013  

Received 18 March 2013
Accepted 27 March 2013
Online 5 April 2013

Key indicators
Single-crystal X-ray study
T = 100 K
Mean [sigma](Sn-O) = 0.001 Å
R = 0.013
wR = 0.032
Data-to-parameter ratio = 18.3
Details
Open access

Dilithium hexahydroxidostannate(IV) dihydrate, a second monoclinic modification with a layer structure

aInstitut für Chemie neuer Materialien, Strukturchemie, Universität Osnabrück, Barbarastrasse 7, D-49069 Osnabrück, Germany
Correspondence e-mail: hreuter@uos.de

The title compound, Li2[Sn(OH)6]·2H2O, is dimorphic. As for the previously described [alpha]-modification, the title [beta]-modification crystallizes in the monoclinic system and contains the same primary building units, viz [Sn(OH)6]2- octahedra and [Li([mu]2-OH)3(H2O)] tetrahedra. In contrast to the Sn-O bond lengths that are very similar in both modifications, the Li-O bond lengths differ significantly, in particular those involving the water molecule. In the new [beta]-modification, the primary building units are linked into layers parallel to (010). The [Sn(OH)6]2- octahedra (-1 symmetry) form hexagonal nets and the [Li([mu]2-OH)3(H2O)] tetrahedra are situated in between, with their apices in an alternating fashion up and down. O-H...O hydrogen bonds between OH groups and water molecules exist within the layers as well as between them.

Related literature

For background to the structures of M2[Sn(OH)6] with M = Na, K, see: Jacobs & Stahl (2000[Jacobs, H. & Stahl, R. (2000). Z. Anorg. Allg. Chem. 626, 1863-1866.]). For literature on Li2[Sn(OH)6nH2O, see: Reuter & Bargon (1997[Reuter, H. & Bargon, G. (1997). Z. Anorg. Allg. Chem. 623, 1978-1982.]) for n = 2; Yang et al. (2001[Yang, S., Zavalij, P. Y. & Whittingham, M. S. (2001). Acta Cryst. C57, 228-229.]) for n = 0. For M[Sn(OH)6] compounds (M = divalent metal), see: Strunz & Nickel (2001[Strunz, H. & Nickel, E. H. (2001). In Strunz Mineralogical Tables, 9th ed. Stuttgart: Schweizerbart.]); Basciano et al. (1998[Basciano, L. C., Peterson, R. C. & Roeder, P. L. (1998). Can. Mineral. 36, 1203-1210.]).

Experimental

Crystal data
  • Li2[Sn(OH)6]·2H2O

  • Mr = 270.65

  • Monoclinic, P 21 /c

  • a = 6.1028 (2) Å

  • b = 10.4708 (3) Å

  • c = 6.0003 (2) Å

  • [beta] = 118.249 (1)°

  • V = 337.76 (2) Å3

  • Z = 2

  • Mo K[alpha] radiation

  • [mu] = 3.78 mm-1

  • T = 100 K

  • 0.15 × 0.14 × 0.11 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.601, Tmax = 0.681

  • 11484 measured reflections

  • 986 independent reflections

  • 964 reflections with I > 2[sigma](I)

  • Rint = 0.024

Refinement
  • R[F2 > 2[sigma](F2)] = 0.013

  • wR(F2) = 0.032

  • S = 1.09

  • 986 reflections

  • 54 parameters

  • H-atom parameters constrained

  • [Delta][rho]max = 0.36 e Å-3

  • [Delta][rho]min = -0.39 e Å-3

Table 1
Selected bond lengths (Å)

Sn1-O1 2.0567 (11)
Sn1-O3 2.0654 (11)
Sn1-O2 2.0699 (11)
O1-Li1 1.961 (3)
O2-Li1i 1.948 (3)
O3-Li1ii 1.965 (3)
Li1-O4 2.030 (3)
Symmetry codes: (i) -x+1, -y+1, -z; (ii) x-1, y, z.

Table 2
Hydrogen-bond geometry (Å, °)

D-H...A D-H H...A D...A D-H...A
O1-H1...O4i 0.96 1.84 2.7955 (16) 173
O2-H2...O1iii 0.96 1.93 2.8853 (16) 173
O3-H3...O4iv 0.96 1.90 2.8343 (16) 164
O4-H41...O3v 0.96 1.72 2.6634 (16) 167
O4-H42...O2vi 0.96 1.73 2.6662 (16) 165
Symmetry codes: (i) -x+1, -y+1, -z; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) -x+1, -y+1, -z+1; (vi) x+1, y, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2733 ).


References

Basciano, L. C., Peterson, R. C. & Roeder, P. L. (1998). Can. Mineral. 36, 1203-1210.  [ChemPort]
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Jacobs, H. & Stahl, R. (2000). Z. Anorg. Allg. Chem. 626, 1863-1866.  [CrossRef] [ChemPort]
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.  [ISI] [CrossRef] [ChemPort] [details]
Reuter, H. & Bargon, G. (1997). Z. Anorg. Allg. Chem. 623, 1978-1982.  [CrossRef] [ChemPort]
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [ChemPort] [details]
Strunz, H. & Nickel, E. H. (2001). In Strunz Mineralogical Tables, 9th ed. Stuttgart: Schweizerbart.
Yang, S., Zavalij, P. Y. & Whittingham, M. S. (2001). Acta Cryst. C57, 228-229.  [CrossRef] [ChemPort] [details]


Acta Cryst (2013). E69, i25  [ doi:10.1107/S1600536813008416 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.